1
|
Ganapathiraju MK, Bhatia T, Deshpande S, Wesesky M, Wood J, Nimgaonkar VL. Schizophrenia Interactome-Derived Repurposable Drugs and Randomized Controlled Trials of Two Candidates. Biol Psychiatry 2024; 96:651-658. [PMID: 38950808 DOI: 10.1016/j.biopsych.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
There is a substantial unmet need for effective and patient-acceptable drugs to treat severe mental illnesses such as schizophrenia (SZ). Computational analysis of genomic, transcriptomic, and pharmacologic data generated in the past 2 decades enables repurposing of drugs or compounds with acceptable safety profiles, namely those that are U.S. Food and Drug Administration approved or have reached late stages in clinical trials. We developed a rational approach to achieve this computationally for SZ by studying drugs that target the proteins in its protein interaction network (interactome). This involved contrasting the transcriptomic modulations observed in the disorder and the drug; our analyses resulted in 12 candidate drugs, 9 of which had additional supportive evidence whereby their target networks were enriched for pathways relevant to SZ etiology or for genes that had an association with diseases pathogenically similar to SZ. To translate these computational results to the clinic, these shortlisted drugs must be tested empirically through randomized controlled trials, in which their previous safety approvals obviate the need for time-consuming phase 1 and 2 studies. We selected 2 among the shortlisted candidates based on likely adherence and side-effect profiles. We are testing them through adjunctive randomized controlled trials for patients with SZ or schizoaffective disorder who experienced incomplete resolution of psychotic features with conventional treatment. The integrated computational analysis for identifying and ranking drugs for clinical trials can be iterated as additional data are obtained. Our approach could be expanded to enable disease subtype-specific drug discovery in the future and should also be exploited for other psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Department of Biomedical Informatics and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania; Carnegie Mellon University in Qatar, Doha, Qatar.
| | - Triptish Bhatia
- Department of Psychiatry, Centre of Excellence in Mental Health, ABVIMS - Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Smita Deshpande
- Department of Psychiatry, St John's Medical College Hospital, Koramangala, Bengaluru, Karnataka, India
| | - Maribeth Wesesky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Vaz A, Salgado A, Patrício P, Pinto L. Patient-derived induced pluripotent stem cells: Tools to advance the understanding and drug discovery in Major Depressive Disorder. Psychiatry Res 2024; 339:116033. [PMID: 38968917 DOI: 10.1016/j.psychres.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
Major Depressive Disorder (MDD) is a pleomorphic disease with substantial patterns of symptoms and severity with mensurable deficits in several associated domains. The broad spectrum of phenotypes observed in patients diagnosed with depressive disorders is the reflection of a very complex disease where clusters of biological and external factors (e.g., response/processing of life events, intrapsychic factors) converge and mediate pathogenesis, clinical presentation/phenotypes and trajectory. Patient-derived induced pluripotent stem cells (iPSCs) enable their differentiation into specialised cell types in the central nervous system to explore the pathophysiological substrates of MDD. These models may complement animal models to advance drug discovery and identify therapeutic approaches, such as cell therapy, drug repurposing, and elucidation of drug metabolism, toxicity, and mechanisms of action at the molecular/cellular level, to pave the way for precision psychiatry. Despite the remarkable scientific and clinical progress made over the last few decades, the disease is still poorly understood, the incidence and prevalence continue to increase, and more research is needed to meet clinical demands. This review aims to summarise and provide a critical overview of the research conducted thus far using patient-derived iPSCs for the modelling of psychiatric disorders, with a particular emphasis on MDD.
Collapse
Affiliation(s)
- Andreia Vaz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Bn'ML, Behavioral and Molecular Lab, Braga, Portugal
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Bn'ML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Bn'ML, Behavioral and Molecular Lab, Braga, Portugal.
