1
|
Tong T, Zhu C, Farrell JJ, Khurshid Z, Martin ER, Pericak-Vance MA, Wang LS, Bush WS, Schellenberg GD, Haines JL, Qiu WQ, Lunetta KL, Farrer LA, Zhang X. Blood-derived mitochondrial DNA copy number is associated with Alzheimer disease, Alzheimer-related biomarkers and serum metabolites. Alzheimers Res Ther 2024; 16:234. [PMID: 39444005 PMCID: PMC11515778 DOI: 10.1186/s13195-024-01601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Blood-derived mitochondrial DNA copy number (mtDNA-CN) is a proxy measurement of mitochondrial function in the peripheral and central systems. Abnormal mtDNA-CN not only indicates impaired mtDNA replication and transcription machinery but also dysregulated biological processes such as energy and lipid metabolism. However, the relationship between mtDNA-CN and Alzheimer disease (AD) is unclear. METHODS We performed two-sample Mendelian randomization (MR) using publicly available summary statistics from GWAS for mtDNA-CN and AD to investigate the causal relationship between mtDNA-CN and AD. We estimated mtDNA-CN using whole-genome sequence data from blood and brain samples of 13,799 individuals from the Alzheimer's Disease Sequencing Project. Linear and Cox proportional hazards models adjusting for age, sex, and study phase were used to assess the association of mtDNA-CN with AD. The association of AD biomarkers and serum metabolites with mtDNA-CN in blood was evaluated in Alzheimer's Disease Neuroimaging Initiative using linear regression. We conducted a causal mediation analysis to test the natural indirect effects of mtDNA-CN change on AD risk through the significantly associated biomarkers and metabolites. RESULTS MR analysis suggested a causal relationship between decreased blood-derived mtDNA-CN and increased risk of AD (OR = 0.68; P = 0.013). Survival analysis showed that decreased mtDNA-CN was significantly associated with higher risk of conversion from mild cognitive impairment to AD (HR = 0.80; P = 0.002). We also identified significant associations of mtDNA-CN with brain FDG-PET (β = 0.103; P = 0.022), amyloid-PET (β = 0.117; P = 0.034), CSF amyloid-β (Aβ) 42/40 (β=-0.124; P = 0.017), CSF t-Tau (β = 0.128; P = 0.015), p-Tau (β = 0.140; P = 0.008), and plasma NFL (β=-0.124; P = 0.004) in females. Several lipid species, amino acids, biogenic amines in serum were also significantly associated with mtDNA-CN. Causal mediation analyses showed that about a third of the effect of mtDNA-CN on AD risk was mediated by plasma NFL (P = 0.009), and this effect was more significant in females (P < 0.005). CONCLUSIONS Our study indicates that mtDNA-CN measured in blood is predictive of AD and is associated with AD biomarkers including plasma NFL particularly in females. Further, we illustrate that decreased mtDNA-CN possibly increases AD risk through dysregulation of mitochondrial lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Tong Tong
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zainab Khurshid
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eden R Martin
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Departments of Neurology and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Boston University Chobanian & Avedisian School of Medicine, Biomedical Genetics E223, 72 East Concord Street, 02118, Boston, MA, USA.
| | - Xiaoling Zhang
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Light V, Jones SL, Rahme E, Rousseau K, de Boer S, Vermunt L, Soltaninejad M, Teunissen C, Pijnenburg Y, Ducharme S, Consortium FS. Clinical Accuracy of Serum Neurofilament Light to Differentiate Frontotemporal Dementia from Primary Psychiatric Disorders is Age-Dependent. Am J Geriatr Psychiatry 2024; 32:988-1001. [PMID: 38609836 DOI: 10.1016/j.jagp.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Symptoms of behavioral variant frontotemporal dementia (bvFTD) overlap with primary psychiatric disorders (PPD) making diagnosis challenging. Serum neurofilament light (sNfL) is a candidate biomarker to distinguish bvFTD from PPD, but large-scale studies in PPD are lacking. OBJECTIVE Determine factors that influence sNfL from a large database of PPD patients, and test its diagnostic accuracy. DESIGN, SETTINGS, SUBJECTS, MEASUREMENTS Clinical data of people aged 40-81 were obtained from healthy subjects (n = 69), and patients with PPD (n = 848) or bvFTD (n = 82). sNfL was measured using Simoa technology on an HD-X instrument. Data were analyzed using general linear models, and Receiver Operating Characteristic (ROC) curve analyses to determine global and age-specific sNfL cutoffs to distinguish bvFTD from PPD, using the Youden Index. RESULTS sNfL increased with age, while sex, BMI and diabetes status were modestly associated with sNfL. sNfL was slightly higher in PPD than healthy subjects (14.1 versus 11.7 pg/mL), when controlling for covariates. sNfL was markedly lower in PPD than bvFTD (14.1 versus 44.1 pg/mL). sNfL could differentiate PPD from bvFTD with an AUC = 0.868, but the effect was driven by the younger subjects between age 40-60 years at a cutoff of 16.0 pg/mL. No valid cutoff was detected over age 60, however, values of sNfL above 38.5 pg/mL, or below 13.9 pg/mL, provided 90% diagnostic certainty of bvFTD or PPD, respectively. CONCLUSION PPD have mildly elevated sNfL compared to healthy subjects but much lower than bvFTD. Results support the use of sNfL as a biomarker to differentiate PPD from bvFTD at age 60 or below, but accuracy decreases in older ages.
Collapse
Affiliation(s)
- Victoria Light
- Department of Psychiatry, McGill University (VL, SD), Douglas Mental Health University Institute, Montreal, QC, Canada; Integrated Program of Neuroscience (VL), McGill University, Montreal, QC, Canada
| | | | - Elham Rahme
- Research Institute of the McGill University Health Centre (RI-MUHC) (ER), Montreal, QC, Canada
| | - Katerine Rousseau
- Institut Universitaire en Santé Mentale de Montréal, Département de Psychiatrie (KR), Université de Montréal, Montreal, QC, Canada
| | - Sterre de Boer
- Alzheimer Center Amsterdam, Department of Neurology (SB, YP), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; School of Psychology (SB), The University of Sydney, Sydney, NSW, Australia
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC (LV, CT), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mahdie Soltaninejad
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery (MS, SD), McGill University, Montreal, QC, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC (LV, CT), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology (SB, YP), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Simon Ducharme
- Department of Psychiatry, McGill University (VL, SD), Douglas Mental Health University Institute, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery (MS, SD), McGill University, Montreal, QC, Canada.
