1
|
Zhang L, Wang HX, Li WX, Zhu YY, Ma RR, Wang YH, Zhang Y, Zhu DM, Zhu P. Association of Maternal Short Sleep Duration With Neurodevelopmental Delay in Offspring: A Prospective Cohort Study. J Clin Endocrinol Metab 2024:dgae569. [PMID: 39324789 DOI: 10.1210/clinem/dgae569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/27/2024]
Abstract
CONTEXT To investigate how short sleep duration (SSD) during pregnancy is related to neurodevelopmental delays in offspring, we aimed to inform pregnancy sleep guidelines and promote maternal health and child development. OBJECTIVE To identify the associations between SSD during pregnancy and offspring neurodevelopmental delay and to determine whether fetal glucose metabolism plays a role in SSD and neurodevelopmental delays. METHODS This cohort study followed 7059 mother-child pairs from the Maternal & Infants Health in Hefei cohort, and collected sleep data during pregnancy via the Pittsburgh Sleep Quality Index at weeks 24 to 28 and 32 to 36. Neurodevelopmental outcomes from 6 to 36 months postpartum were assessed via the Denver Developmental Screening Test-II and the Gesell Development Diagnosis Scale. Cox proportional hazard regression was used to analyze the link between maternal SSD and neurodevelopmental delay risk. Mediation analysis was used to evaluate the role of cord blood serum C-peptide levels. Three hospitals and children's health centers in Hefei were involved. RESULTS The stratified analysis revealed a significant association between mothers with SSD during midpregnancy and neurodevelopmental delay in boys (adjusted HR 2.05, 95% CI 1.29, 3.25). Cord blood marker analysis revealed a positive relationship between cord blood serum C-peptide levels and neurodevelopmental delay in offspring (RR 0.04, 95% CI 0.00, 0.08). The proportion of the association between SSD and neurodevelopmental delay mediated by cord blood C-peptide was 11.05%. CONCLUSION Maternal SSD during pregnancy was continuously associated with an increased incidence of neurodevelopmental delay with sex differences among offspring. This association may be mediated in part by increased higher levels of cord C-peptide.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hai-Xia Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wen-Xiang Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuan-Yuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rui-Rui Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Hong Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Hefei Fourth People's Hospital, Hefei, Anhui 230022, China
- Anhui Mental Health Center, Hefei, Anhui 230022, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Hefei Fourth People's Hospital, Hefei, Anhui 230022, China
- Anhui Mental Health Center, Hefei, Anhui 230022, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
2
|
Li X, Zhu W, Cheng Y, Ren Z, Liu X, Yang H, Ding G, Huang H. Intrauterine hyperglycemia induces SIRT3-mediated mitochondrial dysfunction: the fetal origin pathogenesis of precocious osteoarthritis. Osteoarthritis Cartilage 2024; 32:950-962. [PMID: 38782252 DOI: 10.1016/j.joca.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Diabetes and other metabolic and inflammatory comorbidities are highly associated with osteoarthritis (OA). However, whether early-life hyperglycemia exposure affects susceptibility to long-term OA is still unknown. The purpose of this study was to explore the fetal origins of OA and provide insights into early-life safeguarding for individual health. METHOD This study utilized streptozotocin to induce intrauterine hyperglycemia and performed destabilization of the medial meniscus surgery on the knee joints of the offspring mice to induce accelerated OA. Cartilage degeneration-related markers, as well as the expression levels of mitochondrial respiratory chain complexes and mitophagy genes in the adult offspring mice, were investigated. In vitro, mitochondrial function and mitophagy of chondrocyte C28/I2 cells stimulated under high glucose conditions were also evaluated. The methylation levels of the sirt3 gene promoter region in the articular cartilage of intrauterine hyperglycemia-exposed offspring mice were further analyzed. RESULTS In this study, we found that the intrauterine hyperglycemic environment could lead to an increase in individual susceptibility to OA in late adulthood, mainly due to persistently low levels of Sirt3 expression. Downregulation of Sirt3 causes impaired mitophagy in chondrocytes and abnormal mitochondrial respiratory function due to a failure to clear aged and damaged mitochondria in a timely manner. Overexpressing Sirt3 at the cellular level or using Sirt3 agonists like Honokiol in mouse models can partially rescue mitophagy disorders caused by the hyperglycemic environment and thus alleviate the progression of OA. CONCLUSION Our study revealed a significantly increased susceptibility to OA in the gestational diabetes mellitus offspring, which is partly attributed to exposure to adverse factors in utero and ultimately to the onset of disease via epigenetic modulation.
