1
|
Tanabe M, Saito Y, Takasaki A, Nakano K, Yamamoto S, Suzuki C, Kawamura N, Hattori A, Oikawa M, Nagashima S, Yanagi S, Yamaguchi T, Fukuda T. Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder. Cell Rep 2024; 44:115133. [PMID: 39731733 DOI: 10.1016/j.celrep.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear. Here, we find that ChP-specific CAMDI-knockout mice develop an immature ChP alongside decreased multiciliogenesis and expression of differentiation marker genes following disruption of the cerebrospinal fluid barrier. These mice exhibit ASD-like behaviors, including anxiety and impaired socialization. Additionally, the administration of metformin, an FDA-approved drug, before the social critical period achieves ChP maturation and restores social behaviors. Furthermore, both the ASD model mice and organoids derived from patients with ASD developed an immature ChP. These results propose the involvement of an immature ChP in the pathogenesis of ASD and suggest the targeting of functional maturation of the ChP as a therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Motoi Tanabe
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuga Saito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Takasaki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Nakano
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shunta Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chikako Suzuki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nao Kawamura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Aki Hattori
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
2
|
Zhang Q, Li Y, Zhang J, Cui Y, Sun S, Chen W, Shi L, Zhang Y, Hou Z. IL-17A is a key regulator of neuroinflammation and neurodevelopment in cognitive impairment induced by sevoflurane. Free Radic Biol Med 2024; 227:12-26. [PMID: 39581388 DOI: 10.1016/j.freeradbiomed.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Increasing numbers of animal studies have shown that repeat sevoflurane exposure during developmental stage may lead to long-term cognitive impairment. Nevertheless, the exact pathogenesis remains unclear. Interleukin 17A (IL-17A) has been associated with cognitive decline in various neurological disorders. Here we found that the expression of IL-17A was up-regulated in hippocampus of sevoflurane exposed neonatal mice. Genetic deletion of IL-17A or inhibition of IL-17A improved behavioral function and down-regulated neuroinflammation related genes, interleukin 1β (IL-1β), interleukin 6 (IL-6), Nicotinamide adenine dinucleotide phosphate(NADPH) oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) in hippocampus of sevoflurane exposed neonatal mice. Moreover, negative regulation of IL-17A/Interleukin 17A receptor(IL-17RA) promoted the extracellular signal-regulated protein kinase (ERK) signaling pathway and nucleation of cyclic adenosine monophosphate (cAMP) response element-binding (CREB) in neurons of cognitive impaired mice. Knockdown of IL-17A in vivo identified neurons-localized IL-17A as a major factor in neuroinflammation and neurodevelopment. Collectively, our results suggested that IL-17A was required for the pathogenesis of neuroinflammatory response and identify IL-17A as a potential therapeutic target for cognitive impairment exposed by general anesthetics during infancy.
Collapse
Affiliation(s)
- Qi Zhang
- Postdoctoral Mobile Station of the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, PR China; Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China; Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, PR China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei, PR China
| | - Jiajie Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Suzhen Sun
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, PR China; Department of Neurology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lei Shi
- Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China; Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei, PR China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (the Third Hospital of Hebei Medical University), Hebei, PR China.
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China; Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei, PR China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (the Third Hospital of Hebei Medical University), Hebei, PR China.
| |
Collapse
|
3
|
Xu J, Wang F, Gao Y, Qi C, Chen T, Yan J. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Dev Neurosci 2024:1-17. [PMID: 39401493 DOI: 10.1159/000542005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND In contemporary medical practice, general anesthesia plays an essential role in pediatric surgical procedures. While modern anesthetic protocols have demonstrated safety and efficacy across various pathological conditions, concerns persist regarding the potential neurotoxic effects associated with early exposure to general anesthesia. SUMMARY Current research primarily examines the neurocognitive developmental impacts, with limited focus on neurobehavioral developmental disorders. This review presents a comprehensive analysis of clinical trial results related to five critical neurobehavioral developmental disorders: fine motor disability, attention-deficit hyperactivity disorder, impulse control disorders, autism spectrum disorder, and developmental coordination disorder. Furthermore, this review synthesizes insights from basic research on the potential toxicological mechanisms of general anesthetic agents that could influence clinical neurobehavioral changes. These findings provide valuable guidance for the prudent and safe utilization of anesthetic agents in pediatric patients. KEY MESSAGES This review explores the potential connections between general anesthesia and five neurobehavioral disorders, highlighting the importance of cautious anesthetic use in children in light of current research findings.