| | - For Signature Consortium
- Centre de Recherche de l'institut universitaire en santé mentale de Montréal (SC, CCNA), Montreal, QC, Canada
| |
Collapse
|
3
|
O'Connell GC, Smothers CG, Wang J, Ruksakulpiwat S, Armentrout BL. Brain Expression Levels of Commonly Measured Blood Biomarkers of Neurological Damage Differ with Respect to Sex, Race, and Age. Neuroscience 2024; 551:79-93. [PMID: 38762083 DOI: 10.1016/j.neuroscience.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
It is increasingly evident that blood biomarkers have potential to improve the diagnosis and management of both acute and chronic neurological conditions. The most well-studied candidates, and arguably those with the broadest utility, are proteins that are highly enriched in neural tissues and released into circulation upon cellular damage. It is currently unknown how the brain expression levels of these proteins is influenced by demographic factors such as sex, race, and age. Given that source tissue abundance is likely a key determinant of the levels observed in the blood during neurological pathology, understanding such influences is important in terms of identifying potential clinical scenarios that could produce diagnostic bias. In this study, we leveraged existing mRNA sequencing data originating from 2,642 normal brain specimens harvested from 382 human donors to examine potential demographic variability in the expression levels of genes which code for 28 candidate blood biomarkers of neurological damage. Existing mass spectrometry data originating from 26 additional normal brain specimens harvested from 26 separate human donors was subsequently used to tentatively assess whether observed transcriptional variance was likely to produce corresponding variance in terms of protein abundance. Genes associated with several well-studied or emerging candidate biomarkers including neurofilament light chain (NfL), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1), neuron-specific enolase (NSE), and synaptosomal-associated protein 25 (SNAP-25) exhibited significant differences in expression with respect to sex, race, and age. In many instances, these differences in brain expression align well with and provide a mechanistic explanation for previously reported differences in blood levels.
Collapse
Affiliation(s)
- Grant C O'Connell
- Molecular Biomarker Core, Case Western Reserve University, Cleveland, OH, USA; School of Nursing, Case Western Reserve University, Cleveland, OH, USA.
| | | | - Jing Wang
- Molecular Biomarker Core, Case Western Reserve University, Cleveland, OH, USA; School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
4
|
Beydoun MA, Noren Hooten N, Georgescu MF, Beydoun HA, Eid SM, Fanelli-Kuczmarski MT, Evans MK, Zonderman AB. Serum neurofilament light chain as a prognostic marker of all-cause mortality in a national sample of US adults. Eur J Epidemiol 2024; 39:795-809. [PMID: 38771439 PMCID: PMC11343803 DOI: 10.1007/s10654-024-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Neurofilament light chain (NfL) is a neuron-specific structural protein released into the extracellular space, including body fluids, upon neuroaxonal damage. Despite evidence of a link in neurological disorders, few studies have examined the association of serum NfL with mortality in population-based studies. Data from the National Health and Nutrition Survey were utilized including 2,071 Non-Hispanic White, Non-Hispanic Black and Hispanic adult participants and adult participants of other ethnic groups (20-85 years) with serum NfL measurements who were followed for ≤ 6 years till 2019. We tested the association of serum NfL with mortality in the overall population and stratified by sex with the addition of potential interactive and mediating effects of cardio-metabolic risk factors and nutritional biomarkers. Elevated serum NfL levels (above median group) were associated with mortality risk compared to the below median NfL group in the overall sample (P = 0.010), with trends observed within each sex group (P < 0.10). When examining Loge NfL as a continuum, one standard deviation of Loge NfL was associated with an increased mortality risk (HR = 1.88, 95% CI 1.60-2.20, P < 0.001) in the reduced model adjusted for age, sex, race, and poverty income ratio; a finding only slightly attenuated with the adjustment of lifestyle and health-related factors. Four-way decomposition indicated that there was, among others, mediated interaction between NfL and HbA1c and a pure inconsistent mediation with 25(OH)D3 in predicting all-cause mortality, in models adjusted for all other covariates. Furthermore, urinary albumin-to-creatinine ratio interacted synergistically with NfL in relation to mortality risk both on the additive and multiplicative scales. These data indicate that elevated serum NfL levels were associated with all-cause mortality in a nationally representative sample of US adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA.
- NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Shaker M Eid
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| |
Collapse
|
5
|
Mantellatto Grigoli M, Pelegrini LNC, Whelan R, Cominetti MR. Present and Future of Blood-Based Biomarkers of Alzheimer's Disease: Beyond the Classics. Brain Res 2024; 1830:148812. [PMID: 38369085 DOI: 10.1016/j.brainres.2024.148812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aβ), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.
Collapse
Affiliation(s)
| | | | - Robert Whelan
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Tang R, Buchholz E, Dale AM, Rissman RA, Fennema-Notestine C, Gillespie NA, Hagler DJ, Lyons MJ, Neale MC, Panizzon MS, Puckett OK, Reynolds CA, Franz CE, Kremen WS, Elman JA. Associations of plasma neurofilament light chain with cognition and neuroimaging measures in community-dwelling early old age men. Alzheimers Res Ther 2024; 16:90. [PMID: 38664843 PMCID: PMC11044425 DOI: 10.1186/s13195-024-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a promising biomarker of neurodegeneration with potential clinical utility in monitoring the progression of neurodegenerative diseases. However, the cross-sectional associations of plasma NfL with measures of cognition and brain have been inconsistent in community-dwelling populations. METHODS We examined these associations in a large community-dwelling sample of early old age men (N = 969, mean age = 67.57 years, range = 61-73 years), who are either cognitively unimpaired (CU) or with mild cognitive impairment (MCI). Specifically, we investigated five cognitive domains (executive function, episodic memory, verbal fluency, processing speed, visual-spatial ability), as well as neuroimaging measures of gray and white matter. RESULTS After adjusting for age, health status, and young adult general cognitive ability, plasma NfL level was only significantly associated with processing speed and white matter hyperintensity (WMH) volume, but not with other cognitive or neuroimaging measures. The association with processing speed was driven by individuals with MCI, as it was not detected in CU individuals. CONCLUSIONS These results suggest that in early old age men without dementia, plasma NfL does not appear to be sensitive to cross-sectional individual differences in most domains of cognition or neuroimaging measures of gray and white matter. The revealed plasma NfL associations were limited to WMH for all participants and processing speed only within the MCI cohort. Importantly, considering cognitive status in community-based samples will better inform the interpretation of the relationships of plasma NfL with cognition and brain and may help resolve mixed findings in the literature.
Collapse
Affiliation(s)
- Rongxiang Tang
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA.
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA.
| | - Erik Buchholz
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, 92093, USA
| | - Nathan A Gillespie
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald J Hagler
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, 02215, USA
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Chandra A Reynolds
- Department of Psychology and Neurosciences, University of Colorado Boulder, Boulder, 80309, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| |
Collapse
|
7
|
Nwamekang Belinga L, Espourteille J, Wepnyu Njamnshi Y, Zafack Zeukang A, Rouaud O, Kongnyu Njamnshi A, Allali G, Richetin K. Circulating Biomarkers for Alzheimer's Disease: Unlocking the Diagnostic Potential in Low- and Middle-Income Countries, Focusing on Africa. NEURODEGENER DIS 2024; 24:26-40. [PMID: 38555638 PMCID: PMC11251669 DOI: 10.1159/000538623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is emerging as a significant public health challenge in Africa, with predictions indicating a tripling in incidence by 2050. The diagnosis of AD on the African continent is notably difficult, leading to late detection that severely limits treatment options and significantly impacts the quality of life for patients and their families. SUMMARY This review focuses on the potential of high-sensitivity specific blood biomarkers as promising tools for improving AD diagnosis and management globally, particularly in Africa. These advances are particularly pertinent in the continent, where access to medical and technical resources is often limited. KEY MESSAGES Identifying precise, sensitive, and specific blood biomarkers could contribute to the biological characterization and management of AD in Africa. Such advances promise to improve patient care and pave the way for new regional opportunities in pharmaceutical research and drug trials on the continent for AD.
