1
|
Bîlc MI, Iacob A, Szekely-Copîndean RD, Kiss B, Ștefan MG, Mureșan RC, Pop CF, Pițur S, Szentágotai-Tătar A, Vulturar R, MacLeod C, Miu AC. Serotonin and emotion regulation: the impact of tryptophan depletion on emotional experience, neural and autonomic activity. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1414-1427. [PMID: 37430145 DOI: 10.3758/s13415-023-01116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
The involvement of serotonin in emotion and psychopathology has been extensively examined. Studies using acute tryptophan depletion (ATD) have found limited effects on mood and aggression, and one of the explanations suggests that serotonin may be involved in higher-order functions, such as emotion regulation. However, there is very limited evidence for this hypothesis. The present study investigated the impact of ATD on emotion regulation in a double-blind, placebo-controlled, crossover design. A sample of psychiatrically healthy men (N = 28) completed a cognitive task assessing reappraisal ability (i.e., the success of using reappraisal, an emotion regulation strategy, to modulate emotional responses), following ATD and placebo. EEG frontal activity and asymmetry, as well as heart-rate variability (HRV), also were assessed in the reappraisal task. Both frequentist and Bayesian methods were employed for statistical analysis. Results indicated that ATD reduced plasma tryptophan, and reappraisal was effective in modulating emotional experience in the emotion regulation task. However, ATD had no significant effect on reappraisal ability, frontal activity, and HRV. These results offer direct and compelling evidence that decreasing serotonin synthesis through ATD does not alter an emotion regulation ability that is considered crucial in mood and aggression and has been linked with transdiagnostic risk of psychopathology.
Collapse
Affiliation(s)
- Mirela I Bîlc
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Alexandra Iacob
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Raluca D Szekely-Copîndean
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Department of Social and Human Research, Romanian Academy, Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Felicia Pop
- Nursing Discipline, Department Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simina Pițur
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Aurora Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Romana Vulturar
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
- Department of Molecular Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Colin MacLeod
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Andrei C Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Laurell GL, Plavén-Sigray P, Johansen A, Raval NR, Nasser A, Aabye Madsen C, Madsen J, Hansen HD, Donovan LL, Knudsen GM, Lammertsma AA, Ogden RT, Svarer C, Schain M. Kinetic models for estimating occupancy from single-scan PET displacement studies. J Cereb Blood Flow Metab 2023; 43:1544-1556. [PMID: 37070382 PMCID: PMC10414003 DOI: 10.1177/0271678x231168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/19/2023]
Abstract
The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.
Collapse
Affiliation(s)
- Gjertrud Louise Laurell
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University, Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lene Lundgaard Donovan
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Adriaan A Lammertsma
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - R Todd Ogden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Molecular Imaging and Neuropathology Division, The New York State Psychiatric Institute, New York, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Antaros Medical, Mölndal, Sweden
| |
Collapse
|
3
|
Slifstein M, Abi-Dargham A. Detecting Pharmacologically Induced Serotonin Release in Depression With Positron Emission Tomography Imaging: A New Approach. Biol Psychiatry 2023; 93:1056-1058. [PMID: 37257982 DOI: 10.1016/j.biopsych.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Affiliation(s)
- Mark Slifstein
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.
| | - Anissa Abi-Dargham
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
4
|
Laurell GL, Plavén-Sigray P, Svarer C, Ogden RT, Knudsen GM, Schain M. Designing drug occupancy studies with PET neuroimaging: Sample size, occupancy ranges and analytical methods. Neuroimage 2022; 263:119620. [PMID: 36087903 DOI: 10.1016/j.neuroimage.2022.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular neuroimaging is today considered essential for evaluation of novel CNS drugs; it is used to quantify blood-brain barrier permeability, verify interaction with key target and determine the drug dose resulting in 50% occupancy, IC50. In spite of this, there has been limited data available to inform on how to optimize study designs. Through simulations, we here evaluate how IC50 estimation is affected by the (i) range of drug doses administered, (ii) number of subjects included, and (iii) level of noise in the plasma drug concentration measurements. Receptor occupancy is determined from PET distribution volumes using two different methods: the Lassen plot and Likelihood estimation of occupancy (LEO). We also introduce and evaluate a new likelihood-based estimator for direct estimation of IC50 from PET distribution volumes. For estimation of IC50, we find very limited added benefit in scanning individuals who are given drug doses corresponding to less than 40% receptor occupancy. In the range of typical PET sample sizes (5-20 subjects) each extra individual clearly reduces the error of the IC50 estimate. In all simulations, likelihood-based methods gave more precise IC50 estimates than the Lassen plot; four times the number of subjects were required for the Lassen plot to reach the same IC50 precision as LEO.
