1
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
2
|
Vacy K, Thomson S, Moore A, Eisner A, Tanner S, Pham C, Saffery R, Mansell T, Burgner D, Collier F, Vuillermin P, O'Hely M, Boon WC, Meikle P, Burugupalli S, Ponsonby AL. Cord blood lipid correlation network profiles are associated with subsequent attention-deficit/hyperactivity disorder and autism spectrum disorder symptoms at 2 years: a prospective birth cohort study. EBioMedicine 2024; 100:104949. [PMID: 38199043 PMCID: PMC10825361 DOI: 10.1016/j.ebiom.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions with early life origins. Alterations in blood lipids have been linked to ADHD and ASD; however, prospective early life data are limited. This study examined (i) associations between the cord blood lipidome and ADHD/ASD symptoms at 2 years of age, (ii) associations between prenatal and perinatal predictors of ADHD/ASD symptoms and cord blood lipidome, and (iii) mediation by the cord blood lipidome. METHODS From the Barwon Infant Study cohort (1074 mother-child pairs, 52.3% male children), child circulating lipid levels at birth were analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. These were clustered into lipid network modules via Weighted Gene Correlation Network Analysis. Associations between lipid modules and ADHD/ASD symptoms at 2 years, assessed with the Child Behavior Checklist, were explored via linear regression analyses. Mediation analysis identified indirect effects of prenatal and perinatal risk factors on ADHD/ASD symptoms through lipid modules. FINDINGS The acylcarnitine lipid module is associated with both ADHD and ASD symptoms at 2 years of age. Risk factors of these outcomes such as low income, Apgar score, and maternal inflammation were partly mediated by higher birth acylcarnitine levels. Other cord blood lipid profiles were also associated with ADHD and ASD symptoms. INTERPRETATION This study highlights that elevated cord blood birth acylcarnitine levels, either directly or as a possible marker of disrupted cell energy metabolism, are on the causal pathway of prenatal and perinatal risk factors for ADHD and ASD symptoms in early life. FUNDING The foundational work and infrastructure for the BIS was sponsored by the Murdoch Children's Research Institute, Deakin University, and Barwon Health. Subsequent funding was secured from the Minderoo Foundation, the European Union's Horizon 2020 research and innovation programme (ENDpoiNTs: No 825759), National Health and Medical Research Council of Australia (NHMRC) and Agency for Science, Technology and Research Singapore [APP1149047], The William and Vera Ellen Houston Memorial Trust Fund (via HOMER Hack), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, Geelong Medical and Hospital Benefits Association, Vanguard Investments Australia Ltd, the Percy Baxter Charitable Trust, and Perpetual Trustees.
Collapse
Affiliation(s)
- Kristina Vacy
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville 3010, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Archer Moore
- Melbourne School of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Sam Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia; Department of Paediatrics, Monash University, Clayton 3168, Australia
| | - Fiona Collier
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Peter Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
3
|
Küry S, Stanton JE, van Woerden G, Hsieh TC, Rosenfelt C, Scott-Boyer MP, Most V, Wang T, Papendorf JJ, de Konink C, Deb W, Vignard V, Studencka-Turski M, Besnard T, Hajdukowicz AM, Thiel F, Möller S, Florenceau L, Cuinat S, Marsac S, Wentzensen I, Tuttle A, Forster C, Striesow J, Golnik R, Ortiz D, Jenkins L, Rosenfeld JA, Ziegler A, Houdayer C, Bonneau D, Torti E, Begtrup A, Monaghan KG, Mullegama SV, Volker-Touw CMLN, van Gassen KLI, Oegema R, de Pagter M, Steindl K, Rauch A, Ivanovski I, McDonald K, Boothe E, Dauber A, Baker J, Fabie NAV, Bernier RA, Turner TN, Srivastava S, Dies KA, Swanson L, Costin C, Jobling RK, Pappas J, Rabin R, Niyazov D, Tsai ACH, Kovak K, Beck DB, Malicdan M, Adams DR, Wolfe L, Ganetzky RD, Muraresku C, Babikyan D, Sedláček Z, Hančárová M, Timberlake AT, Al Saif H, Nestler B, King K, Hajianpour MJ, Costain G, Prendergast D, Li C, Geneviève D, Vitobello A, Sorlin A, Philippe C, Harel T, Toker O, Sabir A, Lim D, Hamilton M, Bryson L, Cleary E, Weber S, Hoffman TL, Cueto-González AM, Tizzano EF, Gómez-Andrés D, Codina-Solà M, Ververi A, Pavlidou E, Lambropoulos A, Garganis K, Rio M, Levy J, Jurgensmeyer S, McRae AM, Lessard MK, D'Agostino MD, De Bie I, Wegler M, Jamra RA, Kamphausen SB, Bothe V, Busch LM, Völker U, Hammer E, Wende K, Cogné B, Isidor B, Meiler J, Bosc-Rosati A, Marcoux J, Bousquet MP, Poschmann J, Laumonnier F, Hildebrand PW, Eichler EE, McWalter K, Krawitz PM, Droit A, Elgersma Y, Grabrucker AM, Bolduc FV, Bézieau S, Ebstein F, Krüger E. Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.13.24301174. [PMID: 38293138 PMCID: PMC10827246 DOI: 10.1101/2024.01.13.24301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.