Collapse
Affiliation(s)
- Luc Nwamekang Belinga
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Jeanne Espourteille
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Yembe Wepnyu Njamnshi
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Division of Health Operations Research, Ministry of Public Health, Yaoundé, Cameroon
| | - Ariole Zafack Zeukang
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Olivier Rouaud
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alfred Kongnyu Njamnshi
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Geneva, Switzerland
- Department of Translational Neuroscience, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Clinical Neuroscience and Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Gilles Allali
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Liu X, Chen J, Meng C, Zhou L, Liu Y. Serum neurofilament light chain and cognition decline in US elderly: A cross-sectional study. Ann Clin Transl Neurol 2024; 11:17-29. [PMID: 37902309 PMCID: PMC10791034 DOI: 10.1002/acn3.51929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Early identification of cognitive impairment in neurodegenerative diseases like Alzheimer's disease (AD) is crucial. Neurofilament, a potential biomarker for neurological disorders, has gained attention. Our study aims to investigate the relationship between serum neurofilament light (sNfL) levels and cognitive function in elderly individuals in the United States. METHODS This cross-sectional study analyzed data from participants aged 60 and above in the National Health and Nutrition Examination Survey (2013-2014). We collected sNfL levels, cognitive function tests, sociodemographic characteristics, comorbidities, and other variables. Weighted multiple linear regression models examined the relationship between ln(sNfL) and cognitive scores. Restricted cubic spline (RCS) visualization explored nonlinear relationships. The stratified analysis examined subgroups' ln(sNfL) and cognitive function association. RESULTS The study included 446 participants (47.73% male). Participants with ln(sNfL) levels between 2.58 and 2.81 pg/mL (second quintile) performed relatively well in cognitive tests. After adjusting for multiple factors, ln(sNfL) levels were negatively correlated with cognitive function, with adjusted β (95% CI) as follows: immediate recall test (IRT): -0.763 (-1.301 to -0.224), delayed recall test (DRT): -0.308 (-0.576 to -0.04), animal fluency test (AFT): -1.616 (-2.639 to -0.594), and digit symbol substitution test (DSST): -2.790 (-4.369 to -1.21). RCS curves showed nonlinear relationships between ln(sNfL) and DRT, AFT, with inflection points around 2.7 pg/mL. The stratified analysis revealed a negative correlation between ln(sNfL) and cognition in specific subgroups with distinct features, with an interaction between diabetes and ln(sNfL). INTERPRETATION Higher sNfL levels are associated with poorer cognitive function in the elderly population of the United States. sNfL shows promise as a potential biomarker for early identification of cognitive decline.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jun Chen
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| | - Chen Meng
- Department of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanHubeiChina
| | - Lan Zhou
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| | - Yong Liu
- Department of Neurology, Taihe HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
9
|
Bose G, Healy BC, Saxena S, Saleh F, Glanz BI, Bakshi R, Weiner HL, Chitnis T. Increasing Neurofilament and Glial Fibrillary Acidic Protein After Treatment Discontinuation Predicts Multiple Sclerosis Disease Activity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200167. [PMID: 37813595 PMCID: PMC10574823 DOI: 10.1212/nxi.0000000000200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Stable patients with multiple sclerosis (MS) may discontinue treatment, but the risk of disease activity is unknown. Serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) are biomarkers of subclinical disease activity and may help risk stratification. In this study, sNfL and sGFAP levels in stable patients were evaluated before and after treatment discontinuation to determine association with disease activity. METHODS This observational study included patients enrolled in the Comprehensive Longitudinal Investigation in MS at the Brigham and Women's Hospital who discontinued treatment after >2 years disease activity-free. Two serum samples within 2 years, before and after treatment stop, were sent for sNfL and sGFAP measurements by single-molecule array. Biannual neurologic examinations and yearly MRI scans determined disease activity by 3 time-to-event outcomes: 6-month confirmed disability worsening (CDW), clinical attacks, and MRI activity (new T2 or contrast-enhancing lesions). Associations between each outcome and log-transformed sNfL and sGFAP levels pretreatment stop and posttreatment stop and the percent change were estimated using multivariable Cox regression analysis adjusting for age, disability, disease duration, and duration from attack before treatment stop. RESULTS Seventy-eight patients (92% female) discontinued treatment at a median (interquartile range) age of 48.5 years (39.0-55.7) and disease duration of 12.3 years (7.5-18.8) and were followed up for 6.3 years (4.2-8.5). CDW occurred in 27 patients (35%), new attacks in 19 (24%), and new MRI activity in 26 (33%). Higher posttreatment stop sNfL level was associated with CDW (adjusted hazard ratio (aHR) 2.80, 95% CI 1.36-5.76, p = 0.005) and new MRI activity (aHR 3.09, 95% CI 1.42-6.70, p = 0.004). Patients who had >100% increase in sNfL level from pretreatment stop to posttreatment stop had greater risk of CDW (HR 3.87, 95% CI 1.4-10.7, p = 0.009) and developing new MRI activity (HR 4.02, 95% CI 1.51-10.7, p = 0.005). Patients who had >50% increase in sGFAP level also had greater risk of CDW (HR 5.34, 95% CI 1.4-19.9, p = 0.012) and developing new MRI activity (HR 5.16, 95% CI 1.71-15.6, p = 0.004). DISCUSSION Stable patients who discontinue treatment may be risk stratified by sNfL and sGFAP levels measured before and after discontinuing treatment. Further studies are needed to validate findings and determine whether resuming treatment in patients with increasing biomarker levels reduces risk of subsequent disease activity.