Collapse
Affiliation(s)
- Jinnan Xu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Gao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanyu Qi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiannan Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Hou Q, Yuan J, Li S, Ma J, Li W, Zhang B, Zhao X, Zhang F, Ma Y, Zheng H, Wang H. Autophagic degradation of DHCR7 activates AKT3 and promotes sevoflurane-induced hippocampal neuroinflammation in neonatal mice. Free Radic Biol Med 2024; 222:304-316. [PMID: 38901498 DOI: 10.1016/j.freeradbiomed.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice triggers neuroinflammation with detrimental effects on cognitive function. Yet, the mechanism of the sevoflurane-induced cytokine response is largely unknown. In this study, we reveal that 3-MA, an autophagy inhibitor, attenuated the sevoflurane-induced neuroinflammation and cognitive dysfunction, including the decreased freezing time and fewer platform crossings, in the neonate mice. 3-Methyladenine (3-MA) suppressed sevoflurane-induced expression of interleukin-6 and tumor necrosis factor-alpha in vitro. Moreover, sevoflurane activates IRF3, facilitating cytokine transcription in an AKT3-dependent manner. Mechanistically, sevoflurane-induced autophagic degradation of dehydrocholesterol-reductase-7 (DHCR7) resulted in accumulations of its substrate 7-dehydrocholesterol (7-DHC), mimicking the effect of sevoflurane on AKT3 activation and IRF3-driven cytokine expression. 3-MA significantly reversed sevoflurane-induced DHCR7 degradation, AKT phosphorylation, IRF3 activation, and the accumulation of 7-DHC in the hippocampal CA1 region. These findings pave the way for additional investigations aimed at developing novel strategies to mitigate postoperative cognitive impairment in pediatric patients.
Collapse
Affiliation(s)
- Qi Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weiwei Li
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bo Zhang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Yang Y, Liu T, Li J, Yan D, Hu Y, Wu P, Fang F, McQuillan PM, Hang W, Leng J, Hu Z. General anesthetic agents induce neurotoxicity through astrocytes. Neural Regen Res 2024; 19:1299-1307. [PMID: 37905879 PMCID: PMC11467951 DOI: 10.4103/1673-5374.385857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Neuroscientists have recognized the importance of astrocytes in regulating neurological function and their influence on the release of glial transmitters. Few studies, however, have focused on the effects of general anesthetic agents on neuroglia or astrocytes. Astrocytes can also be an important target of general anesthetic agents as they exert not only sedative, analgesic, and amnesic effects but also mediate general anesthetic-induced neurotoxicity and postoperative cognitive dysfunction. Here, we analyzed recent advances in understanding the mechanism of general anesthetic agents on astrocytes, and found that exposure to general anesthetic agents will destroy the morphology and proliferation of astrocytes, in addition to acting on the receptors on their surface, which not only affect Ca2+ signaling, inhibit the release of brain-derived neurotrophic factor and lactate from astrocytes, but are even involved in the regulation of the pro- and anti-inflammatory processes of astrocytes. These would obviously affect the communication between astrocytes as well as between astrocytes and neighboring neurons, other neuroglia, and vascular cells. In this review, we summarize how general anesthetic agents act on neurons via astrocytes, and explore potential mechanisms of action of general anesthetic agents on the nervous system. We hope that this review will provide a new direction for mitigating the neurotoxicity of general anesthetic agents.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang Province, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, China
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA
| | - Pin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Cheng J, Wang Z, Yu H, Chen Y, Wang Z, Zhang L, Peng X. The duration-dependent and sex-specific effects of neonatal sevoflurane exposure on cognitive function in rats. Braz J Med Biol Res 2024; 57:e13437. [PMID: 38808889 PMCID: PMC11136479 DOI: 10.1590/1414-431x2024e13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/07/2024] [Indexed: 05/30/2024] Open
Abstract
Clinical studies have found that neonatal sevoflurane exposure can increase the risk of cognitive dysfunction. However, recent studies have found that it can exhibit neuroprotective effects in some situations. In this study, we aimed to explore the effects of sevoflurane neonatal exposure in rats. A total of 144 rat pups (72 males and 72 females) were assigned to six groups and separately according to sevoflurane exposure of different times on the seventh day after birth. Blood gas analysis and western blot detection in the hippocampus were conducted after exposure. The Morris water maze test was conducted on the 32nd to 38th days after birth. The expression of PSD95 and synaptophysin in the hippocampus was detected after the Morris water maze test. We found that neonatal exposure to sevoflurane promoted apoptosis in the hippocampus, and Bax and caspase-3 were increased in a dose-dependent manner. The 2-h exposure had the greatest effects on cognitive dysfunction. However, with the extension of exposure time to 6 h, the effects on cognitive function were partly compensated. In addition, sevoflurane exposure decreased synaptogenesis in the hippocampus. However, as the exposure time was extended, the suppression of synaptogenesis was attenuated. In conclusion, neonatal sevoflurane exposure exhibited duration-dependent effects on cognitive function via Bax-caspase-3-dependent apoptosis and bidirectional effects on synaptogenesis in rats.