Collapse
|
4
|
Veneruso I, Ranieri A, Falcone N, Tripodi L, Scarano C, La Monica I, Pastore L, Lombardo B, D’Argenio V. The Potential Usefulness of the Expanded Carrier Screening to Identify Hereditary Genetic Diseases: A Case Report from Real-World Data. Genes (Basel) 2023; 14:1651. [PMID: 37628702 PMCID: PMC10454493 DOI: 10.3390/genes14081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Expanded carrier screening (ECS) means a comprehensive genetic analysis to evaluate an individual's carrier status. ECS is becoming more frequently used, thanks to the availability of techniques such as next generation sequencing (NGS) and array comparative genomic hybridization (aCGH), allowing for extensive genome-scale analyses. Here, we report the case of a couple who underwent ECS for a case of autism spectrum disorder in the male partner family. aCGH and whole-exome sequencing (WES) were performed in the couple. aCGH analysis identified in the female partner two deletions involving genes associated to behavioral and neurodevelopment disorders. No clinically relevant alterations were identified in the husband. Interestingly, WES analysis identified in the male partner a pathogenic variant in the LPL gene that is emerging as a novel candidate gene for autism. This case shows that ECS may be useful in clinical contexts, especially when both the partners are analyzed before conception, thus allowing the estimation of their risk to transmit an inherited condition. On the other side, there are several concerns related to possible incidental findings and difficult-to-interpret results. Once these limits are defined by the establishment of specific guidelines, ECS may have a greater diffusion.
Collapse
Affiliation(s)
- Iolanda Veneruso
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
| | - Noemi Falcone
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Carmela Scarano
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
5
|
Arora A, Becker M, Marques C, Oksanen M, Li D, Mastropasqua F, Watts ME, Arora M, Falk A, Daub CO, Lanekoff I, Tammimies K. Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep 2023; 13:10519. [PMID: 37386098 PMCID: PMC10310850 DOI: 10.1038/s41598-023-37488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Research continues to identify genetic variation, environmental exposures, and their mixtures underlying different diseases and conditions. There is a need for screening methods to understand the molecular outcomes of such factors. Here, we investigate a highly efficient and multiplexable, fractional factorial experimental design (FFED) to study six environmental factors (lead, valproic acid, bisphenol A, ethanol, fluoxetine hydrochloride and zinc deficiency) and four human induced pluripotent stem cell line derived differentiating human neural progenitors. We showcase the FFED coupled with RNA-sequencing to identify the effects of low-grade exposures to these environmental factors and analyse the results in the context of autism spectrum disorder (ASD). We performed this after 5-day exposures on differentiating human neural progenitors accompanied by a layered analytical approach and detected several convergent and divergent, gene and pathway level responses. We revealed significant upregulation of pathways related to synaptic function and lipid metabolism following lead and fluoxetine exposure, respectively. Moreover, fluoxetine exposure elevated several fatty acids when validated using mass spectrometry-based metabolomics. Our study demonstrates that the FFED can be used for multiplexed transcriptomic analyses to detect relevant pathway-level changes in human neural development caused by low-grade environmental risk factors. Future studies will require multiple cell lines with different genetic backgrounds for characterising the effects of environmental exposures in ASD.