Collapse
Affiliation(s)
- Gauruv Bose
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Brian C Healy
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Shrishti Saxena
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Fermisk Saleh
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Bonnie I Glanz
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Rohit Bakshi
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Howard L Weiner
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada
| | - Tanuja Chitnis
- From the Department of Neurology (G.B., B.C.H., S.S., F.S., B.I.G., R.B., H.L.W., T.C.), Brigham and Women's Hospital, Boston, MA; Harvard Medical School (G.B., B.C.H., B.I.G., R.B., H.L.W., T.C.), Boston, MA; The University of Ottawa and Ottawa Hospital Research Institute (G.B.), Ottawa, Canada.
| |
Collapse
|
10
|
Bose G, Healy BC, Barro C, Moreira Ferreira VF, Saxena S, Glanz BI, Lokhande HA, Polgar-Turcsanyi M, Bakshi R, Weiner HL, Chitnis T. Accuracy of serum neurofilament light to identify contrast-enhancing lesions in multiple sclerosis. Mult Scler 2023; 29:1418-1427. [PMID: 37712409 DOI: 10.1177/13524585231198751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
BACKGROUND Contrast-enhancing magnetic resonance imaging (MRI) lesions (CELs) indicate acute multiple sclerosis inflammation. Serum biomarkers, neurofilament light (sNfL), and glial fibrillary acidic protein (sGFAP) may increase in the presence of CELs, and indicate a need to perform MRI. OBJECTIVE We assessed the accuracy of biomarkers to detect CELs. METHODS Patients with two gadolinium-enhanced MRIs and serum biomarkers tested within 3 months were included (N = 557, 66% female). Optimal cut-points from Bland-Altman analysis for spot biomarker level and Youden's index for delta-change from remission were evaluated. RESULTS A total of 116 patients (21%) had CELs. A spot sNfL measurement >23.0 pg/mL corresponded to 7.0 times higher odds of CEL presence (95% CI: 3.8, 12.8), with 25.9% sensitivity, 95.2% specificity, operating characteristic curve (AUC) 0.61; while sNfL delta-change >30.8% from remission corresponded to 5.0 times higher odds (95% CI: 3.2, 7.8), 52.6% sensitivity, 81.9% specificity, AUC 0.67. sGFAP had poor CEL detection. In patients > 50 years, neither cut-point remained significant. sNfL delta-change outperformed spot levels at identifying asymptomatic CELs (AUC 0.67 vs 0.59) and in patients without treatment escalation between samples (AUC 0.67 vs 0.57). CONCLUSION Spot sNfL >23.0 pg/mL or a 30.8% increase from remission provides modest prediction of CELs in patients <50 years; however, low sNfL does not obviate the need for MRI.
Collapse
Affiliation(s)
- Gauruv Bose
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA/Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brian C Healy
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Christian Barro
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Vanessa F Moreira Ferreira
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bonnie I Glanz
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Hrishikesh A Lokhande
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Beydoun MA, Beydoun HA, Fanelli-Kuczmarski MT, Weiss J, Georgescu MF, Meirelles O, Lyall DM, Evans MK, Zonderman AB. Pathways explaining racial/ethnic and socio-economic disparities in dementia incidence: the UK Biobank study. Aging (Albany NY) 2023; 15:9310-9340. [PMID: 37751591 PMCID: PMC10564412 DOI: 10.18632/aging.205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Pathways explaining racial/ethnic disparities in dementia risk are under-evaluated. METHODS We examine those disparities and their related pathways among UK Biobank study respondents (50-74 y, N = 323,483; 3.6% non-White minorities) using a series of Cox proportional hazards and generalized structural equations models (GSEM). RESULTS After ≤15 years, 5,491 all-cause dementia cases were diagnosed. Racial minority status (RACE_ETHN, Non-White vs. White) increased dementia risk by 24% (HR = 1.24, 95% CI: 1.07-1.45, P = 0.005), an association attenuated by socio-economic status (SES), (HR = 1.12, 95% CI: 0.96-1.31). Total race-dementia effect was mediated through both SES and Life's Essential 8 lifestyle sub-score (LE8LIFESTYLE), combining diet, smoking, physical activity, and sleep factors. SES was inversely related to dementia risk (HR = 0.69, 95% CI: 0.67, 0.72, P < 0.001). Pathways explaining excess dementia risk among racial minorities included 'RACE_ETHN(-) → SES(-) → DEMENTIA', 'RACE_ETHN(-) → SES(-) → Poor cognitive performance, COGN(+) → DEMENTIA' and 'RACE_ETHN(-) → SES(+) → LE8LIFESTYLE(-) → DEMENTIA'. CONCLUSIONS Pending future interventions, lifestyle factors including diet, smoking, physical activity, and sleep are crucial for reducing racial and socio-economic disparities in dementia.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Hind A. Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA 22060, USA
| | - Marie T. Fanelli-Kuczmarski
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA 94305, USA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Donald M. Lyall
- School of Health and Wellbeing, University of Glasgow, Glasgow, Scottland, UK
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Beydoun MA, Noren Hooten N, Beydoun HA, Weiss J, Maldonado AI, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light and brain volumetric outcomes among middle-aged urban adults. Neurobiol Aging 2023; 129:28-40. [PMID: 37257406 PMCID: PMC10524231 DOI: 10.1016/j.neurobiolaging.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Elevated plasma neurofilament light chain (NfL) is associated with dementia though underlying mechanisms remain unknown. We examined cross-sectional relationships of time-dependent plasma NfL with selected brain structural magnetic resonance imaging (sMRI) prognostic markers of dementia. The sample was drawn from the Healthy Aging in Neighborhoods of Diversity Across the Life Span (HANDLS) study, selecting participants with complete v1 (2004-2009) and v2 (2009-2013) plasma NfL exposure and ancillary sMRI data at vscan (2011-2015, n = 179, mean v1 to vscan time: 5.4 years). Multivariable-adjusted linear regression models were conducted, overall, by sex, and race, correcting for multiple testing with q-values. NfL(v1) was associated with larger WMLV (both Loge transformed), after 5-6 years' follow-up, overall (β = +2.131 ± 0.660, b = +0.29, p = 0.001, and q = 0.0029) and among females. NfLv2 was linked to a 125 mm3 lower left hippocampal volume (p = 0.004 and q = 0.015) in reduced models, mainly among males, as was observed for annualized longitudinal change in NfL (δNfLbayes). Among African American adults, NfLv1 was inversely related to total, gray and white matter volumes. Plasma NfL may reflect future brain pathologies in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California Berkeley, Berkeley, CA, USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA; Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Leslie I Katzel
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA; Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA; Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA; Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Beydoun MA, Georgescu MF, Hossain S, Beydoun HA, Fanelli-Kuczmarski MT, Evans MK, Zonderman AB. Life's simple 7 and its association with trajectories in depressive symptoms among urban middle-aged adults. J Affect Disord 2023; 333:447-458. [PMID: 37094659 PMCID: PMC10255627 DOI: 10.1016/j.jad.2023.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The American Heart Association Life's Simple 7 (LS7) is a composite metric assessing cardiovascular health on a scale of 0-14 comprised of nutrition, physical activity, cigarette use, body mass index, blood pressure, cholesterol and glucose. METHODS Using data from the Healthy Aging in Neighborhoods of Diversity across the Life Span study [n = 1465, Age at visit 1 (v1: 2004-2009): 30-66 y, 41.7 % male, 60.6 % African American], we investigated associations of trajectories in depressive symptoms (2004-2017) with Life's simple 7 scores after ∼8.6 years follow-up (2013-2017). Analyses used group-based zero-inflated Poisson trajectory (GBTM) models and multiple linear or ordinal logistic regression. GBTM analyses generated two classes of depressive symptoms trajectories ("low declining" and "high declining"), based on intercept and slope direction and significance. RESULTS Overall, "high declining depressive symptoms" vs. the "low declining" group was associated with -0.67 ± 0.10 lower scores on LS7 total score (P < 0.001) in analyses adjusted for age, sex, race and the inverse mills ratio. This effect was markedly attenuated to -0.45 ± 0.10 score-points (P < 0.001) upon adjustment for socio-economic factors and to -0.27 ± 0.10 score-points (P < 0.010) in fully adjusted analyses, with a stronger association detected among women (β ± SE: -0.45 ± 0.14, P = 0.002). An association between elevated depressive symptoms over time ("high declining" vs "low declining") and LS7 total score was detected among African American adults (β ± SE: -0.281 ± 0.131, p = 0.031, full model). Moreover, the "high declining" vs. "low declining" depressive symptoms group was associated with a lower score on LS7 physical activity (β ± SE: -0.494 ± 0.130, P < 0.001). CONCLUSIONS Poorer cardiovascular health was linked to higher depressive symptoms over time.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, United States of America.