Collapse
Affiliation(s)
- Jiangxia Cheng
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
- Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhuo Wang
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
| | - Hui Yu
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
| | - Ye Chen
- Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhengchao Wang
- Department of Orthopedics, Wuhan Fourth Hospital, Wuhan, China
| | - Liangcheng Zhang
- Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohong Peng
- Department of Anesthesia, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
7
|
Geisler CE, Décarie-Spain L, Loh MK, Trumbauer W, Gaisinsky J, Klug ME, Pelletier C, Davis JF, Schmidt HD, Roitman MF, Kanoski SE, Hayes MR. Amylin Modulates a Ventral Tegmental Area-to-Medial Prefrontal Cortex Circuit to Suppress Food Intake and Impulsive Food-Directed Behavior. Biol Psychiatry 2024; 95:938-950. [PMID: 37517705 DOI: 10.1016/j.biopsych.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND A better understanding of the neural mechanisms regulating impaired satiety to palatable foods is essential to treat hyperphagia linked with obesity. The satiation hormone amylin signals centrally at multiple nuclei including the ventral tegmental area (VTA). VTA-to-medial prefrontal cortex (mPFC) projections encode food reward information to influence behaviors including impulsivity. We hypothesized that modulation of VTA-to-mPFC neurons underlies amylin-mediated decreases in palatable food-motivated behaviors. METHODS We used a variety of pharmacological, behavioral, genetic, and viral approaches (n = 4-16/experiment) to investigate the anatomical and functional circuitry of amylin-controlled VTA-to-mPFC signaling in rats. RESULTS To first establish that VTA amylin receptor (calcitonin receptor) activation can modulate mPFC activity, we showed that intra-VTA amylin decreased food-evoked mPFC cFos. VTA amylin delivery also attenuated food-directed impulsive behavior, implicating VTA amylin signaling as a regulator of mPFC functions. Palatable food activates VTA dopamine and mPFC neurons. Accordingly, dopamine receptor agonism in the mPFC blocked the hypophagic effect of intra-VTA amylin, and VTA amylin injection reduced food-evoked phasic dopamine levels in the mPFC, supporting the idea that VTA calcitonin receptor activation decreases dopamine release in the mPFC. Surprisingly, calcitonin receptor expression was not found on VTA-to-mPFC projecting neurons but was instead found on GABAergic (gamma-aminobutyric acidergic) interneurons in the VTA that provide monosynaptic inputs to this pathway. Blocking intra-VTA GABA signaling, through GABA receptor antagonists and DREADD (designer receptor exclusively activated by designer drugs)-mediated GABAergic neuronal silencing, attenuated intra-VTA amylin-induced hypophagia. CONCLUSIONS These results indicate that VTA amylin signaling stimulates GABA-mediated inhibition of dopaminergic projections to the mPFC to mitigate impulsive consumption of palatable foods.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Maxine K Loh
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Wolf Trumbauer
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jane Gaisinsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Molly E Klug
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Caitlyn Pelletier
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jon F Davis
- Novo Nordisk Research Center Seattle, Seattle, Washington
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Lin J, Gang L, Wen L, Zi HY, Xia S. 20(S)-Ginsenoside Rh1 alleviates sevoflurane-induced ototoxicity by reducing oxidative stress levels. Neuroreport 2024; 35:152-159. [PMID: 38141010 DOI: 10.1097/wnr.0000000000001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
CONTEXT Sevoflurane is an inhalational anesthetic widely used in pediatric surgery. However, animal studies have shown that multiple sevoflurane exposures during the neonatal period led to ototoxicity. 20(S)-Ginsenoside Rh1, a ginsenoside extract, protects against cisplatin-induced ototoxicity by scavenging free radicals. OBJECTIVE This study aimed to assess the effects of Rh1 on sevoflurane-induced ototoxicity. MATERIALS AND METHODS Neonatal cochlear explants and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were cultured and randomly divided into three groups: the control group, the sevoflurane group and the Rh1 pretreatment group. We pretreated cochlear explants or HEI-OC1 cells with 100 μM Rh1 2 hours before performing sevoflurane exposure. Immunofluorescence was used to detect hair cells and spiral ganglion neurons. Cell Counting Kit-8 assay was used to determine cell viability. Annexin V-fluorescein isothiocyanate and propidium iodide were used to evaluate apoptosis. CellROX-Green and MitoSOX-Red probes were used to measure the amount of reactive oxygen species (ROS). Tetramethylrhodamine methyl ester labeling was used to examine mitochondrial membrane potential. RESULTS Rh1 attenuated spiral ganglion neuron nerve fibers and synapses degeneration in cochlear explants after sevoflurane exposure. Rh1 significantly increased the viability of HEI-OC1 cells, reduced reactive oxygen species accumulation in HEI-OC1 cells, and prevented mitochondrial damage in HEI-OC1 cells after sevoflurane exposure. DISCUSSION AND CONCLUSION These findings suggest that Rh1 is a promising drug for preventing sevoflurane-induced ototoxicity.