Collapse
Affiliation(s)
- Gjertrud Louise Laurell
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 6-8 Inge Lehmanns Vej, Rigshospitalet, Copenhagen DK-2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 6-8 Inge Lehmanns Vej, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 6-8 Inge Lehmanns Vej, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - R Todd Ogden
- Department of Biostatistics, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 6-8 Inge Lehmanns Vej, Rigshospitalet, Copenhagen DK-2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 6-8 Inge Lehmanns Vej, Rigshospitalet, Copenhagen DK-2100, Denmark; Antaros Medical AB, Mölndal, Sweden
| |
Collapse
|
5
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
6
|
The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol Psychiatry 2021; 90:447-457. [PMID: 34266672 DOI: 10.1016/j.biopsych.2021.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
The hypothesis of chronically low brain serotonin levels as pathophysiologically linked to impulsive aggression has been around for several decades. Whereas the theory was initially based on indirect methods to probe serotonin function, our understanding of the neural mechanisms involved in impulsive aggression has progressed with recent advances in neuroimaging. The review integrates evidence based on data from several neuroimaging domains in humans. In vivo molecular neuroimaging findings demonstrate associations between impulsive aggression and high serotonin 1B and serotonin 4 receptor binding, high serotonin transporter levels, and low monoamine oxidase A levels, suggesting that low interstitial serotonin levels are a neurobiological risk factor for impulsive aggressive behavior. Imaging genetics suggests that serotonergic-related genetic polymorphisms associate with antisocial behavior, and some evidence indicates that the low-expressing monoamine oxidase A genotype specifically predisposes to impulsive aggression, which may be mediated by effects on corticolimbic function. Interventions that (presumably) alter serotonin levels have effects on brain activity within brain regions involved in impulsive aggression, notably the amygdala, dorsal striatum, anterior cingulate, insula, and prefrontal cortex. Based on these findings, we propose a model for the modulatory role of serotonin in impulsive aggression. Future studies should ensure that clinical features unique for impulsive aggression are appropriately assessed, and we propose investigations of knowledge gaps that can help confirm, refute, or modify our proposed model of impulsive aggression.
Collapse
|
7
|
Colom M, Vidal B, Fieux S, Redoute J, Costes N, Lavenne F, Mérida I, Irace Z, Iecker T, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. [ 18F]F13640, a 5-HT 1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations. Front Neurosci 2021; 15:622423. [PMID: 33762906 PMCID: PMC7982540 DOI: 10.3389/fnins.2021.622423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). Materials and Methods Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. Results D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. Conclusion The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imagerie du Vivant, Bron, France.,Institut National des Sciences et Techniques Nucléaires, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
9
|
Ceccarini J, Liu H, Van Laere K, Morris ED, Sander CY. Methods for Quantifying Neurotransmitter Dynamics in the Living Brain With PET Imaging. Front Physiol 2020; 11:792. [PMID: 32792972 PMCID: PMC7385290 DOI: 10.3389/fphys.2020.00792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Positron emission tomography (PET) neuroimaging in neuropsychiatry is a powerful tool for the quantification of molecular brain targets to characterize disease, assess disease subtype differences, evaluate short- and long-term effects of treatments, or even to measure neurotransmitter levels in healthy and psychiatric conditions. In this work, we present different methodological approaches (time-invariant models and models with time-varying terms) that have been used to measure dynamic changes in neurotransmitter levels induced by pharmacological or behavioral challenges in humans. The developments and potential use of hybrid PET/magnetic resonance imaging (MRI) for neurotransmission brain research will also be highlighted.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Heather Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Evan D Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale University, New Haven, CT, United States.,Invicro LLC, New Haven, CT, United States
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Baldassarri SR, Park E, Finnema SJ, Planeta B, Nabulsi N, Najafzadeh S, Ropchan J, Huang Y, Hannestad J, Maloney K, Bhagwagar Z, Carson RE. Inverse changes in raphe and cortical 5-HT 1B receptor availability after acute tryptophan depletion in healthy human subjects. Synapse 2020; 74:e22159. [PMID: 32324935 DOI: 10.1002/syn.22159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 11/07/2022]
Abstract
Serotonergic neurotransmission plays a key role in the pathophysiology and treatment of various neuropsychiatric diseases. The purpose of this study was to investigate changes in serotonergic neurotransmission after acute tryptophan depletion (ATD) using positron emission tomography (PET) with [11 C]P943, a 5-HT1B receptor radioligand previously shown to be sensitive to changes in 5-HT. Five healthy subjects were scanned on a high resolution PET scanner twice on the same day, before and approximately 5 hours after ingesting capsules containing an amino acid mixture that lacks tryptophan. For each scan, emission data were acquired for 120 min after intravenous bolus injection of [11 C]P943. Binding potential (BPND ) values were estimated from parametric images using the second version of the multilinear reference tissue model (MRTM2, t* = 20 min) with cerebellar grey matter used as a reference region. The change in [11 C]P943 binding (ΔBPND , %) was calculated as (BPND,post - BPND,pre )/(BPND,pre ) × 100, and correlation analysis was performed to measure linear associations of ΔBPND between raphe and other regions of interest (ROIs). ΔBPND ranged from -6% to 45% in the raphe, with positive values indicating reduced competition from 5-HT. In cortical regions, ΔBPND ranged from -28% to 7%. While these changes did not reach significance, there were significant negative correlations of ΔBPND of the raphe with those of cerebral cortical regions and the thalamus (e.g., r = -.96, p = .011 for average cortex). These findings support the hypothesis that raphe serotonin is a critical modulator of cortical serotonin release via projecting neurons in healthy human subjects.