Collapse
Affiliation(s)
- Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Cátia Marques
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Michelle Evelyn Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Division of Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Carsten Oliver Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
6
|
Yap CX, Henders AK, Alvares GA, Giles C, Huynh K, Nguyen A, Wallace L, McLaren T, Yang Y, Hernandez LM, Gandal MJ, Hansell NK, Cleary D, Grove R, Hafekost C, Harun A, Holdsworth H, Jellett R, Khan F, Lawson LP, Leslie J, Levis Frenk M, Masi A, Mathew NE, Muniandy M, Nothard M, Miller JL, Nunn L, Strike LT, Cadby G, Moses EK, de Zubicaray GI, Thompson PM, McMahon KL, Wright MJ, Visscher PM, Dawson PA, Dissanayake C, Eapen V, Heussler HS, Whitehouse AJO, Meikle PJ, Wray NR, Gratten J. Interactions between the lipidome and genetic and environmental factors in autism. Nat Med 2023; 29:936-949. [PMID: 37076741 PMCID: PMC10115648 DOI: 10.1038/s41591-023-02271-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/22/2023] [Indexed: 04/21/2023]
Abstract
Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.
Collapse
Affiliation(s)
- Chloe X Yap
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia.
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Gail A Alvares
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Tiana McLaren
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Yuanhao Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Leanna M Hernandez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children's Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Narelle K Hansell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominique Cleary
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Rachel Grove
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Faculty of Health, University of Technology Sydney, Sydney, New South Wales, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Claire Hafekost
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Alexis Harun
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Helen Holdsworth
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Rachel Jellett
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Feroza Khan
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lauren P Lawson
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, Victoria, Australia
| | - Jodie Leslie
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Mira Levis Frenk
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Anne Masi
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nisha E Mathew
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Melanie Muniandy
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Michaela Nothard
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Jessica L Miller
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lorelle Nunn
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Gemma Cadby
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Eric K Moses
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Cheryl Dissanayake
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Valsamma Eapen
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South West Sydney, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Helen S Heussler
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Child Development Program, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Andrew J O Whitehouse
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacob Gratten
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia.
| |
Collapse
|
7
|
Dhanasekara CS, Ancona D, Cortes L, Hu A, Rimu AH, Robohm-Leavitt C, Payne D, Wakefield SM, Mastergeorge AM, Kahathuduwa CN. Association Between Autism Spectrum Disorders and Cardiometabolic Diseases: A Systematic Review and Meta-analysis. JAMA Pediatr 2023; 177:248-257. [PMID: 36716018 PMCID: PMC9887535 DOI: 10.1001/jamapediatrics.2022.5629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 01/31/2023]
Abstract
Importance Although the increased risk of obesity among individuals with autism has been well established, evidence on the association between autism, cardiometabolic disorders, and obesity remains inconclusive. Objective To examine the association between autism spectrum disorders and cardiometabolic diseases in a systematic review and meta-analysis. Data Sources PubMed, Scopus, Web of Science, ProQuest, Embase, and Ovid databases were searched from inception through July 31, 2022, without restrictions on date of publication or language. Study Selection Observational or baseline data of interventional studies reporting the prevalence of cardiometabolic risk factors (ie, diabetes, hypertension, dyslipidemia, atherosclerotic macrovascular disease) among children and/or adults with autism and matched with participants without autism were included. Data Extraction and Synthesis Screening, data extraction, and quality assessment were performed independently by at least 2 researchers. DerSimonian-Laird