1
|
Seelemeyer H, Gurr C, Leyhausen J, Berg LM, Pretzsch CM, Schäfer T, Hermila B, Freitag CM, Loth E, Oakley B, Mason L, Buitelaar JK, Beckmann CF, Floris DL, Charman T, Banaschewski T, Jones E, Bourgeron T, Murphy D, Ecker C. Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00379-3. [PMID: 39701384 DOI: 10.1016/j.bpsc.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Autism is accompanied by highly individualized patterns of neurodevelopmental differences in brain anatomy. This variability makes the neuroanatomy of autism inherently difficult to describe at the group level. Here, we examined inter-individual neuroanatomical differences using a dimensional approach that decomposed the domains of social communication and interaction (SCI), restricted and repetitive behaviors (RRB), and atypical sensory processing (ASP) within a neurodiverse study population. Moreover, we aimed to link the resulting neuroanatomical patterns to specific molecular underpinnings. METHODS Neurodevelopmental differences in cortical thickness and surface area were correlated with SCI, RRB and ASP domain scores by regression of a General Linear Model in a large neurodiverse sample of N=288 autistic and N=140 non-autistic individuals, aged 6-30, recruited within the EU-AIMS Longitudinal European Autism Project (LEAP). The domain-specific patterns of neuroanatomical variability were subsequently correlated with cortical gene expression profiles via the Allan Human Brain Atlas. RESULTS Across groups, behavioral variations in SCI, RRB and ASP were associated with interindividual differences in CT and SA in partially non-overlapping fronto-parietal, temporal, and occipital networks. These domain-specific imaging patterns were enriched for genes (i) differentially expressed in autism, (ii) mediating typical brain development, and that are (iii) associated with specific cortical cell types. Many of these genes were implicated in pathways governing synaptic structure and function. CONCLUSIONS Our study corroborates the close relationship between neuroanatomical variation and interindividual differences in autism-related symptoms and traits within the general framework of neurodiversity, and links domain-specific patterns of neuroanatomical differences to putative molecular underpinnings.
Collapse
Affiliation(s)
- Hanna Seelemeyer
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany; Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany.
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany; Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Johanna Leyhausen
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany; Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany; Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Lisa M Berg
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany; Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany; Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, SE5 8AF, UK
| | - Tim Schäfer
- Fries Lab, Ernst Strüngmann Institut (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Bassem Hermila
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany; Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, SE5 8AF, UK
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, SE5 8AF, UK
| | - Luke Mason
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, SE5 8AF, UK
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, 6525 EN Nijmegen, The Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, 6525 EN Nijmegen, The Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, 6525 EN Nijmegen, The Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, J5, 68159 Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, 68159 Mannheim, Germany
| | - Emily Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, 32 Torrington Square, London WC1E 7JL, UK
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, 25 Rue du Docteur Roux, Paris Cedex 15, France
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, SE5 8AF, UK
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany; Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, SE5 8AF, UK
| |
Collapse
|
2
|
Pretzsch CM, Arenella M, Lerch JP, Lombardo MV, Beckmann C, Schaefer T, Leyhausen J, Gurr C, Bletsch A, Berg LM, Seelemeyer H, Floris DL, Oakley B, Loth E, Bourgeron T, Charman T, Buitelaar J, McAlonan G, Murphy D, Ecker C. Patterns of Brain Maturation in Autism and Their Molecular Associations. JAMA Psychiatry 2024; 81:1253-1264. [PMID: 39412777 PMCID: PMC11581727 DOI: 10.1001/jamapsychiatry.2024.3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 11/24/2024]
Abstract
