1
|
Chesebro AG, Antal BB, Weistuch C, Mujica-Parodi LR. Challenges and Frontiers in Computational Metabolic Psychiatry. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00310-0. [PMID: 39481469 DOI: 10.1016/j.bpsc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
One of the primary challenges in metabolic psychiatry is that the disrupted brain functions that underlie psychiatric conditions arise from a complex set of downstream and feedback processes spanning across multiple spatiotemporal scales. Importantly, the same circuit can have multiple points of failure, each of which results in a different type of dysregulation, and thus elicits distinct cascades downstream that produce divergent signs and symptoms. Here, we illustrate this challenge by examining how subtle differences in circuit perturbations can lead to divergent clinical outcomes. We also discuss how computational models can perform the spatially heterogenous integration and bridge in vitro and in vivo paradigms. By leveraging recent methodological advances and tools, computational models can integrate relevant processes across scales (e.g., TCA-cycle, ion channel, neural microassembly, whole-brain macro-circuit) and across physiological systems (e.g., neural, endocrine, immune, vascular), providing a framework that can unite these mechanistic processes in a manner that goes beyond the conceptual and descriptive, to the quantitative and generative. These hold the potential to sharpen our intuitions towards circuit-based models for personalized diagnostics and treatment.
Collapse
Affiliation(s)
- Anthony G Chesebro
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, NY USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA USA
| | - Botond B Antal
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, NY USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY USA
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, NY USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA USA; Santa Fe Institute, Santa Fe, NM USA.
| |
Collapse
|
2
|
Yang KC, Yang BH, Liu MN, Liou YJ, Chou YH. Cognitive impairment in schizophrenia is associated with prefrontal-striatal functional hypoconnectivity and striatal dopaminergic abnormalities. J Psychopharmacol 2024; 38:515-525. [PMID: 38853592 DOI: 10.1177/02698811241257877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND A better understanding of the mechanisms underlying cognitive impairment in schizophrenia is imperative, as it causes poor functional outcomes and a lack of effective treatments. AIMS This study aimed to investigate the relationships of two proposed main pathophysiology of schizophrenia, altered prefrontal-striatal connectivity and the dopamine system, with cognitive impairment and their interactions. METHODS Thirty-three patients with schizophrenia and 27 healthy controls (HCs) who are right-handed and matched for age and sex were recruited. We evaluated their cognition, functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC)/middle frontal gyrus (MiFG) and striatum, and the availability of striatal dopamine transporter (DAT) using a cognitive battery investigating attention, memory, and executive function, resting-state functional magnetic resonance imaging with group independent component analysis and single-photon emission computed tomography with 99mTc-TRODAT. RESULTS Patients with schizophrenia exhibited poorer cognitive performance, reduced FC between DLPFC/MiFG and the caudate nucleus (CN) or putamen, decreased DAT availability in the left CN, and decreased right-left DAT asymmetry in the CN compared to HCs. In patients with schizophrenia, altered imaging markers are associated with cognitive impairments, especially the relationship between DLPFC/MiFG-putamen FC and attention and between DAT asymmetry in the CN and executive function. CONCLUSIONS This study is the first to demonstrate how prefrontal-striatal hypoconnectivity and altered striatal DAT markers are associated with different domains of cognitive impairment in schizophrenia. More research is needed to evaluate their complex relationships and potential therapeutic implications.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
- The Human Brain Research Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Wei SY, Tsai TH, Tsai TY, Chen PS, Tseng HH, Yang YK, Zhai T, Yang Y, Wang TY. The Association between Default-mode Network Functional Connectivity and Childhood Trauma on the Symptom Load in Male Adults with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:105-117. [PMID: 38247417 PMCID: PMC10811392 DOI: 10.9758/cpn.23.1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 08/14/2023] [Indexed: 01/23/2024]
Abstract
Objective : The relationship between adverse childhood experiences and methamphetamine use disorder (MUD) has been shown in previous studies; nevertheless, the underlying neural mechanisms remain elusive. Childhood trauma is associated with aberrant functional connectivity (FC) within the default-mode network (DMN). Furthermore, within the DMN, FC may contribute to impaired self-awareness in addiction, while cross-network FC is critical for relapse. We aimed to investigate whether childhood trauma was associated with DMN-related resting-state FC among healthy controls and patients with MUD and to examine whether DMN-related FC affected the effect of childhood trauma on the symptom load of MUD diagnosis. Methods : Twenty-seven male patients with MUD and 27 male healthy controls were enrolled and completed the Childhood Trauma Questionnaire. DMN-related resting-state FC was examined using functional magnetic resonance imaging. Results : There were 47.1% healthy controls and 66.7% MUD patients in this study with adverse childhood experiences. Negative correlations between adverse childhood experiences and within-DMN FC were observed in both healthy controls and MUD patients, while within-DMN FC was significantly altered in MUD patients. The detrimental effects of adverse childhood experiences on MUD patients may be attenuated through DMN-executive control networks (ECN) FC. Conclusion : Adverse childhood experiences were negatively associated with within-DMN FC in MUD patients and healthy controls. However, DMN-ECN FC may attenuate the effects of childhood trauma on symptoms load of MUD.