Collapse
Affiliation(s)
- Xinyuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wanbo Zhu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Zhuoran Ren
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
3
|
Ghamri KA. Mutual effects of gestational diabetes and schizophrenia: how can one promote the other?: A review. Medicine (Baltimore) 2024; 103:e38677. [PMID: 38905391 PMCID: PMC11191934 DOI: 10.1097/md.0000000000038677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
Although the physical complications of gestational diabetes mellitus (GDM) are well known, emerging evidence suggests a significant link with psychiatric conditions such as schizophrenia (SCZ). This review aimed to explore the extent, nature, and implications of the association between GDM and SCZ, exploring how the 2 conditions may reciprocally influence each other. We conducted a comprehensive literature review and, analyzed clinical and mechanistic evidence supporting the mutual effects of GDM and SCZ. This review examined factors such as neurodevelopment and the impact of antipsychotics. The study found that Maternal GDM increases the risk of SCZ in offspring. Conversely, women with SCZ were more prone to hyperglycemic pregnancies. The research highlights significant regional variations in GDM prevalence, with the highest rate in the Middle East, North Africa, and South-East Asia regions. These regional variations may have an impact on the epidemiology of SCZ. Furthermore, this review identifies the potential biological and environmental mechanisms underlying these associations. There is a bidirectional relationship between GDM and SCZ, with each disorder potentially exacerbating the others. This relationship has significant implications for maternal and offspring health, particularly in regions with high GDM prevalence. These findings underline the need for integrated care approaches for women with SCZ during pregnancy and the importance of monitoring and managing GDM to mitigate the risk of SCZ in the offspring. Notably, this study recognizes the need for further research to fully understand these complex interactions and their implications for healthcare.
Collapse
Affiliation(s)
- Kholoud A. Ghamri
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Li X, Zhu W, Liu R, Ding G, Huang H. Cerium Oxide Nanozymes Improve Skeletal Muscle Function in Gestational Diabetic Offspring by Attenuating Mitochondrial Oxidative Stress. ACS OMEGA 2024; 9:21851-21863. [PMID: 38799328 PMCID: PMC11112706 DOI: 10.1021/acsomega.3c09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Gestational diabetes mellitus (GDM) is a significant complication during pregnancy that results in abnormalities in the function of multiple systems in the offspring, which include skeletal muscle dysfunction and reduced systemic metabolic capacity. One of the primary causes behind this intergenerational effect is the presence of mitochondrial dysfunction and oxidative stress in the skeletal muscle of the offspring due to exposure to a high-glucose environment in utero. Cerium oxide (CeO2) nanozymes are antioxidant agents with polymerase activity that have been widely used in the treatment of inflammatory and aging diseases. In this study, we synthesized ultrasmall particle size CeO2 nanozymes and applied them in GDM mouse offspring. The CeO2 nanozymes demonstrated an ability to increase insulin sensitivity and enhance skeletal muscle motility in GDM offspring by improving mitochondrial activity, increasing mitochondrial ATP synthesis function, and restoring abnormal mitochondrial morphology. Furthermore, at the cellular level, CeO2 nanozymes could ameliorate metabolic dysregulation and decrease cell differentiation in adult muscle cells induced by hyperglycemic stimuli. This was achieved through the elimination of endogenous reactive oxygen species (ROS) and an improvement in mitochondrial oxidative respiration function. In conclusion, CeO2 nanozymes play a crucial role in preserving muscle function and maintaining the metabolic stability of organisms. Consequently, they serve to reverse the negative effects of GDM on skeletal muscle physiology in the offspring.
Collapse
Affiliation(s)
- Xinyuan Li
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| | - Wanbo Zhu
- Department
of Orthopedics, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Rui Liu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
- Reproductive
Medicine Center, International Institutes of Medicine, the Fourth
Affiliated Hospital, Zhejiang University
School of Medicine, Yiwu322000, China
| | - Guolian Ding
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
| | - Hefeng Huang
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| |
Collapse
|
5
|
Ren ZR, Luo SS, Qin XY, Huang HF, Ding GL. Sex-Specific Alterations in Placental Proteomics Induced by Intrauterine Hyperglycemia. J Proteome Res 2024; 23:1272-1284. [PMID: 38470452 DOI: 10.1021/acs.jproteome.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Gestational diabetes mellitus (GDM) with intrauterine hyperglycemia induces a series of changes in the placenta, which have adverse effects on both the mother and the fetus. The aim of this study was to investigate the changes in the placenta in GDM and its gender differences. In this study, we established an intrauterine hyperglycemia model using ICR mice. We collected placental specimens from mice before birth for histological observation, along with tandem mass tag (TMT)-labeled proteomic analysis, which was stratified by sex. When the analysis was not segregated by sex, the GDM group showed 208 upregulated and 225 downregulated proteins in the placenta, primarily within the extracellular matrix and mitochondria. Altered biological processes included cholesterol metabolism and oxidative stress responses. After stratification by sex, the male subgroup showed a heightened tendency for immune-related pathway alterations, whereas the female subgroup manifested changes in branched-chain amino acid metabolism. Our study suggests that the observed sex differences in placental protein expression may explain the differential impact of GDM on offspring.