random-effects meta-analyses were performed using the meta package in R. Main Outcomes and Measures Relative risks (RRs) of diabetes, hypertension, dyslipidemia, and atherosclerotic macrovascular disease among individuals with autism were the primary outcomes. Secondary outcomes included the RR of type 1 and type 2 diabetes, heart disease, stroke, and peripheral vascular disease. Results A total of 34 studies were evaluated and included 276 173 participants with autism and 7 733 306 participants without autism (mean [range] age, 31.2 [3.8-72.8] years; pooled proportion [range] of female individuals, 47% [0-66%]). Autism was associated with greater risks of developing diabetes overall (RR, 1.57; 95% CI, 1.23-2.01; 20 studies), type 1 diabetes (RR, 1.64; 95% CI, 1.06-2.54; 6 studies), and type 2 diabetes (RR, 2.47; 95% CI, 1.30-4.70; 3 studies). Autism was also associated with increased risks of dyslipidemia (RR, 1.69; 95% CI, 1.20-2.40; 7 studies) and heart disease (RR, 1.46; 95% CI, 1.42-1.50; 3 studies). Yet, there was no significantly associated increased risk of hypertension and stroke with autism (RR, 1.22; 95% CI, 0.98-1.52; 12 studies; and RR, 1.19; 95% CI, 0.63-2.24; 4 studies, respectively). Meta-regression analyses revealed that children with autism were at a greater associated risk of developing diabetes and hypertension compared with adults. High between-study heterogeneity was a concern for several meta-analyses. Conclusions and Relevance Results suggest that the associated increased risk of cardiometabolic diseases should prompt clinicians to vigilantly monitor individuals with autism for potential contributors, signs of cardiometabolic disease, and their complications.
Collapse
Affiliation(s)
- Chathurika S. Dhanasekara
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Dominic Ancona
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Leticia Cortes
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Amy Hu
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Afrina H. Rimu
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Christina Robohm-Leavitt
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Drew Payne
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Sarah M. Wakefield
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Ann M. Mastergeorge
- Department of Human Development and Family Sciences, College of Human Sciences, Texas Tech University, Lubbock
| | - Chanaka N. Kahathuduwa
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| |
Collapse
|
8
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:303-318. [PMID: 37076279 DOI: 10.1134/s0006297923030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as "the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment" is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.
Collapse
|
9
|
Freel BA, Kelvington BA, Sengupta S, Mukherjee M, Francis KR. Sterol dysregulation in Smith-Lemli-Opitz syndrome causes astrocyte immune reactivity through microglia crosstalk. Dis Model Mech 2022; 15:dmm049843. [PMID: 36524414 PMCID: PMC10655813 DOI: 10.1242/dmm.049843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Owing to the need for de novo cholesterol synthesis and cholesterol-enriched structures within the nervous system, cholesterol homeostasis is critical to neurodevelopment. Diseases caused by genetic disruption of cholesterol biosynthesis, such as Smith-Lemli-Opitz syndrome, which is caused by mutations in 7-dehydrocholesterol reductase (DHCR7), frequently result in broad neurological deficits. Although astrocytes regulate multiple neural processes ranging from cell migration to network-level communication, immunological activation of astrocytes is a hallmark pathology in many diseases. However, the impact of DHCR7 on astrocyte function and immune activation remains unknown. We demonstrate that astrocytes from Dhcr7 mutant mice display hallmark signs of reactivity, including increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Transcript analyses demonstrate extensive Dhcr7 astrocyte immune activation, hyper-responsiveness to glutamate stimulation and altered calcium flux. We further determine that the impacts of Dhcr7 are not astrocyte intrinsic but result from non-cell-autonomous effects of microglia. Our data suggest that astrocyte-microglia crosstalk likely contributes to the neurological phenotypes observed in disorders of cholesterol biosynthesis. Additionally, these data further elucidate a role for cholesterol metabolism within the astrocyte-microglia immune axis, with possible implications in other neurological diseases.
Collapse
Affiliation(s)
- Bethany A. Freel
- Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Benjamin A. Kelvington
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sonali Sengupta
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Malini Mukherjee
- Functional Genomics and Bioinformatics Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kevin R. Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|