Collapse
Affiliation(s)
- Jin Lin
- Department of Anesthesiology, Eye and ENT Hospital
| | - Li Gang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital
| | - Li Wen
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratoryof Hearing Medicine
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - He Ying Zi
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratoryof Hearing Medicine
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Shen Xia
- Department of Anesthesiology, Eye and ENT Hospital
| |
Collapse
|
9
|
Jo C, Joo H, Lim NY, Park SJ, Choi SO. Withdrawal from 3-Fluoroethamphetamine induces hyperactivity and depression-like behaviors in male mice. J Neurosci Res 2024; 102:e25251. [PMID: 37818759 DOI: 10.1002/jnr.25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
3-Fluoroethamphetamine (3-FEA) belongs to the amphetamine class of stimulant drugs and functions as a releasing agent for the monoamine neurotransmitters norepinephrine, dopamine, and serotonin. 3-FEA acts on the central nervous system and elicits physical and mental side effects, such as euphoria, increased heart rate, and excitement. However, little is known about the withdrawal symptoms and behavioral changes induced by 3-FEA administration. This study aimed to evaluate the short-term consequences of 3-FEA administration (twice a day, 7 days, i.p.; 1 and 10 mg/kg) in C57BL/6J mice (male, 7 weeks old) at three behavioral levels following 1-4 days of withdrawal. The evaluation included (1) withdrawal score, (2) hyperactivity (open field [OF], elevated plus maze [EPM], and cliff avoidance [CA] test), and (3) depression-like behavior (forced-swim test). In the withdrawal score test, withdrawal behavior increased in all 3-FEA groups at 16 and 40 h after withdrawal. In the OF, EPM, and CA tests, the 3-FEA administration group showed significant changes in terms of hyperactivity. In addition, in the forced-swim test, both the 1 mg/kg and 10 mg/kg 3-FEA groups showed increased immobility time. These findings indicate that 3-FEA administration may lead to physical dependence, demonstrated by the withdrawal score increase and significant changes in hyperactivity and depression-like behavior following repeated administration and drug cessation. In conclusion, this study reveals the adverse consequences of 3-FEA administration and highlights the need for awareness raising and regulatory action to control the use of this new psychoactive substance.
Collapse
Affiliation(s)
- Cheolmin Jo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Hyejin Joo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Na Young Lim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Su-Jeong Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| |
Collapse
|
10
|
Shi L, Xue Z, Mao H, Jiang H, Zhang L. Proteomic analysis of gene expression in the prefrontal cortex in infant rhesus macaques after multiple sevoflurane exposures. J Anesth 2023; 37:853-860. [PMID: 37608132 DOI: 10.1007/s00540-023-03244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Repeated exposure of infant rhesus macaques to sevoflurane induces neurotoxicity and is associated with neurocognitive impairment in later life. We aimed to investigate the effect of repeated sevoflurane exposure on the expression of proteins in the prefrontal cortex of infant rhesus macaques by proteomics. METHODS Rhesus macaques were exposed to sevoflurane three times, on postnatal days 7, 21 and 35. Quantitative proteomics employing LC-MS with isobaric labeling (TMT10plex), western blotting, and transmission electron microscopy (TEM) were utilized in the studies. RESULTS The results of a proteomics investigation of the brain revealed that the proteins that were differentially expressed in rhesus macaques after sevoflurane exposures were associated mainly with mitochondrial respiration. Following multiple sevoflurane exposures, the prefrontal cortices of rhesus macaques exhibited increases in NDUFA8 and COX IV protein levels, while no alterations in mitochondrial morphology were observed through TEM. CONCLUSION Multiple exposures to sevoflurane increased the mitochondrial protein levels in rhesus macaques.