Collapse
Affiliation(s)
- Zhuo-Ran Ren
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Si-Si Luo
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Shanghai First Maternity and Infant Hospital, Shanghai 201204, China
| | - Xue-Yun Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Kemse N, Chhetri S, Joshi S. Beneficial effects of dietary omega 3 polyunsaturated fatty acids on offspring brain development in gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102632. [PMID: 39029386 DOI: 10.1016/j.plefa.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Various mechanisms through which maternal diet influences offspring brain development in gestational diabetes mellitus (GDM) remains unclear. We speculate that prenatal omega 3 fatty acids will improve the levels of brain neurotrophins and vascular endothelial growth factor (VEGF), an angiogenic factor leading to improved cognitive performance in the offspring. GDM was induced in Wistar rats using streptozotocin. They were assigned to either control, GDM or GDM+O (GDM + omega-3 fatty acid supplementation). The offspring were followed till 3 mo of age and cognitive assessment was undertaken. Data analysis was carried out using one-way ANOVA followed by LSD test. GDM induction increased (p < 0.01) dam glucose levels and lowered brain derived neurotrophic factor (BDNF) levels (p = 0.056) in the offspring at birth. At 3 months, GDM group showed significantly lower levels of neurotrophic tyrosine kinase receptor-2 (NTRK-2) and VEGF, lower mRNA levels of NTRK-2 and cAMP response element-binding protein (CREB) (P < 0.05 for all) as compared to control. The GDM offspring had a higher escape latency (p < 0.01), made lesser % correct choices and more errors (p < 0.05 for both). Prenatal supplementation with omega 3 polyunsaturated fatty acids was beneficial since it ameliorated some of the adverse effects of GDM.
Collapse
Affiliation(s)
- Nisha Kemse
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune - 411043, India
| | - Sunaina Chhetri
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune - 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune - 411043, India.
| |
Collapse
|
7
|
Rodolaki K, Pergialiotis V, Iakovidou N, Boutsikou T, Iliodromiti Z, Kanaka-Gantenbein C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol (Lausanne) 2023; 14:1125628. [PMID: 37469977 PMCID: PMC10352101 DOI: 10.3389/fendo.2023.1125628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Maternal health during gestational period is undoubtedly critical in shaping optimal fetal development and future health of the offspring. Gestational diabetes mellitus is a metabolic disorder occurring in pregnancy with an alarming increasing incidence worldwide during recent years. Over the years, there is a growing body of evidence that uncontrolled maternal hyperglycaemia during pregnancy can potentially have detrimental effect on the neurodevelopment of the offspring. Both human and animal data have linked maternal diabetes with motor and cognitive impairment, as well as autism spectrum disorders, attention deficit hyperactivity disorder, learning abilities and psychiatric disorders. This review presents the available data from current literature investigating the relationship between maternal diabetes and offspring neurodevelopmental impairment. Moreover, possible mechanisms accounting for the detrimental effects of maternal diabetes on fetal brain like fetal neuroinflammation, iron deficiency, epigenetic alterations, disordered lipid metabolism and structural brain abnormalities are also highlighted. On the basis of the evidence demonstrated in the literature, it is mandatory that hyperglycaemia during pregnancy will be optimally controlled and the impact of maternal diabetes on offspring neurodevelopment will be more thoroughly investigated.