Collapse
Affiliation(s)
- Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Han Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Yu Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
5
|
Hidese S, Yoshida F, Ishida I, Matsuo J, Hattori K, Kunugi H. Plasma neuropeptide levels in patients with schizophrenia, bipolar disorder, or major depressive disorder and healthy controls: A multiplex immunoassay study. Neuropsychopharmacol Rep 2023; 43:57-68. [PMID: 36414415 PMCID: PMC10009433 DOI: 10.1002/npr2.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
AIM We aimed to compare neuropeptide levels between patients with major psychiatric disorders and healthy controls and examine their association with symptoms and cognitive function. METHODS The participants were 149 patients with schizophrenia, 115 patients with bipolar disorder (BD), 186 unremitted patients with major depressive disorder (MDD), and 350 healthy controls. Psychiatric (schizophrenic, manic, and depressive) symptoms, sleep state, and cognitive (premorbid intelligence quotient, general cognitive, and memory) functions were evaluated. A multiplex immunoassay kit was used to measure cerebrospinal fluid (CSF) and plasma α-melanocyte-stimulating hormone (MSH), β-endorphin, neurotensin, oxytocin, and substance P levels. RESULTS The verification assay revealed that CSF α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were too low to be reliably measured, while plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels could be successfully measured. Plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were not significantly different between patients with schizophrenia, BD, or MDD and healthy controls. Plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were not significantly correlated with psychiatric symptom scores in patients with schizophrenia, BD, or MDD and cognitive function scores in patients or healthy controls. CONCLUSION Our data suggest that plasma neuropeptide levels do not elucidate the involvement of neuropeptides in the pathology of schizophrenia, BD, or MDD.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ikki Ishida
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Junko Matsuo
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
6
|
Fu Y, Gu M, Wang R, Xu J, Sun S, Zhang H, Huang D, Zhang Z, Peng F, Lin P. Abnormal functional connectivity of the frontostriatal circuits in type 2 diabetes mellitus. Front Aging Neurosci 2023; 14:1055172. [PMID: 36688158 PMCID: PMC9846649 DOI: 10.3389/fnagi.2022.1055172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with an increased incidence of cognitive and emotional disorders. Previous studies have indicated that the frontostriatal circuits play a significant role in brain disorders. However, few studies have investigated functional connectivity (FC) abnormalities in the frontostriatal circuits in T2DM. Objective We aimed to investigate the abnormal functional connectivity (FC) of the frontostriatal circuits in patients with T2DM and to explore the relationship between abnormal FC and diabetes-related variables. Methods Twenty-seven patients with T2DM were selected as the patient group, and 27 healthy peoples were selected as the healthy controls (HCs). The two groups were matched for age and sex. In addition, all subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological evaluation. Seed-based FC analyses were performed by placing six bilateral pairs of seeds within a priori defined subdivisions of the striatum. The functional connection strength of subdivisions of the striatum was compared between the two groups and correlated with each clinical variable. Results Patients with T2DM showed abnormalities in the FC of the frontostriatal circuits. Our findings show significantly reduced FC between the right caudate nucleus and left precentral gyrus (LPCG) in the patients with T2DM compared to the HCs. The FC between the prefrontal cortex (left inferior frontal gyrus, left frontal pole, right frontal pole, and right middle frontal gyrus) and the right caudate nucleus has a significant positive correlation with fasting blood glucose (FBG). Conclusion The results showed abnormal FC of the frontostriatal circuits in T2DM patients, which might provide a new direction to investigate the neuropathological mechanisms of T2DM.