Collapse
Affiliation(s)
- Stephen R Baldassarri
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Eunkyung Park
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA.,Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sjoerd J Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Jonas Hannestad
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Kathleen Maloney
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Zubin Bhagwagar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Jensen AA, Halberstadt AL, Märcher-Rørsted E, Odland AU, Chatha M, Speth N, Liebscher G, Hansen M, Bräuner-Osborne H, Palner M, Andreasen JT, Kristensen JL. The selective 5-HT 2A receptor agonist 25CN-NBOH: Structure-activity relationship, in vivo pharmacology, and in vitro and ex vivo binding characteristics of [ 3H]25CN-NBOH. Biochem Pharmacol 2020; 177:113979. [PMID: 32298690 DOI: 10.1016/j.bcp.2020.113979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/10/2020] [Indexed: 01/16/2023]
Abstract
The remarkable effects exhibited by classical psychedelics in recent clinical trials have spawned considerable interest in 5-HT2A receptor (5-HT2AR) activation as a treatment strategy for several psychiatric/cognitive disorders. In this study we have continued our development of 25CN-NBOH, one of the most 5-HT2AR-selective agonists reported to date, as a pharmacological tool for exploration of 5-HT2AR expression and functions. The importance of the 2' and 3' positions in 25CN-NBOH as structural hotspots for its 5-HT2AR activity was investigated by synthesis and pharmacological characterization of six novel analogs at 5-HT2AR and 5-HT2CR in binding and functional assays. While the 5-HT2AR activity of 25CN-NBOH was retained in 3'-methyl, 2',3'-chroman, 2',3'-dihydrofuran and 2',3'-furan analogs, the 3'-methoxy and 3'-ethyl analogs displayed substantially lower binding affinities and agonist potencies than 25CN-NBOH. Interestingly, the 2',3'-substitution pattern was also a key determinant of agonist efficacy, as all six analogs exhibited low-efficacy partial agonism or de facto antagonism at the 5-HT2AR in the functional assays. Systemic administration of 25CN-NBOH and its close structural analog 25CN-NBMD induced robust head-twitch response in mice, a well-established behavioural effect of 5-HT2AR activation in vivo, and 25CN-NBOH mediated robust reductions in the activity of mice in an anxiety-related marble burying assay, which supports the proposed beneficial effects of 5-HT2AR activation on disorders characterized by cognitive rigidity. Finally, tritiated 25CN-NBOH exhibited high 5-HT2AR binding affinity (KD ~1 nM) and selectivity against 5-HT2BR and 5-HT2CR in equilibrium and kinetic binding studies of the recombinant receptors, and in concordance [3H]25CN-NBOH displayed substantial specific, ketanserin-sensitive binding to cortex and small levels of binding to choroid plexus in rat brain slices in autoradiography studies. In conclusion, this work delineates the subtle molecular determinants of the 5-HT2AR activity in 25CN-NBOH, substantiates the potential in this compound and its analogs as tools for in vivo studies of the 5-HT2AR, and introduces a novel selective agonist radioligand as another potentially valuable tool for future explorations of this receptor.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Emil Märcher-Rørsted
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anna U Odland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gudrun Liebscher
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Martin Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Serotonin release measured in the human brain: a PET study with [ 11C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology 2020; 45:804-810. [PMID: 31715617 PMCID: PMC7075951 DOI: 10.1038/s41386-019-0567-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Positron emission tomography (PET) enables non-invasive estimation of neurotransmitter fluctuations in the living human brain. While these methods have been applied to dopamine and some other transmitters, estimation of 5-hydroxytryptamine (5-HT; Serotonin) release has proved to be challenging. Here we demonstrate the utility of the novel 5-HT2A receptor agonist radioligand, [11C]CIMBI-36, and a d-amphetamine challenge to evaluate synaptic 5-HT changes in the living human brain. Seventeen healthy male volunteers received [11C]CIMBI-36 PET scans before and 3 h after an oral dose of d-amphetamine (0.5 mg/kg). Dynamic PET data were acquired over 90 min, and the total volume of distribution (VT) in the frontal cortex and the cerebellum derived from a kinetic analysis using MA1. The frontal cortex binding potential (BPNDfrontal) was calculated as (VTfrontal/VTcerebellum) - 1. ∆BPNDfrontal = 1 - (BPNDfrontal post-dose/BPNDfrontal baseline) was used as an index of 5-HT release. Statistical inference was tested by means of a paired Students t-test evaluating a reduction in post-amphetamine [11C]CIMBI-36 BPNDfrontal. Following d-amphetamine administration, [11C]CIMBI-36 BPNDfrontal was reduced by 14 ± 13% (p = 0.002). Similar effects were observed in other cortical regions examined in an exploratory analysis. [11C]CIMBI-36 binding is sensitive to synaptic serotonin release in the human brain, and when combined with a d-amphetamine challenge, the evaluation of the human brain serotonin system in neuropsychiatric disorders, such as major depression and Parkinson's disease is enabled.
Collapse
|