Collapse
Affiliation(s)
- Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Haoli Mao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
11
|
Wang C, Feng L, Zhu L, Wu L, Chen B, Cui C, Yang M, Gao Y, Jiang P. Cerebral endothelial cell-derived extracellular vesicles regulate microglial polarization and promote autophagy via delivery of miR-672-5p. Cell Death Dis 2023; 14:643. [PMID: 37773169 PMCID: PMC10541416 DOI: 10.1038/s41419-023-06173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
The interaction between cerebral endothelial cells (CEC) and brain parenchymal cells is critical to maintain neurovascular homeostasis, whereas extracellular vesicles (EVs) are essential to mediate the cell-cell communication. Previous researches demonstrated that CEC-derived EVs (CEC-EVs) confer neuroprotective actions. However, the molecular mechanisms remain unknown. In this study, we isolated EVs from CEC and assessed their immune-regulatory actions in microglial cells and mice following lipopolysaccharide (LPS) exposure. We found that CEC-EVs treatment significantly ameliorated LPS-induced inflammatory activation, shifting microglial polarization from pro-inflammatory phenotype to anti-inflammatory phenotype. Meanwhile, microglial cells can effectively internalize CEC-EVs and this process was further enhanced by immune activation. Next, the miRNA microarray analysis revealed that CEC-EVs increased expression of miR-672-5p, which was demonstrated to be the cargo of CEC-EVs. TGFβ-activated kinase 1 (TAK1)-binding proteins 2 (TAB2) was identified to be the target of miR-672-5p. Through inhibiting TAB2, miR-672-5p derived from CEC-EVs suppressed TAK1-TAB signaling and thereby mitigating the downstream NF-κB activation. Furthermore, we found that by delivering miR-672-5p, CEC-EVs promoted autophagy and hence stimulating autophagic degradation of NLRP3 inflammasome. Our work firstly revealed the neuroimmune-modulating actions of CEC-EVs and further demonstrated that miR-672-5p secreted from CEC-EVs inhibits microglial pro-inflammatory polarization and facilitates autophagic process via targeting TAB2.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Linlin Wu
- Department of Oncology, Tengzhou Central People's Hospital, Jining Medical University, Zaozhuang, 277500, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, ACT, Australia
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China.
| | - Mengqi Yang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Yahao Gao
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China.
| |
Collapse
|
12
|
Silva A, Costa B, Castro I, Mourão J, Vale N. New Perspective for Drug-Drug Interaction in Perioperative Period. J Clin Med 2023; 12:4810. [PMID: 37510925 PMCID: PMC10381519 DOI: 10.3390/jcm12144810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we aim to discuss current information on drug interactions in the perioperative period. During this period, patients receive several drugs that may interact with each other and affect the efficacy and safety of the treatment. There are three types of drug interactions: pharmacodynamic, pharmacokinetic, and pharmaceutical. It is important to recognize that drug interactions may increase the toxicity of the drug or reduce its efficacy, increasing the risk of complications in the perioperative period. This review describes the most commonly used perioperative drugs approved by the FDA and some of the described interactions between them. Thoroughly reviewing a patient's medication list and identifying potential interactions are essential steps in minimizing risks. Additionally, vigilant monitoring of patients during and after surgery plays a pivotal role in early detection of any signs of drug interactions. This article emphasizes the significance of addressing DDIs in the perioperative period to ensure patient well-being and advocates for the implementation of careful monitoring protocols to promptly identify and manage potential interactions.
Collapse
Affiliation(s)
- Abigail Silva
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Irene Castro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Anesthesiology and Intensive Care Medicine, Instituto Português de Oncologia do Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Joana Mourão
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Anesthesiology, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Liu Z, Pan X, Guo J, Li L, Tang Y, Wu G, Li M, Wang H. Long-term sevoflurane exposure resulted in temporary rather than lasting cognitive impairment in Drosophila. Behav Brain Res 2023; 442:114327. [PMID: 36738841 DOI: 10.1016/j.bbr.2023.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Sevoflurane is the primary inhaled anesthetic used in pediatric surgery. It has been the focus of research since animal models studies found that it was neurotoxic to the developing brain two decades ago. However, whether pediatric general anesthesia can lead to permanent cognitive deficits remained a subject of heated debate. Therefore, our study aims to determine the lifetime neurotoxicity of early long-time sevoflurane exposure using a short-life-cycle animal model, Drosophila melanogaster. To investigate this question, we measured the lifetime changes of two-day-old flies' learning and memory abilities after anesthesia with 3 % sevoflurane for 6 h by the T-maze memory assay. We evaluated the apoptosis, levels of ATP and ROS, and related genes in the fly head. Our results suggest that 6 h 3 % sevoflurane exposure at a young age can only induce transient neuroapoptosis and cognitive deficits around the first week after anesthesia. But this brain damage recedes with time and vanishes in late life. We also found that the mRNA level of caspases and Bcl-2, ROS level, and ATP level increased during this temporary neuroapoptosis process. And mRNA levels of antioxidants, such as SOD2 and CAT, increased and decreased simultaneously with the rise and fall of the ROS level, indicating a possible contribution to the recovery from the sevoflurane impairment. In conclusion, our results suggest that one early prolonged sevoflurane-based general anesthesia can induce neuroapoptosis and learning and memory deficit transiently but not permanently in Drosophila.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Xuanyi Pan
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Liping Li
- Institute of Materia Medical, Hebei Centers for Disease Control and Prevention, Shijiazhuang 050021, Hebei, China
| | - Yuxin Tang
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Guangyi Wu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China.