| |
Collapse
|
3
|
Zaki JK, Lago SG, Spadaro B, Rustogi N, Gangadin SS, Benacek J, Drexhage HA, de Witte LD, Kahn RS, Sommer IEC, Bahn S, Tomasik J. Exploring peripheral biomarkers of response to simvastatin supplementation in schizophrenia. Schizophr Res 2024; 266:66-74. [PMID: 38377869 DOI: 10.1016/j.schres.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Schizophrenia is one of the most debilitating mental disorders, and its diagnosis and treatment present significant challenges. Several clinical trials have previously evaluated the effectiveness of simvastatin, a lipid-lowering medication, as a novel add-on treatment for schizophrenia. However, treatment effects varied highly between patients and over time. In the present study, we aimed to identify biomarkers of response to simvastatin in recent-onset schizophrenia patients. To this end, we profiled relevant immune and metabolic markers in patient blood samples collected in a previous clinical trial (ClinicalTrials.gov: NCT01999309) before simvastatin add-on treatment was initiated. Analysed sample types included serum, plasma, resting-state peripheral blood mononuclear cells (PBMCs), as well as PBMC samples treated ex vivo with immune stimulants and simvastatin. Associations between the blood readouts and clinical endpoints were evaluated using multivariable linear regression. This revealed that changes in insulin receptor (IR) levels induced in B-cells by ex vivo simvastatin treatment inversely correlated with in vivo effects on cognition at the primary endpoint of 12 months, as measured using the Brief Assessment of Cognition in Schizophrenia scale total score (standardised β ± SE = -0.75 ± 0.16, P = 2.2 × 10-4, Q = 0.029; n = 21 patients). This correlation was not observed in the placebo group (β ± SE = 0.62 ± 0.39, P = 0.17, Q = 0.49; n = 14 patients). The candidate biomarker explained 53.4 % of the variation in cognitive outcomes after simvastatin supplementation. Despite the small sample size, these findings suggest a possible interaction between the insulin signalling pathway and cognitive effects during simvastatin therapy. They also point to opportunities for personalized schizophrenia treatment through patient stratification.
Collapse
Affiliation(s)
- Jihan K Zaki
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Benedetta Spadaro
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Shiral S Gangadin
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Jiri Benacek
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands; Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Pandamooz S, Salehi MS, Jurek B, Meinung CP, Azarpira N, Dianatpour M, Neumann ID. Oxytocin Receptor Expression in Hair Follicle Stem Cells: A Promising Model for Biological and Therapeutic Discovery in Neuropsychiatric Disorders. Stem Cell Rev Rep 2023; 19:2510-2524. [PMID: 37548806 DOI: 10.1007/s12015-023-10603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The intricate nature of the human brain and the limitations of existing model systems to study molecular and cellular causes of neuropsychiatric disorders represent a major challenge for basic research. The promising progress in patient-derived stem cell technology and in our knowledge on the role of the brain oxytocin (OXT) system in health and disease offer new possibilities in that direction. In this study, the rat hair follicle stem cells (HFSCs) were isolated and expanded in vitro. The expression of oxytocin receptors (OXTR) was evaluated in these cells. The cellular viability was assessed 12 h post stimulation with OXT. The activation of OXTR-coupled intracellular signaling cascades, following OXT treatment was determined. Also, the influence of OXT on neurite outgrowth and cytoskeletal rearrangement were defined. The assessment of OXTR protein expression revealed this receptor is expressed abundantly in HFSCs. As evidenced by the cell viability assay, no adverse or cytotoxic effects were detected following 12 h treatment with different concentrations of OXT. Moreover, OXTR stimulation by OXT resulted in ERK1/2, CREB, and eEF2 activation, neurite length alterations, and cytoskeletal rearrangements that reveal the functionality of this receptor in HFSCs. Here, we introduced the rat HFSCs as an easy-to-obtain stem cell model that express functional OXTR. This cell-based model can contribute to our understanding of the progression and treatment of neuropsychiatric disorders with oxytocinergic system deficiency.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Benjamin Jurek
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carl-Philipp Meinung
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Inga D Neumann
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Li C, Wu H, Sen Ta Na H, Wang L, Zhong C, Deng B, Liu C, Bao H, Sang H, Hou L. Neuronal-microglial liver X receptor β activating decrease neuroinflammation and chronic stress-induced depression-related behavior in mice. Brain Res 2022; 1797:148112. [PMID: 36216100 DOI: 10.1016/j.brainres.2022.148112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Depression is accompanied by excessive neuroinflammation. Liver X receptor β (LXRβ) has been reported as a newly emerging target that exerts systemic and organic inflammation modulation. However, the modulatory mechanism in alleviating neuroinflammation are far from being revealed. In the current study, depression-related behaviors in mice were induced by chronic unpredictable mild stress (CUMS) and corticosterone (CORT) drinking. Mice received either TO901317, PLX-5622 and intra- bilateral basolateral amygdale (BLA) injection of rAAV9-hSyn-hM3D(Gq)-eGFP to activate LXRβ, eliminate microglia and pharmacogenetic activate neurons in BLA, respectively, followed by behavioral tests. Microglial pro-inflammatory and pro-phagocytic activation, as well as nuclear factor-κB (NF-κB) signaling pathway, NLRP3 inflammasome activation and