Collapse
Affiliation(s)
- Yingxia Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Meiling Gu
- Department of Psychology, Nanjing Normal University, Nanjing, China
| | - Rui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Juan Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shenglu Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huifeng Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dejian Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zongjun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fei Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Fei Peng, ; Pan Lin,
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Hunan, China,*Correspondence: Fei Peng, ; Pan Lin,
| |
Collapse
|
7
|
Sekiguchi H, Pavey G, Dean B. Altered levels of dopamine transporter in the frontal pole and the striatum in mood disorders: A postmortem study. J Affect Disord 2023; 320:313-318. [PMID: 36162690 DOI: 10.1016/j.jad.2022.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
Dopamine dysregulation is known to play a major role in the pathophysiology of major depressive disorders (MDD) and bipolar disorders (BD). The dopamine transporter (DAT) plays a critical role in regulating dopamine concentration at the synaptic cleft and therefore could have an important role in the molecular pathology of MDD and BD. To test this hypothesis, we measured levels of [3H]mazindol binding to DAT in Brodmann's area (BA) 10, BA 17 as well as in the dorsal and ventral striatum from 15 controls, 15 patients with MDD and 15 patients with BD, obtained postmortem, using in situ radioligand binding with autoradiography. Compared to controls, levels of [3H]mazindol binding to DAT was significantly higher in BA10 from patients with MDD but not BD. There was no significant difference in [3H]mazindol binding to DAT in BA 17 or the dorsal and ventral striatum from patients with MDD or BD. In addition, levels of [3H]mazindol binding show no correlation with donor age, postmortem interval, tissue pH, sex or duration of illness. In conclusion, our data suggest that changes in levels of DAT may be selectively affecting dopamine homeostasis in BA 10 in patients with MDD.
Collapse
Affiliation(s)
- Hirotaka Sekiguchi
- Okehazama Hospital Fujita Mental Care Centre, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Japan; The Florey Institute of Neuroscience and Mental Health, Australia.
| | - Geoff Pavey
- The Florey Institute of Neuroscience and Mental Health, Australia
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Australia; The Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Australia
| |
Collapse
|
8
|
Associations of leptin and corticostriatal connectivity in bipolar disorder. Sci Rep 2022; 12:21898. [PMID: 36535988 PMCID: PMC9763246 DOI: 10.1038/s41598-022-26233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Bipolar disorder (BD) and metabolic disturbance represent a chronic state of low-grade inflammation and corticostriatal circuitry alterations. Herein, we aimed to investigate whether plasma leptin, an adipokine that plays a key role in the interplay of metabolism and inflammation, is associated with corticostriatal connectivity in patients with BD. Twenty-eight BD I patients, 36 BD II patients and 66 healthy controls were enrolled and completed the Hamilton Depression Rating Scale, the Young Mania Rating Scale, and the Recent Life Change Questionnaire. Fasting plasma leptin and C-reactive protein (CRP) levels were measured, and corticostriatal connectivity was examined using functional magnetic resonance imaging (fMRI). The relationships between leptin, CRP and body mass index (BMI) identified in the controls and BD II patients were absent in the BD I patients. We did not find a significant group difference in the leptin level; nevertheless, the negative correlation between leptin level and corticostriatal connectivity (ventrolateral prefrontal cortex and inferior temporal gyrus) observed in the healthy controls was absent in the BD patients. The disproportionate increase in leptin level with increasing BMI in BD indicated a potential inflammatory role of white adipose tissue in BD. Furthermore, higher CRP levels in BD I patients might induce leptin resistance. Collectively, our results implied vulnerability to inflammatory and metabolic diseases in patients with BD, especially BD I.