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, United States of America
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, United States of America
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States of America
| | - Marie T Fanelli-Kuczmarski
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, United States of America
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, United States of America
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, United States of America
| |
Collapse
|
14
|
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, Hemphill A, Dotson VM, Wharton W. Intersectionality in Alzheimer's Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer's Disease. Neurotherapeutics 2023; 20:1019-1036. [PMID: 37490246 PMCID: PMC10457280 DOI: 10.1007/s13311-023-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
It is well known that vascular factors and specific social determinants of health contribute to dementia risk and that the prevalence of these risk factors differs according to race and sex. In this review, we discuss the intersection of sex and race, particularly female sex and Black American race. Women, particularly Black women, have been underrepresented in Alzheimer's disease clinical trials and research. However, in recent years, the number of women participating in clinical research has steadily increased. A greater prevalence of vascular risk factors such as hypertension and type 2 diabetes, coupled with unique social and environmental pressures, puts Black American women particularly at risk for the development of Alzheimer's disease and related dementias. Female sex hormones and the use of hormonal birth control may offer some protective benefits, but results are mixed, and studies do not consistently report the demographics of their samples. We argue that as a research community, greater efforts should be made to not only recruit this vulnerable population, but also report the demographic makeup of samples in research to better target those at greatest risk for the disease.
Collapse
Affiliation(s)
- Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Bruno Hammerschlag
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Chinkuli Munkombwe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Arianna Bird
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Mercedes Fyffe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Asia Hemphill
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Krueger KR, Desai P, Beck T, Wilson RS, Evans D, Rajan KB. Cognitive Activity Is Associated with Cognitive Function over Time in a Diverse Group of Older Adults, Independent of Baseline Biomarkers. Neuroepidemiology 2023; 57:229-237. [PMID: 37263261 PMCID: PMC10997141 DOI: 10.1159/000531208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND More frequent engagement in cognitive activity is associated with better cognitive function in older adults, but the mechanism of action is not fully understood. Debate remains whether increased cognitive activity provides a meaningful benefit for cognitive health or if decreased cognitive activity represents a prodrome of cognitive impairment. Neurological biomarkers provide a novel way to examine this relationship in the context of cognitive aging. METHODS We examined the association of self-reported cognitive activity, cognitive function, and concentrations of three biomarkers in community-dwelling participants of a longitudinal, population-based study. Cognitive activity was measured at baseline by asking participants to rate the frequency of 7 activities: (1) viewing television, (2) listening to the radio, (3) visiting a museum, (4) playing games, such as cards, checkers, crosswords, or other puzzles or games, (5) reading books, (6) reading magazines, and (7) reading newspapers. Cognitive function was measured with a battery of four tests (Mini-Mental State Examination, Digit Symbol Test, and the immediate and delayed recall of the East Boston Test) averaged into a composite score. At baseline, we evaluated the concentration of total tau (tau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). RESULTS The study sample comprised 1,168 older participants, primarily non-Hispanic Blacks (60%) and women (63%). At baseline, they were an average of 77 years old with 12.6 years of education. Mixed-effects models showed that cognitive activity was associated with better cognitive functioning at baseline and over time. These relationships remained after each biomarker was added to the model. Over an average of 6.4 years of follow-up, cognitive activity was associated with cognitive decline in the model with tau (estimate = 0.0123; p value = 0.03) and was mildly attenuated in the models with NfL (estimate = 0.0110; p value = 0.06) and GFAP (estimate = 0.0111; p value = 0.06). Biomarkers did not modify the association between cognitive activity and cognitive function over time. CONCLUSION The benefits of cognitive activity on cognition appear to be independent of biomarkers: tau, NfL, and GFAP, measured at baseline. More frequent cognitive activity may benefit the cognitive health of older adults with a wide range of potential disease risk and presentations.
Collapse
Affiliation(s)
- Kristin R. Krueger
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Todd Beck
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Denis Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| |
Collapse
|
16
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
17
|
Bose G, Healy BC, Saxena S, Saleh F, Paul A, Barro C, Lokhande HA, Polgar-Turcsanyi M, Anderson M, Glanz BI, Guttmann CRG, Bakshi R, Weiner HL, Chitnis T. Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes. Mult Scler Relat Disord 2023; 74:104695. [PMID: 37060852 DOI: 10.1016/j.msard.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Early risk-stratification in multiple sclerosis (MS) may impact treatment decisions. Current predictive models have identified that clinical and imaging characteristics of aggressive disease are associated with worse long-term outcomes. Serum biomarkers, neurofilament (sNfL) and glial fibrillary acidic protein (sGFAP), reflect subclinical disease activity through separate pathological processes and may contribute to predictive models of clinical and MRI outcomes. METHODS We conducted a retrospective analysis of the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB study), where patients with multiple sclerosis are seen every 6 months and undergo Expanded Disability Status Scale (EDSS) assessment, have annual brain MRI scans where volumetric analysis is conducted to calculate T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and donate a yearly blood sample for subsequent analysis. We included patients with newly diagnosed relapsing-remitting MS and serum samples obtained at baseline visit and 1-year follow-up (both within 3 years of onset), and were assessed at 10-year follow-up. We measured sNfL and sGFAP by single molecule array at baseline visit and at 1-year follow-up. A predictive clinical model was developed using age, sex, Expanded Disability Status Scale (EDSS), pyramidal signs, relapse rate, and spinal cord lesions at first visit. The main outcome was odds of developing of secondary progressive (SP)MS at year 10. Secondary outcomes included 10-year EDSS, brain T2LV and BPF. We compared the goodness-of-fit of the predictive clinical model with and without sNfL and sGFAP at baseline and 1-year follow-up, for each outcome by area under the receiver operating characteristic curve (AUC) or R-squared. RESULTS A total 144 patients with median MS onset at age 37.4 years (interquartile range: 29.4-45.4), 64% female, were included. SPMS developed in 25 (17.4%) patients. The AUC for the predictive clinical model without biomarker data was 0.73, which improved to 0.77 when both sNfL and sGFAP were included in the model (P = 0.021). In this model, higher baseline sGFAP associated with developing SPMS (OR=3.3 [95%CI:1.1,10.6], P = 0.04). Adding 1-year follow-up biomarker levels further improved the model fit (AUC = 0.79) but this change was not statistically significant (P = 0.15). Adding baseline biomarker data also improved the R-squared of clinical models for 10-year EDSS from 0.24 to 0.28 (P = 0.032), while additional 1-year follow-up levels did not. Baseline sGFAP was associated with 10-year EDSS (ß=0.58 [95%CI:0.00,1.16], P = 0.05). For MRI outcomes, baseline biomarker levels improved R-squared for T2LV from 0.12 to 0.27 (P<0.001), and BPF from 0.15 to 0.20 (P = 0.042). Adding 1-year follow-up biomarker data further improved T2LV to 0.33 (P = 0.0065) and BPF to 0.23 (P = 0.048). Baseline sNfL was associated with T2LV (ß=0.34 [95%CI:0.21,0.48], P<0.001) and 1-year follow-up sNfL with BPF (ß=-2.53% [95%CI:-4.18,-0.89], P = 0.003). CONCLUSIONS Early biomarker levels modestly improve predictive models containing clinical and MRI variables. Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP levels and worse MRI outcomes, T2LV and BPF, are associated with higher sNfL levels. Prospective study implementing these predictive models into clinical practice are needed to determine if early biomarker levels meaningfully impact clinical practice.