Collapse
Affiliation(s)
- Kalliopi Rodolaki
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoleta Iakovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoe Iliodromiti
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Yan YS, Feng C, Yu DQ, Tian S, Zhou Y, Huang YT, Cai YT, Chen J, Zhu MM, Jin M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front Nutr 2023; 10:1067282. [PMID: 37255932 PMCID: PMC10226394 DOI: 10.3389/fnut.2023.1067282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Diabetes mellitus during pregnancy, which can be classified into pregestational diabetes and gestational diabetes, has become much more prevalent worldwide. Maternal diabetes fosters an intrauterine abnormal environment for fetus, which not only influences pregnancy outcomes, but also leads to fetal anomaly and development of diseases in later life, such as metabolic and cardiovascular diseases, neuropsychiatric outcomes, reproduction malformation, and immune dysfunction. The underlying mechanisms are comprehensive and ambiguous, which mainly focus on microbiota, inflammation, reactive oxygen species, cell viability, and epigenetics. This review concluded with the influence of intrauterine hyperglycemia on fetal structure development and organ function on later life and outlined potential mechanisms that underpin the development of diseases in adulthood. Maternal diabetes leaves an effect that continues generations after generations through gametes, thus more attention should be paid to the prevention and treatment of diabetes to rescue the pathological attacks of maternal diabetes from the offspring.
Collapse
Affiliation(s)
- Yi-Shang Yan
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Qing Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Cai
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao-Miao Zhu
- Department of Operating Theatre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Saito Y, Kobayashi S, Ito S, Miyashita C, Umazume T, Cho K, Watari H, Ito Y, Saijo Y, Kishi R. Neurodevelopmental delay up to the age of 4 years in infants born to women with gestational diabetes mellitus: The Japan Environment and Children's Study. J Diabetes Investig 2022; 13:2054-2062. [PMID: 36134892 PMCID: PMC9720201 DOI: 10.1111/jdi.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS/INTRODUCTION This study aimed to investigate the neurodevelopment of infants born to women with gestational diabetes mellitus (GDM). MATERIALS AND METHODS Data from the National Birth Cohort in the Japan Environment and Children's Study from 2011 to 2014 (n = 81,705) were used. Japan uses the GDM guidelines of the International Association of Diabetes and Pregnancy Study Groups. The Japanese translation of the Ages and Stages Questionnaires, third Edition, was used to assess neurodevelopment in the following domains: communication skills, gross motor skills, fine motor skills, problem-solving ability, and personal and social skills. The survey was carried out every 6 months from the age of 6 months to 4 years (total of eight times). Generalized estimating equations were used to evaluate the association between maternal GDM and neurodevelopmental delay based on odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS Neurodevelopmental delays, particularly in problem-solving ability, fine motor skills, and personal and social skills, were significantly higher in infants born to women with GDM than in those born to women without GDM (adjusted OR 1.24, 95% CI 1.12-1.36; adjusted OR 1.15, 95% CI 1.03-1.27; and adjusted OR 1.18, 95% CI 1.04-1.33). Furthermore, stratification showed no significant increase in the adjusted ORs (95% CIs) of girls. CONCLUSIONS Neurodevelopment was significantly delayed up to 4 years-of-age among boys born to women with GDM.
Collapse
Affiliation(s)
- Yoshihiro Saito
- Department of Obstetrics and GynecologyHokkaido University Graduate School of MedicineSapporoJapan
| | - Sumitaka Kobayashi
- Center for Environmental and Health SciencesHokkaido UniversitySapporoJapan
| | - Sachiko Ito
- Center for Environmental and Health SciencesHokkaido UniversitySapporoJapan
| | - Chihiro Miyashita
- Center for Environmental and Health SciencesHokkaido UniversitySapporoJapan
| | - Takeshi Umazume
- Department of Obstetrics and GynecologyHokkaido University Graduate School of MedicineSapporoJapan
| | - Kazutoshi Cho
- Center for Perinatal MedicineHokkaido University HospitalSapporoJapan
| | - Hidemichi Watari
- Department of Obstetrics and GynecologyHokkaido University Graduate School of MedicineSapporoJapan
| | - Yoshiya Ito
- Faculty of NursingJapanese Red Cross Hokkaido College of NursingKitamiJapan
| | - Yasuaki Saijo
- Department of Social MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Reiko Kishi
- Center for Environmental and Health SciencesHokkaido UniversitySapporoJapan
| | | |
Collapse
|
10
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|
11
|
Li XY, Pan JX, Zhu H, Ding GL, Huang HF. Environmental epigenetic interaction of gametes and early embryos. Biol Reprod 2022; 107:196-204. [PMID: 35323884 DOI: 10.1093/biolre/ioac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, the developmental origins of diseases have been increasingly recognized and accepted. As such, it has been suggested that most adulthood chronic diseases such as diabetes, obesity, cardiovascular disease, and even tumors may develop at a very early stage. In addition to intrauterine environmental exposure, germ cells carry an important inheritance role as the primary link between the two generations. Adverse external influences during differentiation and development can cause damage to germ cells, which may then increase the risk of chronic disease development later in life. Here, we further elucidate and clarify the concept of gamete and embryo origins of adult diseases by focusing on the environmental insults on germ cells, from differentiation to maturation and fertilization.