interleukin-1β (IL-1β) release in BLA were investigated. Moreover, pro-inflammatory activation of BV2 cells-induced by CORT with or without TO901317 was detected. Neuroinflammation indicated by IL-1β release was measured in a co-culture system of HT22-primary microglia with or without TO901317. Our results indicated that chronic stress induced depression-related behaviors, which were accompanied with microglial pro-inflammatory and pro-phagocytic activation, as well as NF-κB signaling pathway and NLRP3 inflammasome activation in BLA. Accordingly, pharmacological activation of LXRβ inhibited microglial pro-inflammatory and pro-phagocytic activation, as well as NF-κB signaling pathway and NLRP3 inflammasome activation, and IL-1β release both in vivo and in vitro. Finally, both elimination of microglia and pharmacogenetic activation of neurons in BLA protected mice from chronic stress-induced depression-related behavior. Collectively, pharmacological activation of neuronal-microglial LXRβ alleviates depression-related behavior by modulating excessive neuroinflammation via inhibiting NF-κB signaling pathway and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Chunhui Li
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China; Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, PR China
| | - Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Ha Sen Ta Na
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, PR China
| | - Lu Wang
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Chuanqi Zhong
- School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Bin Deng
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Cong Liu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Han Bao
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Hanfei Sang
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
6
|
Lago SG, Tomasik J, van Rees GF, Rustogi N, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B, Bahn S. Peripheral lymphocyte signaling pathway deficiencies predict treatment response in first-onset drug-naïve schizophrenia. Brain Behav Immun 2022; 103:37-49. [PMID: 35381347 DOI: 10.1016/j.bbi.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
Despite being a major cause of disability worldwide, the pathophysiology of schizophrenia and molecular basis of treatment response heterogeneity continue to be unresolved. Recent evidence suggests that multiple aspects of pathophysiology, including genetic risk factors, converge on key cell signaling pathways and that exploration of peripheral blood cells might represent a practical window into cell signaling alterations in the disease state. We employed multiplexed phospho-specific flow cytometry to examine cell signaling epitope expression in peripheral blood mononuclear cell (PBMC) subtypes in drug-naïve schizophrenia patients (n = 49) relative to controls (n = 61) and relate these changes to serum immune response proteins, schizophrenia polygenic risk scores and clinical effects of treatment, including drug response and side effects, over the longitudinal course of antipsychotic treatment. This revealed both previously characterized (Akt1) and novel cell signaling epitopes (IRF-7 (pS477/pS479), CrkL (pY207), Stat3 (pS727), Stat3 (pY705) and Stat5 (pY694)) across PBMC subtypes which were associated with schizophrenia at disease onset, and correlated with type I interferon-related serum molecules CD40 and CXCL11. Alterations in Akt1 and IRF-7 (pS477/pS479) were additionally associated with polygenic risk of schizophrenia. Finally, changes in Akt1, IRF-7 (pS477/pS479) and Stat3 (pS727) predicted development of metabolic and cardiovascular side effects following antipsychotic treatment, while IRF-7 (pS477/pS479) and Stat3 (pS727) predicted early improvements in general psychopathology scores measured using the Brief Psychiatric Rating Scale (BPRS). These findings suggest that peripheral blood cells can provide an accessible surrogate model for intracellular signaling alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic and cardiovascular side effects following antipsychotic therapy.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Geertje F van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain; Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio, IBiS, Sevilla, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sevilla, Spain
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Petrikis P, Polyzou A, Premeti K, Roumelioti A, Karampas A, Georgiou G, Grigoriadis D, Leondaritis G. GSK3β and mTORC1 Represent 2 Distinct Signaling Markers in Peripheral Blood Mononuclear Cells of Drug-Naive, First Episode of Psychosis Patients. Schizophr Bull 2022; 48:1136-1144. [PMID: 35757972 PMCID: PMC9434466 DOI: 10.1093/schbul/sbac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is characterized by a complex interplay between genetic and environmental risk factors converging on prominent signaling pathways that orchestrate brain development. The Akt/GSK3β/mTORC1 pathway has long been recognized as a point of convergence and etiological mechanism, but despite evidence suggesting its hypofunction, it is still not clear if this is already established during the first episode of psychosis (FEP). STUDY DESIGN Here, we performed a systematic phosphorylation analysis of Akt, GSK3β, and S6, a mTORC1 downstream target, in fresh peripheral blood mononuclear cells from drug-naive FEP patients and control subjects. STUDY RESULTS Our results suggest 2 distinct signaling endophenotypes in FEP patients. GSK3β hypofunction exhibits a promiscuous association with psychopathology, and it is normalized after treatment, whereas mTORC1 hypofunction represents a stable state. CONCLUSIONS Our study provides novel insight on the peripheral hypofunction of the Akt/GSK3β/mTORC1 pathway and highlights mTORC1 activity as a prominent integrator of altered peripheral immune and metabolic states in FEP patients.