Collapse
Affiliation(s)
- Gauruv Bose
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brian C Healy
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shrishti Saxena
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fermisk Saleh
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anu Paul
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christian Barro
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hrishikesh A Lokhande
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mariann Polgar-Turcsanyi
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mark Anderson
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bonnie I Glanz
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Charles R G Guttmann
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rohit Bakshi
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Howard L Weiner
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanuja Chitnis
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Song H, Bang HJ, You Y, Park JS, Kang C, Kim HJ, Park KN, Oh SH, Youn CS. Novel serum biomarkers for predicting neurological outcomes in postcardiac arrest patients treated with targeted temperature management. Crit Care 2023; 27:113. [PMID: 36927495 PMCID: PMC10022069 DOI: 10.1186/s13054-023-04400-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE To determine the clinical feasibility of novel serum biomarkers in out-of-hospital cardiac arrest (OHCA) patients treated with target temperature management (TTM). METHODS This study was a prospective observational study conducted on OHCA patients who underwent TTM. We measured conventional biomarkers, neuron‑specific enolase and S100 calcium-binding protein (S-100B), as well as novel biomarkers, including tau protein, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1), at 0, 24, 48, and 72 h after the return of spontaneous circulation identified by SIMOA immunoassay. The primary outcome was poor neurological outcome at 6 months after OHCA. RESULTS A total of 100 patients were included in this study from August 2018 to May 2020. Among the included patients, 46 patients had good neurologic outcomes at 6 months after OHCA. All conventional and novel serum biomarkers had the ability to discriminate between the good and poor neurological outcome groups (p < 0.001). The area under the curves of the novel serum biomarkers were highest at 72 h after cardiac arrest (CA) (0.906 for Tau, 0.946 for NFL, 0.875 for GFAP, and 0.935 for UCH-L1). The NFL at 72 h after CA had the highest sensitivity (77.1%, 95% CI 59.9-89.6) in predicting poor neurological outcomes while maintaining 100% specificity. CONCLUSION Novel serum biomarkers reliably predicted poor neurological outcomes for patients with OHCA treated with TTM when life-sustaining therapy was not withdrawn. Cutoffs from two large existing studies (TTM and COMACARE substudy) were externally validated in our study. The predictive power of the novel biomarkers was the highest at 72 h after CA.
Collapse
Affiliation(s)
- Hwan Song
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Hyo Jin Bang
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hyo Joon Kim
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Kyu Nam Park
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Sang Hoon Oh
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Chun Song Youn
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
19
|
Beydoun MA, Noren Hooten N, Weiss J, Maldonado AI, Beydoun HA, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light as blood marker for poor brain white matter integrity among middle-aged urban adults. Neurobiol Aging 2023; 121:52-63. [PMID: 36371816 PMCID: PMC9733693 DOI: 10.1016/j.neurobiolaging.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Plasma neurofilament light chain (NfL)'s link to dementia may be mediated through white matter integrity (WMI). In this study, we examined plasma NfL's relationships with diffusion tensor magnetic resonance imaging markers: global and cortical white matter fractional anisotropy (FA) and trace (TR). Plasma NfL measurements at 2 times (v1: 2004-2009 and v2: 2009-2013) and ancillary dMRI (vscan: 2011-2015) were considered (n = 163, mean time v1 to vscan = 5.4 years and v2 to vscan: 1.1 years). Multivariable-adjusted regression models, correcting for multiple-testing revealed that, overall, higher NfLv1 was associated with greater global TR (β ± SE: +0.0000560 ± 0.0000186, b = 0.27, p = 0.003, q = 0.012), left frontal WM TR (β ± SE: + 0.0000706 ± 0.0000201, b ± 0.30, p = 0.001, q = 0.0093) and right frontal WM TR (β ± SE: + 0.0000767 ± 0.000021, b ± 0.31, p < 0.001, q = 0.0093). These associations were mainly among males and White adults. Among African American adults only, NfLv2 was associated with greater left temporal lobe TR. "Tracking high" in NfL was associated with reduced left frontal FA (Model 2, body mass index-adjusted: β ± SE:-0.01084 ± 0.00408, p = 0.009). Plasma NfL is a promising biomarker predicting future brain white matter integrity (WMI) in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, University of Maryland, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Leslie I Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Catonsville, MD, USA; Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Whelan R, Barbey FM, Cominetti MR, Gillan CM, Rosická AM. Developments in scalable strategies for detecting early markers of cognitive decline. Transl Psychiatry 2022; 12:473. [PMID: 36351888 PMCID: PMC9645320 DOI: 10.1038/s41398-022-02237-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Effective strategies for early detection of cognitive decline, if deployed on a large scale, would have individual and societal benefits. However, current detection methods are invasive or time-consuming and therefore not suitable for longitudinal monitoring of asymptomatic individuals. For example, biological markers of neuropathology associated with cognitive decline are typically collected via cerebral spinal fluid, cognitive functioning is evaluated from face-to-face assessments by experts and brain measures are obtained using expensive, non-portable equipment. Here, we describe scalable, repeatable, relatively non-invasive and comparatively inexpensive strategies for detecting the earliest markers of cognitive decline. These approaches are characterized by simple data collection protocols conducted in locations outside the laboratory: measurements are collected passively, by the participants themselves or by non-experts. The analysis of these data is, in contrast, often performed in a centralized location using sophisticated techniques. Recent developments allow neuropathology associated with potential cognitive decline to be accurately detected from peripheral blood samples. Advances in smartphone technology facilitate unobtrusive passive measurements of speech, fine motor movement and gait, that can be used to predict cognitive decline. Specific cognitive processes can be assayed using 'gamified' versions of standard laboratory cognitive tasks, which keep users engaged across multiple test sessions. High quality brain data can be regularly obtained, collected at-home by users themselves, using portable electroencephalography. Although these methods have great potential for addressing an important health challenge, there are barriers to be overcome. Technical obstacles include the need for standardization and interoperability across hardware and software. Societal challenges involve ensuring equity in access to new technologies, the cost of implementation and of any follow-up care, plus ethical issues.
