1
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Chen S, Huang R, Zhang M, Huang X, Ling S, Liu S, Yang N. Altered brain spontaneous activity in patients with cerebral small vessel disease using the amplitude of low-frequency fluctuation of different frequency bands. Front Neurosci 2023; 17:1282496. [PMID: 38033542 PMCID: PMC10687154 DOI: 10.3389/fnins.2023.1282496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background Previous studies showed that cerebral small vessel disease (cSVD) is a leading cause of cognitive decline in elderly people and the development of Alzheimer's disease. Although brain structural changes of cSVD have been documented well, it remains unclear about the properties of brain intrinsic spontaneous activity in patients with cSVD. Methods We collected resting-state fMRI (rs-fMRI) and T1-weighted 3D high-resolution brain structural images from 41 cSVD patients and 32 healthy controls (HC). By estimating the amplitude of low-frequency fluctuation (ALFF) under three different frequency bands (typical band: 0.01-0.1 Hz; slow-4: 0.027-0.073 Hz; and slow-5: 0.01-0.027 Hz) in the whole-brain, we analyzed band-specific ALFF differences between the cSVD patients and controls. Results The cSVD patients showed uniformly lower ALFF than the healthy controls in the typical and slow-4 bands (pFWE < 0.05). In the typical band, cSVD patients showed lower ALFF involving voxels of the fusiform, hippocampus, inferior occipital cortex, middle occipital cortex, insula, inferior frontal cortex, rolandic operculum, and cerebellum compared with the controls. In the slow-4 band, cSVD patients showed lower ALFF involving voxels of the cerebellum, hippocampus, occipital, and fusiform compared with the controls. However, there is no significant between-group difference of ALFF in the slow-5 band. Moreover, we found significant "group × frequency" interactions in the left precuneus. Conclusion Our results suggested that brain intrinsic spontaneous activity of cSVD patients was abnormal and showed a frequency-specific characteristic. The ALFF in the slow-4 band may be more sensitive to detecting a malfunction in cSVD patients.
Collapse
Affiliation(s)
- Sina Chen
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Ruiwang Huang
- Center for Study of Applied Psychology, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Mingxian Zhang
- Center for Study of Applied Psychology, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Xiaohuang Huang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Shuiqiao Ling
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Shuxue Liu
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Nan Yang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| |
Collapse
|
3
|
Chen HJ, Ke J, Qiu J, Xu Q, Zhong Y, Lu GM, Wu Y, Qi R, Chen F. Altered whole-brain resting-state functional connectivity and brain network topology in typhoon-related post-traumatic stress disorder. Ther Adv Psychopharmacol 2023; 13:20451253231175302. [PMID: 37342156 PMCID: PMC10278414 DOI: 10.1177/20451253231175302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/24/2023] [Indexed: 06/22/2023] Open
Abstract
Background Altered resting-state functional connectivity has been found in patients with post-traumatic stress disorder (PTSD). However, the alteration of resting-state functional connectivity at whole-brain level in typhoon-traumatized individuals with PTSD remains largely unknown. Objectives To investigate changes in whole-brain resting-state functional connectivity and brain network topology in typhoon-traumatized subjects with and without PTSD. Design Cross-sectional study. Methods Twenty-seven patients with typhoon-related PTSD, 33 trauma-exposed controls (TEC), and 30 healthy controls (HC) underwent resting-state functional MRI scanning. The whole brain resting-state functional connectivity network was constructed based on the automated anatomical labeling atlas. The graph theory method was used to analyze the topological properties of the large-scale resting-state functional connectivity network. Whole-brain resting-state functional connectivity and the topological network property were compared by analyzing the variance. Results There was no significant difference in the area under the curve of γ, λ, σ, global efficiency, and local efficiency among the three groups. The PTSD group showed increased dorsal cingulate cortex (dACC) resting-state functional connectivity with the postcentral gyrus (PoCG) and paracentral lobe and increased nodal betweenness centrality in the precuneus relative to both control groups. Compared with the PTSD and HC groups, the TEC group showed increased resting-state functional connectivity between the hippocampus and PoCG and increased connectivity strength in the putamen. In addition, compared with the HC group, both the PTSD and TEC groups showed increased connectivity strength and nodal efficiency in the insula. Conclusion Aberrant resting-state functional connectivity and topology were found in all trauma-exposed individuals. These findings broaden our knowledge of the neuropathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jun Ke
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuan Zhong
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yanglei Wu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Street, Xiuying District, Haikou 570311, Hainan, China
| |
Collapse
|
4
|
Qiu B, Zhong Z, Righter S, Xu Y, Wang J, Deng R, Wang C, Williams KE, Ma YY, Tsechpenakis G, Liang T, Yong W. FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cell Mol Life Sci 2022; 79:175. [PMID: 35244772 PMCID: PMC11072506 DOI: 10.1007/s00018-022-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Shawn Righter
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gavriil Tsechpenakis
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Hallmarks of Health. Cell 2020; 184:33-63. [PMID: 33340459 DOI: 10.1016/j.cell.2020.11.034] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Health is usually defined as the absence of pathology. Here, we endeavor to define health as a compendium of organizational and dynamic features that maintain physiology. The biological causes or hallmarks of health include features of spatial compartmentalization (integrity of barriers and containment of local perturbations), maintenance of homeostasis over time (recycling and turnover, integration of circuitries, and rhythmic oscillations), and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, and repair and regeneration). Disruption of any of these interlocked features is broadly pathogenic, causing an acute or progressive derailment of the system coupled to the loss of numerous stigmata of health.
Collapse
|
6
|
Qi R, Luo Y, Zhang L, Weng Y, Surento W, Jahanshad N, Xu Q, Yin Y, Li L, Cao Z, Thompson PM, Lu GM. Social support modulates the association between PTSD diagnosis and medial frontal volume in Chinese adults who lost their only child. Neurobiol Stress 2020; 13:100227. [PMID: 32490056 PMCID: PMC7256056 DOI: 10.1016/j.ynstr.2020.100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022] Open
Abstract
Losing an only child is a devastating life event that a parent can experience and may lead to post-traumatic stress disorder (PTSD). Social support could buffer against the negative influence of this trauma, but the neural mechanism underlying this alleviation effect remains poorly understood. In this study, voxel-based morphometry was conducted on brain MRI of 220 Han Chinese adults who had lost their only child. We performed multiple regression analysis to investigate the associations between social support scores – along with PTSD diagnosis, age, sex, body mass index (BMI) – and brain grey matter (GM) volumes in these bereaved parents. For all trauma-exposed adults, social support-by-diagnosis interaction was significantly associated with medial prefrontal volume (multiple comparisons corrected P ˂ 0.05), where positive correlation was found in adults with PTSD but not in those without PTSD. Besides, PTSD diagnosis was associated with decreased GM volume in medial and middle frontal gyri (P ˂ 0.001, uncorrected); older age was associated with widespread GM volume deficits; male sex was associated with lower GM volume in rolandic operculum, insular, postcentral gyrus (corrected P ˂ 0.05), and lower GM in thalamus but greater GM in parahippocampus (P ˂ 0.001, uncorrected); higher BMI was associated with GM deficits in occipital gyrus (corrected P ˂ 0.05) and precuneus (P ˂ 0.001, uncorrected). In conclusions, social support modulates the association between PTSD diagnosis and medial frontal volume, which may play an important role in the emotional disturbance in PTSD development in adults who lost their only child.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yan Yin
- Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, 305 Tianmushan Road, Hangzhou, Zhejiang, 310013, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
- Corresponding author.
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Corresponding author. Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|