Collapse
|
9
|
Mathematical Model of Interaction of Therapist and Patients with Bipolar Disorder: A Systematic Literature Review. J Pers Med 2022; 12:jpm12091469. [PMID: 36143254 PMCID: PMC9503456 DOI: 10.3390/jpm12091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Mood swings in patients with bipolar disorder (BD) are difficult to control and can lead to self-harm and suicide. The interaction between the therapist and BD will determine the success of therapy. The interaction model between the therapist and BD begins by reviewing the models that were previously developed using the Systematic Literature Review and Bibliometric methods. The limit of articles used was sourced from the Science Direct, Google Scholar, and Dimensions databases from 2009 to 2022. The results obtained were 67 articles out of a total of 382 articles, which were then re-selected. The results of the selection of the last articles reviewed were 52 articles. Using VOSviewer version 1.6.16, a visualization of the relationship between the quotes “model”, “therapy”, “emotions”, and “bipolar disorder” can be seen. This study also discusses the types of therapy that can be used by BD, as well as treatment innovations and the mathematical model of the therapy itself. The results of this study are expected to help further researchers to develop an interaction model between therapists and BD to improve the quality of life of BD.
Collapse
|
10
|
Peripheral oxytocin concentrations in psychiatric disorders - A systematic review and methanalysis: Further evidence. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110561. [PMID: 35461971 DOI: 10.1016/j.pnpbp.2022.110561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Increased interest in understanding how changes in the oxytocinergic system are associated with the etiology and progression of psychiatric disorders has currently boosted the publication of studies. We present a systematic literature review followed by meta-analyses assessing whether peripheral oxytocin (OXT) levels among psychiatric patients differ from healthy controls, considering the moderating role of methodological aspects and samples' characteristics. The following electronic databases were searched: PubMed, Web of Science, PsycINFO, SciELO, LILACS, and Scopus. Fifty-five papers were included in the analysis, and nine independent meta-analyses were performed according to the different diagnoses. Lower OXT concentrations were found in groups of specific disorders (i.e., schizophrenia, restricting and binge-eating/purging subtypes of anorexia nervosa, and borderline personality disorder) with medium to large effect sizes. Great heterogeneity was found among the studies, so that caution is needed to interpret the results. High OXT levels with an effect size of the same magnitude were found for bipolar disorder - type I and obsessive disorder. In contrast, no differences were found for bulimia, autism spectrum, depression, or social anxiety. No meta-analyses were performed for body dysmorphic disorder, post-traumatic stress disorder, or trichotillomania because only one study was identified for each of these disorders. Altered endogenous OXT concentrations are found in several disorders addressed and must be analyzed according to each disorder's specificities.
Collapse
|
11
|
Possible oxytocin-related biomarkers in anxiety and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110531. [PMID: 35150782 DOI: 10.1016/j.pnpbp.2022.110531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/30/2021] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Anxiety and mood disorders are prevalent, disabling, and frequently difficult to treat. Such disorders are often comorbid and share similar characteristics. For more accurate diagnosis and improved treatment, a deeper understanding of the pathophysiology of anxiety and mood disorders is important. Oxytocin, a neuropeptide synthesized in the hypothalamus, affects human psychology and behaviors such as social and affiliative behaviors, fear and emotion processing, and stress regulation. Thus, oxytocin is believed to exert anxiolytic and antidepressant-like effects. This review article provides an overview of clinical studies on relationships between the oxytocin system and anxiety and mood disorders, focusing on oxytocin-related biomarker findings. Biomarkers used in such studies include central and peripheral oxytocin levels, analysis of oxytocin-related genes, and expression levels of oxytocin and oxytocin receptor genes in postmortem brains. Although a growing number of studies support the presence of oxytocinergic effects on anxiety and mood disorders, study results are heterogeneous and inconclusive. Moderating factors such as the characteristics of study populations, including sex, age, context, early life adversity, and attachment styles in patient cohorts, might affect the heterogeneity of the study results. Limitations in existing research such as small sample sizes, large dependence on peripheral sources of oxytocin, and inconsistent results between immunoassay methods complicate the interpretation of existing findings.