Collapse
Affiliation(s)
- Robert Whelan
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Florentine M Barbey
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Cumulus Neuroscience Ltd, Dublin, Ireland
| | - Marcia R Cominetti
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Department of Gerontology, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Claire M Gillan
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna M Rosická
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Aschenbrenner AJ, Li Y, Henson RL, Volluz K, Hassenstab J, Verghese P, West T, Meyer MR, Kirmess KM, Fagan AM, Xiong C, Holtzman D, Morris JC, Bateman RJ, Schindler SE. Comparison of plasma and CSF biomarkers in predicting cognitive decline. Ann Clin Transl Neurol 2022; 9:1739-1751. [PMID: 36183195 PMCID: PMC9639639 DOI: 10.1002/acn3.51670] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Concentrations of amyloid-β peptides (Aβ42/Aβ40) and neurofilament light (NfL) can be measured in plasma or cerebrospinal fluid (CSF) and are associated with Alzheimer's disease brain pathology and cognitive impairment. This study directly compared plasma and CSF measures of Aβ42/Aβ40 and NfL as predictors of cognitive decline. METHODS Participants were 65 years or older and cognitively normal at baseline with at least one follow-up cognitive assessment. Analytes were measured with the following types of assays: plasma Aβ42/Aβ40, immunoprecipitation-mass spectrometry; plasma NfL, Simoa; CSF Aβ42/Aβ40, automated immunoassay; CSF NfL plate-based immunoassay. Mixed effects models evaluated the global cognitive composite score over a maximum of 6 years as predicted by the fluid biomarkers. RESULTS Analyses included 371 cognitively normal participants, aged 72.7 ± 5.2 years (mean ± standard deviation) with an average length of follow-up of 3.9 ± 1.6 years. Standardized concentrations of biomarkers were associated with annualized cognitive change: plasma Aβ42/Aβ40, 0.014 standard deviations (95% confidence intervals 0.002 to 0.026); CSF Aβ42/Aβ40, 0.020 (0.008 to 0.032); plasma Nfl, -0.018 (-0.030 to -0.005); and CSF NfL, -0.024 (-0.036 to -0.012). Power analyses estimated that 266 individuals in each treatment arm would be needed to detect a 50% slowing of decline if identified by abnormal plasma measures versus 229 for CSF measures. INTERPRETATION Both plasma and CSF measures of Aβ42/Aβ40 and NfL predicted cognitive decline. A clinical trial that enrolled individuals based on abnormal plasma Aβ42/Aβ40 and NfL levels would require only a marginally larger cohort than if CSF measures were used.
Collapse
Affiliation(s)
- Andrew J. Aschenbrenner
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | - Yan Li
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMOUSA
| | - Rachel L. Henson
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | - Katherine Volluz
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | - Jason Hassenstab
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | | | | | | | | | - Anne M. Fagan
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMOUSA
| | - David Holtzman
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - John C. Morris
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
22
|
Lynch M, Pham W, Sinclair B, O’Brien TJ, Law M, Vivash L. Perivascular spaces as a potential biomarker of Alzheimer's disease. Front Neurosci 2022; 16:1021131. [PMID: 36330347 PMCID: PMC9623161 DOI: 10.3389/fnins.2022.1021131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease (AD) is a highly damaging disease that affects one's cognition and memory and presents an increasing societal and economic burden globally. Considerable research has gone into understanding AD; however, there is still a lack of effective biomarkers that aid in early diagnosis and intervention. The recent discovery of the glymphatic system and associated Perivascular Spaces (PVS) has led to the theory that enlarged PVS (ePVS) may be an indicator of AD progression and act as an early diagnostic marker. Visible on Magnetic Resonance Imaging (MRI), PVS appear to enlarge when known biomarkers of AD, amyloid-β and tau, accumulate. The central goal of ePVS and AD research is to determine when ePVS occurs in AD progression and if ePVS are causal or epiphenomena. Furthermore, if ePVS are indeed causative, interventions promoting glymphatic clearance are an attractive target for research. However, it is necessary first to ascertain where on the pathological progression of AD ePVS occurs. This review aims to examine the knowledge gap that exists in understanding the contribution of ePVS to AD. It is essential to understand whether ePVS in the brain correlate with increased regional tau distribution and global or regional Amyloid-β distribution and to determine if these spaces increase proportionally over time as individuals experience neurodegeneration. This review demonstrates that ePVS are associated with reduced glymphatic clearance and that this reduced clearance is associated with an increase in amyloid-β. However, it is not yet understood if ePVS are the outcome or driver of protein accumulation. Further, it is not yet clear if ePVS volume and number change longitudinally. Ultimately, it is vital to determine early diagnostic criteria and early interventions for AD to ease the burden it presents to the world; ePVS may be able to fulfill this role and therefore merit further research.
Collapse
Affiliation(s)
- Miranda Lynch
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - William Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Beydoun MA, Noren Hooten N, Weiss J, Beydoun HA, Hossain S, Evans MK, Zonderman AB. Plasma neurofilament light and its association with all-cause mortality risk among urban middle-aged men and women. BMC Med 2022; 20:218. [PMID: 35692046 PMCID: PMC9190073 DOI: 10.1186/s12916-022-02425-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is released into the blood during neuronal damage. NfL is linked to mortality in neurological disorders, remaining unexplored in population studies. We investigated whether initial (v1) and annualized change (δ) in plasma NfL can predict all-cause mortality in middle-aged dementia-free urban adults. METHODS Longitudinal data were from 694 participants in the Healthy Aging in Neighborhoods of Diversity Across the Life Span study (HANDLS, mean agev1: 47.8 years, 42% male, 55.8% African American). Plasma NfL was measured prospectively at three visits. Analyses included Cox proportional hazards models for all-cause mortality risk and 4-way decomposition testing for interaction and mediation. RESULTS Unlike men, women exhibited a direct association between δNfL (above vs. below median) and all-cause mortality risk in both the minimally (HR = 3.91, 95% CI 1.10-13.9, p = 0.036) and fully adjusted models (HR = 4.92, 95% CI 1.26-19.2, p = 0.022), and for δNfL (per unit increase) in the full model (HR = 1.65, 95% CI 1.04-2.61, p = 0.034). In both models, and among women, 1 standard deviation of NfLv1 was associated with an increased all-cause mortality risk (reduced model: HR = 2.01, 95% CI 1.24-3.25, p = 0.005; full model: HR = 1.75, 95% CI 1.02-2.98, p = 0.041). Only few interactions were detected for cardio-metabolic risk factors. Notably, NfLv1 was shown to be a better prognostic indicator at normal hsCRP values among women, while HbA1c and δNfL interacted synergistically to determine mortality risk, overall. CONCLUSIONS These findings indicate that plasma NfL levels at baseline and over time can predict all-cause mortality in women and interacts with hsCRP and HbA1c to predict that risk.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| |
Collapse
|
24
|
Uchida K. Waste Clearance in the Brain and Neuroinflammation: A Novel Perspective on Biomarker and Drug Target Discovery in Alzheimer's Disease. Cells 2022; 11:cells11050919. [PMID: 35269541 PMCID: PMC8909773 DOI: 10.3390/cells11050919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease with a heterogeneous etiology. The pathology of Alzheimer’s disease is characterized by amyloid-beta and hyperphosphorylated tau, which are necessary for disease progression. Many clinical trials on disease-modifying drugs for AD have failed to indicate their clinical benefits. Recent advances in fundamental research have indicated that neuroinflammation plays an important pathological role in AD. Damage- and pathogen-associated molecular patterns in the brain induce neuroinflammation and inflammasome activation, causing caspase-1-dependent glial and neuronal cell death. These waste products in the brain are eliminated by the glymphatic system via perivascular spaces, the blood-brain barrier, and the blood–cerebrospinal fluid barrier. Age-related vascular dysfunction is associated with an impairment of clearance and barrier functions, leading to neuroinflammation. The proteins involved in waste clearance in the brain and peripheral circulation may be potential biomarkers and drug targets in the early stages of cognitive impairment. This short review focuses on waste clearance dysfunction in AD pathobiology and discusses the improvement of waste clearance as an early intervention in prodromal AD and preclinical stages of dementia.