| | - Hongjie Wang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China.
| |
Collapse
|
14
|
Cao Y, Sun Y, Liu X, Yu K, Gao D, Yang J, Miao H, Li T. A bibliometric analysis of the neurotoxicity of anesthesia in the developing brain from 2002 to 2021. Front Neurol 2023; 14:1185900. [PMID: 37181567 PMCID: PMC10172642 DOI: 10.3389/fneur.2023.1185900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Background The neurotoxicity effects of anesthetic exposure on the developing brain have been one of the current research hotspots and numerous articles were published in the past decades. However, the quality and comparative information of these articles have not been reported. This research aimed to provide a comprehensive overview of the current state of the field by investigating research hotspots and publication trends concerning the neurotoxicity of anesthesia in the developing brain. Materials and methods On 15 June 2022, we searched articles on the neurotoxicity of anesthesia in the developing brain through the Science Citation Index databases from 2002 to 2021. Data of the author, title, publication, funding agency, date of publication, abstract, type of literature, country, journal, keywords, number of citations, and research direction were collected for further analysis. Results We searched and analyzed 414 articles in English on the field of neurotoxicity of anesthesia in the developing brain from 2002 to 2021. The country with the largest number of publications was The United States (US) (n = 226), which also had the largest total number of citations (10,419). Research in this field reached a small peak in 2017. Furthermore, the largest number of articles were published in three journals, Anesthesiology, Anesthesia and Analgesia, and Pediatric Anesthesia. The top 20 articles that were cited most often were studied. In addition, the top hotspots of this area in clinical investigations and basic research were analyzed separately. Conclusion This study provided an overview of the development in the neurotoxicity of anesthesia in the developing brain using bibliometric analysis. Current clinical studies in this area were mainly retrospective; in the future, we should place more emphasis on prospective, multicenter, long-term monitoring clinical studies. More basic research was also needed on the mechanisms of neurotoxicity of anesthesia in the developing brain.
Collapse
|
15
|
Rearing in an Enriched Environment Ameliorates the ADHD-like Behaviors of Lister Hooded Rats While Suppressing Neuronal Activities in the Medial Prefrontal Cortex. Cells 2022; 11:cells11223649. [PMID: 36429076 PMCID: PMC9688563 DOI: 10.3390/cells11223649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In addition to genetic factors, environmental factors play a role in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). This study used Lister hooded rats (LHRs) as ADHD model animals to evaluate the effects of environmental factors. Male LHR pups were kept in four rearing conditions from postnatal day 23 (4 rats in a standard cage; 12 rats in a large flat cage; and 4 or 12 rats in an enriched environment [EE]) until 9 weeks of age. EE rearing but not rearing in a large flat cage decreased the activity of LHRs in the open field test that was conducted for 7 consecutive days. In the drop test, most rats reared in an EE remained on a disk at a height, whereas most rats reared in a standard cage fell off. RNA sequencing revealed that the immediate-early gene expression in the medial prefrontal cortex of LHRs reared in an EE was reduced. cFos-expressing neurons were reduced in number in LHRs reared in an EE. These results suggest that growing in an EE improves ADHD-like behaviors and that said improvement is due to the suppression of neuronal activity in the mPFC.