Collapse
Affiliation(s)
- Xin-Yuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Jie-Xue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
12
|
Luo SS, Zou KX, Zhu H, Cheng Y, Yan YS, Sheng JZ, Huang HF, Ding GL. Integrated Multi-Omics Analysis Reveals the Effect of Maternal Gestational Diabetes on Fetal Mouse Hippocampi. Front Cell Dev Biol 2022; 10:748862. [PMID: 35237591 PMCID: PMC8883435 DOI: 10.3389/fcell.2022.748862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that adverse intrauterine environments could affect the long-term health of offspring. Recent evidence indicates that gestational diabetes mellitus (GDM) is associated with neurocognitive changes in offspring. However, the mechanism remains unclear. Using a GDM mouse model, we collected hippocampi, the structure critical to cognitive processes, for electron microscopy, methylome and transcriptome analyses. Reduced representation bisulfite sequencing (RRBS) and RNA-seq in the GDM fetal hippocampi showed altered methylated modification and differentially expressed genes enriched in common pathways involved in neural synapse organization and signal transmission. We further collected fetal mice brains for metabolome analysis and found that in GDM fetal brains, the metabolites displayed significant changes, in addition to directly inducing cognitive dysfunction, some of which are important to methylation status such as betaine, fumaric acid, L-methionine, succinic acid, 5-methyltetrahydrofolic acid, and S-adenosylmethionine (SAM). These results suggest that GDM affects metabolites in fetal mice brains and further affects hippocampal DNA methylation and gene regulation involved in cognition, which is a potential mechanism for the adverse neurocognitive effects of GDM in offspring.
Collapse
Affiliation(s)
- Si-Si Luo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ke-Xin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - He-Feng Huang
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
13
|
Mao Y, Yiran Z, Sisi L, Huixi C, Xia L, Ting W, Guolian D, Xinmei L, Sheng J, Meng Y, Huang H. Advanced paternal age increased metabolic risks in mice offspring. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166355. [DOI: 10.1016/j.bbadis.2022.166355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
14
|
Wang Q, Jiang Y, Lv H, Lu Q, Tao S, Qin R, Huang L, Liu C, Xu X, Lv S, Li M, Li Z, Du J, Lin Y, Ma H, Chi X, Hu Z, Jiang T, Zhang G. Association of Maternal Mild Hypothyroidism With Offspring Neurodevelopment in TPOAb-Negative Women: A Prospective Cohort Study. Front Endocrinol (Lausanne) 2022; 13:884851. [PMID: 35846339 PMCID: PMC9278520 DOI: 10.3389/fendo.2022.884851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Adequate maternal thyroid hormone availability is crucial for fetal neurodevelopment, but the role of maternal mild hypothyroidism is not clear. We aim to investigate the association of maternal mild hypothyroidism with neurodevelopment in infants at 1 year of age among TPOAb-negative women. METHODS The present study was conducted within the Jiangsu Birth Cohort. A total of 793 mother-infant pairs were eligible for the present study. Maternal thyroid function was assessed by measuring serum thyroid-stimulating hormone, free thyroxine, and thyroid peroxidase antibodies. Neurodevelopment of infants was assessed by using the Bayley Scales of Infant and Toddler Development third edition screening test (Bayley-III screening test). RESULTS In the multivariate adjusted linear regression analyses, infants of women with subclinical hypothyroidism and isolated hypothyroxinemia were associated with decreased receptive communication scores (β = -0.68, p = 0.034) and decreased gross motor scores (β = -0.83, p = 0.008), respectively. Moreover, infants of women with high-normal TSH concentrations (3.0-4.0 mIU/L) and low FT4 concentrations were significantly associated with lower gross motor scores (β = -1.19, p = 0.032), while no differences were observed in infants when the mothers had a high-normal TSH concentration and normal FT4 levels. CONCLUSIONS Maternal subclinical hypothyroidism is associated with decreased receptive communication scores in infants at 1 year of age. In addition, maternal TSH concentration greater than 4.0 mIU/L and maternal isolated hypothyroxinemia are associated with impaired gross motor ability of infants, especially in infants of women with high-normal TSH concentrations (3.0-4.0 mIU/L).
Collapse
Affiliation(s)
- Qingru Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Siyuan Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology and Nutritional Science, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xia Chi
- Department of Child Health Care, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Tao Jiang, ; Guoying Zhang,
| | - Guoying Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Tao Jiang, ; Guoying Zhang,
| |
Collapse
|