Collapse
|
12
|
Rhoades R, Solomon S, Johnson C, Teng S. Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Front Microbiol 2022; 13:845559. [PMID: 35444632 PMCID: PMC9014212 DOI: 10.3389/fmicb.2022.845559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a systemic illness due to its multiorgan effects in patients. The disease has a detrimental impact on respiratory and cardiovascular systems. One early symptom of infection is anosmia or lack of smell; this implicates the involvement of the olfactory bulb in COVID-19 disease and provides a route into the central nervous system. However, little is known about how SARS-CoV-2 affects neurological or psychological symptoms. SARS-CoV-2 exploits host receptors that converge on pathways that impact psychological symptoms. This systemic review discusses the ways involved by coronavirus infection and their impact on mental health disorders. We begin by briefly introducing the history of coronaviruses, followed by an overview of the essential proteins to viral entry. Then, we discuss the downstream effects of viral entry on host proteins. Finally, we review the literature on host factors that are known to play critical roles in neuropsychiatric symptoms and mental diseases and discuss how COVID-19 could impact mental health globally. Our review details the host factors and pathways involved in the cellular mechanisms, such as systemic inflammation, that play a significant role in the development of neuropsychological symptoms stemming from COVID-19 infection.
Collapse
Affiliation(s)
- Raina Rhoades
- Department of Biology, Howard University, Washington, DC, United States
| | - Sarah Solomon
- Department of Biology, Howard University, Washington, DC, United States
| | - Christina Johnson
- Department of Biology, Howard University, Washington, DC, United States
| | | |
Collapse
|
13
|
Calcium imaging reveals depressive- and manic-phase-specific brain neural activity patterns in a murine model of bipolar disorder: a pilot study. Transl Psychiatry 2021; 11:619. [PMID: 34876553 PMCID: PMC8651770 DOI: 10.1038/s41398-021-01750-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Brain pathological features during manic/hypomanic and depressive episodes in the same patients with bipolar disorder (BPD) have not been described precisely. The study aimed to investigate depressive and manic-phase-specific brain neural activity patterns of BPD in the same murine model to provide information guiding investigation of the mechanism of phase switching and tailored prevention and treatment for patients with BPD. In vivo two-photon imaging was used to observe brain activity alterations in the depressive and manic phases in the same murine model of BPD. Two-photon imaging showed significantly reduced Ca2+ activity in temporal cortex pyramidal neurons in the depression phase in mice exposed to chronic unpredictable mild stress (CUMS), but not in the manic phase in mice exposed to CUMS and ketamine. Total integrated calcium values correlated significantly with immobility times. Brain Ca2+ hypoactivity was observed in the depression and manic phases in the same mice exposed to CUMS and ketamine relative to naïve controls. The novel object recognition preference ratio correlated negatively with the immobility time in the depression phase and the total distance traveled in the manic phase. With recognition of its limitations, this study revealed brain neural activity impairment indicating that intrinsic emotional network disturbance is a mechanism of BPD and that brain neural activity is associated with cognitive impairment in the depressive and manic phases of this disorder. These findings are consistent with those from macro-imaging studies of patients with BPD. The observed correlation of brain neural activity with the severity of depressive, but not manic, symptoms need to be investigated further.
Collapse
|
14
|
Winterton A, Bettella F, de Lange AMG, Haram M, Steen NE, Westlye LT, Andreassen OA, Quintana DS. Oxytocin-pathway polygenic scores for severe mental disorders and metabolic phenotypes in the UK Biobank. Transl Psychiatry 2021; 11:599. [PMID: 34824196 PMCID: PMC8616952 DOI: 10.1038/s41398-021-01725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oxytocin is a neuromodulator and hormone that is typically associated with social cognition and behavior. In light of its purported effects on social cognition and behavior, research has investigated its potential as a treatment for psychiatric illnesses characterized by social dysfunction, such as schizophrenia and bipolar disorder. While the results of these trials have been mixed, more recent evidence suggests that the oxytocin system is also linked with cardiometabolic conditions for which individuals with severe mental disorders are at a higher risk for developing. To investigate whether the oxytocin system has a pleiotropic effect on the etiology of severe mental illness and cardiometabolic conditions, we explored oxytocin's role in the shared genetic liability of schizophrenia, bipolar disorder, type-2 diabetes, and several phenotypes linked with cardiovascular disease and type 2 diabetes risk using a polygenic pathway-specific approach. Analysis of a large sample with about 480,000 individuals (UK Biobank) revealed statistically significant associations across the range of phenotypes analyzed. By comparing these effects to those of polygenic scores calculated from 100 random gene sets, we also demonstrated the specificity of many of these significant results. Altogether, our results suggest that the shared effect of oxytocin-system dysfunction could help partially explain the co-occurrence of social and cardiometabolic dysfunction in severe mental illnesses.