Collapse
|
16
|
Social defeat drives hyperexcitation of the piriform cortex to induce learning and memory impairment but not mood-related disorders in mice. Transl Psychiatry 2022; 12:380. [PMID: 36088395 PMCID: PMC9464232 DOI: 10.1038/s41398-022-02151-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical studies have shown that social defeat is an important cause of mood-related disorders, accompanied by learning and memory impairment in humans. The mechanism of mood-related disorders has been widely studied. However, the specific neural network involved in learning and memory impairment caused by social defeat remains unclear. In this study, behavioral test results showed that the mice induced both learning and memory impairments and mood-related disorders after exposure to chronic social defeat stress (CSDS). c-Fos immunofluorescence and fiber photometry recording confirmed that CaMKIIα expressing neurons of the piriform cortex (PC) were selectively activated by exposure to CSDS. Next, chemogenetics and optogenetics were performed to activate PC CaMKIIα expressing neurons, which showed learning and memory impairment but not mood-related disorders. Furthermore, chemogenetic inhibition of PC CaMKIIα expressing neurons significantly alleviated learning and memory impairment induced by exposure to CSDS but did not relieve mood-related disorders. Therefore, our data suggest that the overactivation of PC CaMKIIα expressing neurons mediates CSDS-induced learning and memory impairment, but not mood-related disorders, and provides a potential therapeutic target for learning and memory impairment induced by social defeat.
Collapse
|
17
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
18
|
Li R, Wang B, Cao X, Li C, Hu Y, Yan D, Yang Y, Wang L, Meng L, Hu Z. Sevoflurane Exposure in the Developing Brain Induces Hyperactivity, Anxiety-Free, and Enhancement of Memory Consolidation in Mice. Front Aging Neurosci 2022; 14:934230. [PMID: 35847668 PMCID: PMC9278137 DOI: 10.3389/fnagi.2022.934230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Sevoflurane exposure at brain developmental stages has been reported to induce neurotoxicity and, subsequently, results in learning deficits at the juvenile age. In this study, we aimed to investigate the effects of prior early-age sevoflurane exposure on locomotor activity, anxiety, CA1-dependent learning, and spatial memory, as well as synapse changes in mice. Methods Totally, 3% sevoflurane was given to neonatal mice at postnatal day 7 for 4 h. These sevoflurane-treated mice were later subjected to open field and Morris water maze tests at their adult age (postnatal days 60–90) to assess their motor activity and spatial learning ability, respectively. The brain slices of sevoflurane-treated and control mice were examined for dendritic spine density and long-term potentiation (LTP) features following behavior tests (postnatal day 60). Protein levels of N-methyl-D-aspartate (NMDA) receptor subtypes and PSD95 in brain lysate were measured by using immunoblotting at the same age (postnatal day 60). Results Prior early-age sevoflurane exposure increased the overall moving distance, prolonged the central-area lingering time, and increased the central-area entries of adult mice. Sevoflurane-treated mice spent more time in the target quadrant during the probe test. An increase of the spine density of pyramidal neurons in the CA1 region was observed in sevoflurane-treated mice. NMDA receptor GluN2A subunit, but not the GluN2B or PSD95, was increased in the brain lysate of sevoflurane-treated mice compared with that of control mice. LTP in the hippocampus did not significantly differ between sevoflurane-treated and control mice. Conclusion Exposure to sevoflurane for mice during an early brain developmental stage (P7) induces later-on hyperactivity, anxiety-free, and enhancement of memory retention. These observations shed light on future investigations on the underlying mechanisms of sevoflurane’s effect on neuronal development.
Collapse
Affiliation(s)
- Rui Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bei Wang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Cao
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Anesthesiology, Jiaxing Hospital of Traditional China Medicine, Jiaxing, China
| | - Chao Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Anesthesiology, Lishui Municipal Central Hospital, Lishui, China
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, United States
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingzhong Meng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice. Commun Biol 2022; 5:709. [PMID: 35840630 PMCID: PMC9287305 DOI: 10.1038/s42003-022-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Early exposures to anesthetics can cause long-lasting changes in excitatory/inhibitory synaptic transmission (E/I imbalance), an important mechanism for neurodevelopmental disorders. Since E/I imbalance is also involved with addiction, we further investigated possible changes in addiction-related behaviors after multiple ketamine anesthesia in late postnatal mice. Postnatal day (PND) 16 mice received multiple ketamine anesthesia (35 mg kg-1, 5 days), and behavioral changes were evaluated at PND28 and PND56. Although mice exposed to early anesthesia displayed normal behavioral sensitization, we found significant increases in conditioned place preference to both low-dose ketamine (20 mg kg-1) and nicotine (0.5 mg kg-1). By performing transcriptome analysis and whole-cell recordings in the hippocampus, a brain region involved with CPP, we also discovered enhanced neuronal excitability and E/I imbalance in CA1 pyramidal neurons. Interestingly, these changes were not found in female mice. Our results suggest that repeated ketamine anesthesia during neurodevelopment may influence drug reward behavior later in life.