Collapse
Affiliation(s)
- Kazuhiko Uchida
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Ibaraki, Japan; ; Tel.: +81-29-853-3210; Fax: +81-50-3730-7456
- Institute for Biomedical Research, MCBI, 4-9-29 Matsushiro, Tsukuba 305-0035, Ibaraki, Japan
| |
Collapse
|
25
|
Redondo-Camós M, Cattaneo G, Perellón-Alfonso R, Alviarez-Schulze V, Morris TP, Solana-Sanchez J, España-Irla G, Delgado-Gallén S, Pachón-García C, Albu S, Zetterberg H, Tormos JM, Pascual-Leone A, Bartres-Faz D. Local Prefrontal Cortex TMS-Induced Reactivity Is Related to Working Memory and Reasoning in Middle-Aged Adults. Front Psychol 2022; 13:813444. [PMID: 35222201 PMCID: PMC8866698 DOI: 10.3389/fpsyg.2022.813444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction The prefrontal cortex (PFC) plays a crucial role in cognition, particularly in executive functions. Cortical reactivity measured with Transcranial Magnetic Stimulation combined with Electroencephalography (TMS-EEG) is altered in pathological conditions, and it may also be a marker of cognitive status in middle-aged adults. In this study, we investigated the associations between cognitive measures and TMS evoked EEG reactivity and explored whether the effects of this relationship were related to neurofilament light chain levels (NfL), a marker of neuroaxonal damage. Methods Fifty two healthy middle-aged adults (41–65 years) from the Barcelona Brain Health Initiative cohort underwent TMS-EEG, a comprehensive neuropsychological assessment, and a blood test for NfL levels. Global and Local Mean-Field Power (GMFP/LMFP), two measures of cortical reactivity, were quantified after left prefrontal cortex (L-PFC) stimulation, and cognition was set as the outcome of the regression analysis. The left inferior parietal lobe (L-IPL) was used as a control stimulation condition. Results Local reactivity was significantly associated with working memory and reasoning only after L-PFC stimulation. No associations were found between NfL and cognition. These specific associations were independent of the status of neuroaxonal damage indexed by the NfL biomarker and remained after adjusting for age, biological sex, and education. Conclusion Our results demonstrate that TMS evoked EEG reactivity at the L-PFC, but not the L-IPL, is related to the cognitive status of middle-aged individuals and independent of NfL levels, and may become a valuable biomarker of frontal lobe-associated cognitive function.
Collapse
Affiliation(s)
- María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Alviarez-Schulze
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.,Departamento de Ciencias del Comportamiento, Escuela de Psicología, Universidad Metropolitana, Caracas, Venezuela
| | - Timothy P Morris
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Javier Solana-Sanchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Catherine Pachón-García
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Sergiu Albu
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute, University College London, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - David Bartres-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Beydoun MA, Noren Hooten N, Maldonado AI, Beydoun HA, Weiss J, Evans MK, Zonderman AB. BMI and Allostatic Load Are Directly Associated with Longitudinal Increase in Plasma Neurofilament Light among Urban Middle-Aged Adults. J Nutr 2021; 152:535-549. [PMID: 34718678 PMCID: PMC8826916 DOI: 10.1093/jn/nxab381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a novel biomarker for age-related neurodegenerative disease. We tested whether NfL may be linked to cardiometabolic risk factors, including BMI, the allostatic load (AL) total score (ALtotal), and related AL continuous components (ALcomp). We also tested whether these relations may differ by sex or by race. METHODS We used data from the HANDLS (Healthy Aging in Neighborhoods of Diversity across the Life Span) study [n = 608, age at visit 1 (v1: 2004-2009): 30-66 y, 42% male, 58% African American] to investigate associations of initial cardiometabolic risk factors and time-dependent plasma NfL concentrations over 3 visits (2004-2017; mean ± SD follow-up time: 7.72 ± 1.28 y), with outcomes being NfLv1 and annualized change in NfL (δNfL). We used mixed-effects linear regression and structural equations modeling (SM). RESULTS BMI was associated with lower initial (γ01 = -0.014 ± 0.002, P < 0.001) but faster increase in plasma NfL over time (γ11 = +0.0012 ± 0.0003, P < 0.001), a pattern replicated for ALtotal. High-sensitivity C-reactive protein (hsCRP), serum total cholesterol, and resting heart rate at v1 were linked with faster plasma NfL increase over time, overall, while being uncorrelated with NfLv1 (e.g., hsCRP × Time, full model: γ11 = +0.004 ± 0.002, P = 0.015). In SM analyses, BMI's association with δNfL was significantly mediated through ALtotal among women [total effect (TE) = +0.0014 ± 0.00038, P < 0.001; indirect effect = +0.00042 ± 0.00019, P = 0.025; mediation proportion = 30%], with only a direct effect (DE) detected among African American adults (TE = +0.0011 ± 0.0004, P = 0.015; DE = +0.0010 ± 0.00048, P = 0.034). The positive associations between ALtotal/BMI and δNfL were mediated through increased glycated hemoglobin (HbA1c) concentrations, overall. CONCLUSIONS Cardiometabolic risk factors, particularly elevated HbA1c, should be screened and targeted for neurodegenerative disease, pending comparable longitudinal studies. Other studies examining the clinical utility of plasma NfL as a neurodegeneration marker should account for confounding effects of BMI and AL.
Collapse
Affiliation(s)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Ana I Maldonado
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|