Collapse
Affiliation(s)
- Adriano Winterton
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Marit Haram
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Zhang W, Li G, Manza P, Hu Y, Wang J, Lv G, He Y, von Deneen KM, Yu J, Han Y, Cui G, Volkow ND, Nie Y, Ji G, Wang GJ, Zhang Y. Functional Abnormality of the Executive Control Network in Individuals With Obesity During Delay Discounting. Cereb Cortex 2021; 32:2013-2021. [PMID: 34649270 DOI: 10.1093/cercor/bhab333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/14/2023] Open
Abstract
Individuals with obesity (OB) prefer immediate rewards of food intake over the delayed reward of healthy well-being achieved through diet management and physical activity, compared with normal-weight controls (NW). This may reflect heightened impulsivity, an important factor contributing to the development and maintenance of obesity. However, the neural mechanisms underlying the greater impulsivity in OB remain unclear. Therefore, the current study employed functional magnetic resonance imaging with a delay discounting (DD) task to examine the association between impulsive choice and altered neural mechanisms in OB. During decision-making in the DD task, OB compared with NW had greater activation in the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex, which was associated with greater discounting rate and weaker cognitive control as measured with the Three-Factor Eating Questionnaire (TFEQ). In addition, the association between DLPFC activation and cognitive control (TFEQ) was mediated by discounting rate. Psychophysiological interaction analysis showed decreased connectivity of DLPFC-inferior parietal cortex (within executive control network [ECN]) and angular gyrus-caudate (ECN-reward) in OB relative to NW. These findings reveal that the aberrant function and connectivity in core regions of ECN and striatal brain reward regions underpin the greater impulsivity in OB and contribute to abnormal eating behaviors.
Collapse
Affiliation(s)
- Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
16
|
Hsieh YT, Wu R, Tseng HH, Wei SY, Huang MC, Chang HH, Yang YK, Chen PS. Childhood neglect is associated with corticostriatal circuit dysfunction in bipolar disorder adults. Psychiatry Res 2021; 295:113550. [PMID: 33223273 DOI: 10.1016/j.psychres.2020.113550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is characterized with cognitive impairment, which may be mediated by corticostriatal dysfunction. Here we examined whether history of childhood trauma, a risk factor for BD, was linked to corticostriatal dysfunction in BD patients. Furthermore, the possible associations between childhood trauma and cognitive impairment were examined. Thirty-eight BD participants who met the DSM-IV diagnostic criteria were enrolled. Childhood trauma was identified via the Childhood Trauma Questionnaire (CTQ). Participants completed the Wisconsin Card-Sorting Test (WCST). Resting-state functional magnetic resonance imaging (rsfMRI) was performed in participants using a 3T scanner. Bilateral caudate to whole-brain functional connectivity (FC) were analyzed, and childhood trauma was entered as a regressor of interest when controlling for age. Results showed the level of physical neglect was negatively correlated with left-caudate-seed FC to the frontoparietal network, including the right supramarginal gyrus, left inferior parietal lobule, right middle frontal gyrus, and right superior parietal lobule. The level of physical neglect was also negatively correlated with WCST performance. And the left-caudate-seed FCs to the frontoparietal network were positively correlated with WCST performance. Unequivocally, the specific impacts of physical neglect on brain connectivity and executive function in the BD population merit further investigation.
Collapse
Affiliation(s)
- Yi-Ting Hsieh
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rebecca Wu
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.
| |
Collapse
|