Collapse
|
20
|
Cheng Y, Liu S, Zhang L, Jiang H. Identification of Prefrontal Cortex and Amygdala Expressed Genes Associated With Sevoflurane Anesthesia on Non-human Primate. Front Integr Neurosci 2022; 16:857349. [PMID: 35845920 PMCID: PMC9286018 DOI: 10.3389/fnint.2022.857349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Clinical trials and animal studies have indicated that long-term use or multiple administrations of anesthesia may lead to fine motor impairment in the developing brain. Most studies on anesthesia-induced neurotoxicity have focused on the hippocampus and prefrontal cortex (PFC); however, the role of other vital encephalic regions, such as the amygdala, is still unclear. Herein, we focused on sevoflurane, the most commonly used volatile anesthetic in infants, and performed a transcriptional analysis of the PFC and amygdala of macaques after multiple exposures to the anesthetic by RNA sequencing. The overall, overlapping, and encephalic region-specific transcriptional patterns were separately analyzed to reveal their functions and differentially expressed gene sets that were influenced by sevoflurane. Specifically, functional, protein–protein interaction, neighbor gene network, and gene set enrichment analyses were performed. Further, we built the basic molecular feature of the amygdala by comparing it to the PFC. In comparison with the amygdala’s changing pattern following sevoflurane exposure, functional annotations of the PFC were more enriched in glial cell-related biological functions than in neuron and synapsis development. Taken together, transcriptional studies and bioinformatics analyses allow for an improved understanding of the primate PFC and amygdala.
Collapse
|
21
|
Sevoflurane inhibits histone acetylation and contributes to cognitive dysfunction by enhancing the expression of ANP32A in aging mice. Behav Brain Res 2022; 431:113949. [PMID: 35659510 DOI: 10.1016/j.bbr.2022.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
|
22
|
Chen K, Hu Q, Gupta R, Stephens J, Xie Z, Yang G. Inhibition of unfolded protein response prevents post-anesthesia neuronal hyperactivity and synapse loss in aged mice. Aging Cell 2022; 21:e13592. [PMID: 35299279 PMCID: PMC9009124 DOI: 10.1111/acel.13592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Delirium is the most common postoperative complication in older patients after prolonged anesthesia and surgery and is associated with accelerated cognitive decline and dementia. The neuronal pathogenesis of postoperative delirium is largely unknown. The unfolded protein response (UPR) is an adaptive reaction of cells to perturbations in endoplasmic reticulum function. Dysregulation of UPR has been implicated in a variety of diseases including Alzheimer's disease and related dementias. However, whether UPR plays a role in anesthesia-induced cognitive impairment remains unexplored. By performing in vivo calcium imaging in the mouse frontal cortex, we showed that exposure of aged mice to the inhalational anesthetic sevoflurane for 2 hours resulted in a marked elevation of neuronal activity during recovery, which lasted for at least 24 hours after the end of exposure. Concomitantly, sevoflurane anesthesia caused a prolonged increase in phosphorylation of PERK and eIF2α, the markers of UPR activation. Genetic deletion or pharmacological inhibition of PERK prevented neuronal hyperactivity and memory impairment induced by sevoflurane. Moreover, we showed that PERK suppression also reversed various molecular and synaptic changes induced by sevoflurane anesthesia, including alterations of synaptic NMDA receptors, tau protein phosphorylation, and dendritic spine loss. Together, these findings suggest that sevoflurane anesthesia causes abnormal UPR in the aged brain, which contributes to neuronal hyperactivity, synapse loss and cognitive decline in aged mice.
Collapse
Affiliation(s)
- Kai Chen
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Qiuping Hu
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Riya Gupta
- Barnard College of Columbia UniversityNew YorkNew YorkUSA
| | | | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Guang Yang
- Department of AnesthesiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
23
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
24
|
Xie L, Hu Y, Yan D, McQuillan P, Liu Y, Zhu S, Zhu Z, Jiang Y, Hu Z. The relationship between exposure to general anesthetic agents and the risk of developing an impulse control disorder. Pharmacol Res 2021; 165:105440. [PMID: 33493656 DOI: 10.1016/j.phrs.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Most studies examining the effect of extended exposure to general anesthetic agents (GAAs) have demonstrated that extended exposure induces both structural and functional changes in the central nervous system. These changes are frequently accompanied by neurobehavioral changes that include impulse control disorders that are generally characterized by deficits in behavioral inhibition and executive function. In this review, we will.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Yue Liu
- Department of Anesthesiology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yilei Jiang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|