Collapse
Affiliation(s)
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kyriaki Premeti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Argyro Roumelioti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Andreas Karampas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios Georgiou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dionysios Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - George Leondaritis
- To whom correspondence should be addressed; Department of Pharmacology, Faculty of Medicine, School of Health Sciences and Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece; tel: +302651007555, fax: +302651007859, e-mail:
| |
Collapse
|
8
|
Lago SG, Bahn S. The druggable schizophrenia genome: from repurposing opportunities to unexplored drug targets. NPJ Genom Med 2022; 7:25. [PMID: 35338153 PMCID: PMC8956592 DOI: 10.1038/s41525-022-00290-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
There have been no new drugs for the treatment of schizophrenia in several decades and treatment resistance represents a major unmet clinical need. The drugs that exist are based on serendipitous clinical observations rather than an evidence-based understanding of disease pathophysiology. In the present review, we address these bottlenecks by integrating common, rare, and expression-related schizophrenia risk genes with knowledge of the druggability of the human genome as a whole. We highlight novel drug repurposing opportunities, clinical trial candidates which are supported by genetic evidence, and unexplored therapeutic opportunities in the lesser-known regions of the schizophrenia genome. By identifying translational gaps and opportunities across the schizophrenia disease space, we discuss a framework for translating increasingly well-powered genetic association studies into personalized treatments for schizophrenia and initiating the vital task of characterizing clinically relevant drug targets in underexplored regions of the human genome.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Bakhtiari S, Manshadi MKD, Mansoorifar A, Beskok A. A Microfluidic Dielectric Spectroscopy System for Characterization of Biological Cells in Physiological Media. SENSORS (BASEL, SWITZERLAND) 2022; 22:463. [PMID: 35062423 PMCID: PMC8779508 DOI: 10.3390/s22020463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Dielectric spectroscopy (DS) is a promising cell screening method that can be used for diagnostic and drug discovery purposes. The primary challenge of using DS in physiological buffers is the electrode polarization (EP) that overwhelms the impedance signal within a large frequency range. These effects further amplify with the miniaturization of the measurement electrodes. In this study, we present a microfluidic system and the associated equivalent circuit models for real-time measurements of cell membrane capacitance and cytoplasm resistance in physiological buffers with 10 s increments. The current device captures several hundreds of biological cells in individual microwells through gravitational settling and measures the system's impedance using microelectrodes covered with dendritic gold nanostructures. Using PC-3 cells (a highly metastatic prostate cancer cell line) suspended in cell growth media (CGM), we demonstrate stable measurements of cell membrane capacitance and cytoplasm resistance in the device for over 15 min. We also describe a consistent application of the equivalent circuit model, starting from the reference measurements used to determine the system parameters. The circuit model is tested using devices with varying dimensions, and the obtained cell parameters between different devices are nearly identical. Further analyses of the impedance data have shown that accurate cell membrane capacitance and cytoplasm resistance can be extracted using a limited number of measurements in the 5 MHz to 10 MHz range. This will potentially reduce the timescale required for real-time DS measurements below 1 s. Overall, the new microfluidic device can be used for the dielectric characterization of biological cells in physiological buffers for various cell screening applications.
Collapse
Affiliation(s)
| | | | | | - Ali Beskok
- Mechanical Engineering Department, Southern Methodist University, Dallas, TX 75275, USA; (S.B.); (M.K.D.M.); (A.M.)
| |
Collapse
|