1
|
Bizup B, Tzounopoulos T. On the genesis and unique functions of zinc neuromodulation. J Neurophysiol 2024; 132:1241-1254. [PMID: 39196675 PMCID: PMC11495185 DOI: 10.1152/jn.00285.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
In addition to the essential structural and catalytic functions of zinc, evolution has adopted synaptic zinc as a neuromodulator. In the brain, synaptic zinc is released primarily from glutamatergic neurons, notably in the neocortex, hippocampus, amygdala, and auditory brainstem. In these brain areas, synaptic zinc is essential for neuronal and sensory processing fine-tuning. But what niche does zinc fill in neural signaling that other neuromodulators do not? Here, we discuss the evolutionary history of zinc as a signaling agent and its eventual adoption as an essential neuromodulator in the mammalian brain. We then attempt to describe the unique roles that zinc has carved out of the vast and diverse landscape of neuromodulators.
Collapse
Affiliation(s)
- Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Keighron JD, Bonaventura J, Li Y, Yang JW, DeMarco EM, Hersey M, Cao J, Sandtner W, Michaelides M, Sitte HH, Newman AH, Tanda G. Interactions of calmodulin kinase II with the dopamine transporter facilitate cocaine-induced enhancement of evoked dopamine release. Transl Psychiatry 2023; 13:202. [PMID: 37311803 PMCID: PMC10264427 DOI: 10.1038/s41398-023-02493-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Typical and atypical dopamine uptake inhibitors (DUIs) prefer distinct conformations of the dopamine transporter (DAT) to form ligand-transporter complexes, resulting in markedly different effects on behavior, neurochemistry, and potential for addiction. Here we show that cocaine and cocaine-like typical psychostimulants elicit changes in DA dynamics distinct from those elicited by atypical DUIs, as measured via voltammetry procedures. While both classes of DUIs reduced DA clearance rate, an effect significantly related to their DAT affinity, only typical DUIs elicited a significant stimulation of evoked DA release, an effect unrelated to their DAT affinity, which suggests a mechanism of action other than or in addition to DAT blockade. When given in combination, typical DUIs enhance the stimulatory effects of cocaine on evoked DA release while atypical DUIs blunt them. Pretreatments with an inhibitor of CaMKIIα, a kinase that interacts with DAT and that regulates synapsin phosphorylation and mobilization of reserve pools of DA vesicles, blunted the effects of cocaine on evoked DA release. Our results suggest a role for CaMKIIα in modulating the effects of cocaine on evoked DA release without affecting cocaine inhibition of DA reuptake. This effect is related to a specific DAT conformation stabilized by cocaine. Moreover, atypical DUIs, which prefer a distinct DAT conformation, blunt cocaine's neurochemical and behavioral effects, indicating a unique mechanism underlying their potential as medications for treating psychostimulant use disorder.
Collapse
Affiliation(s)
- Jacqueline D Keighron
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Department of Biological and Chemical Science, New York Institute of Technology, Old Westbury, NY, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Department of Pathology and Experimental Therapeutics, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Yang Li
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Emily M DeMarco
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Melinda Hersey
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Amy Hauck Newman
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Gianluigi Tanda
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
3
|
The Role of Zinc in Modulating Acid-Sensing Ion Channel Function. Biomolecules 2023; 13:biom13020229. [PMID: 36830598 PMCID: PMC9953155 DOI: 10.3390/biom13020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels widely expressed throughout the central and peripheral nervous systems. They are involved in synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in the body, contributes to numerous physiological functions, with neurotransmission being of note. Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been linked to several neurological and psychological disorders, such as Alzheimer's disease, Parkinson's disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the persistence of each of these neurological and psychological disorders. It is critical to understand how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc's structural interactions with ASICs and discusses the potential therapeutic implications zinc may have on neurological and psychological diseases through targeting ASICs.
Collapse
|
4
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|