Importance In the neurotypical brain, regions develop in coordinated patterns, providing a fundamental scaffold for brain function and behavior. Whether altered patterns contribute to clinical profiles in neurodevelopmental conditions, including autism, remains unclear. Objectives To examine if, in autism, brain regions develop differently in relation to each other and how these differences are associated with molecular/genomic mechanisms and symptomatology. Design, Setting, and Participants This study was an analysis of one the largest deep-phenotyped, case-control, longitudinal (2 assessments separated by approximately 12-24 months) structural magnetic resonance imaging and cognitive-behavioral autism datasets (EU-AIMS Longitudinal European Autism Project [LEAP]; study dates, February 2014-November 2017) and an out-of-sample validation in the Brain Development Imaging Study (BrainMapASD) independent cohort. Analyses were performed during the 2022 to 2023 period. This multicenter study included autistic and neurotypical children, adolescents, and adults. Autistic participants were included if they had an existing autism diagnosis (DSM-IV/International Statistical Classification of Diseases and Related Health Problems, Tenth Revision or DSM-5 criteria). Autistic participants with co-occurring psychiatric conditions (except psychosis/bipolar disorder) and those taking regular medications were included. Exposures Neuroanatomy of neurotypical and autistic participants. Main Outcomes and Measures Intraindividual changes in surface area and cortical thickness over time, analyzed via surface-based morphometrics. Results A total of 386 individuals in the LEAP cohort (6-31 years at first visit; 214 autistic individuals, mean [SD] age, 17.3 [5.4] years; 154 male [72.0%] and 172 neurotypical individuals, mean [SD] age, 16.35 [5.7] years; 108 male [62.8%]) and 146 individuals in the BrainMapASD cohort (11-18 years at first visit; 49 autistic individuals, mean [SD] age, 14.31 [2.4] years; 42 male [85.7%] and 97 neurotypical individuals, mean [SD] age, 14.10 [2.5] years; 58 male [59.8%]). Maturational between-group differences in cortical thickness and surface area were established that were mostly driven by sensorimotor regions (eg, across features, absolute loadings for early visual cortex ranged from 0.07 to 0.11, whereas absolute loadings for dorsolateral prefrontal cortex ranged from 0.005 to 0.06). Neurodevelopmental differences were transcriptomically enriched for genes expressed in several cell types and during various neurodevelopmental stages, and autism candidate genes (eg, downregulated genes in autism, including those regulating synaptic transmission; enrichment odds ratio =3.7; P =2.6 × -10). A more neurotypical, less autismlike maturational profile was associated with fewer social difficulties and more typical sensory processing (false discovery rate P <.05; Pearson r ≥0.17). Results were replicated in the independently collected BrainMapASD cohort. Conclusions and Relevance Results of this case-control study suggest that the coordinated development of brain regions was altered in autism, involved a complex interplay of temporally sensitive molecular mechanisms, and may be associated with both lower-order (eg, sensory) and higher-order (eg, social) clinical features of autism. Thus, examining maturational patterns may provide an analytic framework to study the neurobiological origins of clinical profiles in neurodevelopmental/mental health conditions.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Martina Arenella
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Christian Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim Schaefer
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
| | - Johanna Leyhausen
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Anke Bletsch
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Lisa M. Berg
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Hanna Seelemeyer
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Dorothea L. Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Alayoubi AM, Iqbal M, Aman H, Hashmi JA, Alayadhi L, Al-Regaiey K, Basit S. Loss-of-function variant in spermidine/spermine N1-acetyl transferase like 1 (SATL1) gene as an underlying cause of autism spectrum disorder. Sci Rep 2024; 14:5765. [PMID: 38459140 PMCID: PMC10923806 DOI: 10.1038/s41598-024-56253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complicated, lifelong neurodevelopmental disorder affecting verbal and non-verbal communication and social interactions. ASD signs and symptoms appear early in development before the age of 3 years. It is unlikely for a person to acquire autism after a period of normal development. However, we encountered an 8-year-old child who developed ASD later in life although his developmental milestones were normal at the beginning of life. Sequencing the complete coding part of the genome identified a hemizygous nonsense mutation (NM_001367857.2):c.1803C>G; (p.Tyr601Ter) in the gene (SATL1) encoding spermidine/spermine N1-acetyl transferase like 1. Screening an ASD cohort of 28 isolated patients for the SATL1 gene identified another patient with the same variant. Although SATL1 mutations have not been associated with any human diseases, our data suggests that a mutation in SATL1 is the underlying cause of ASD in our cases. In mammals, mutations in spermine synthase (SMS), an enzyme needed for the synthesis of spermidine polyamine, have been reported in a syndromic form of the X-linked mental retardation. Moreover, SATL1 gene expression studies showed a relatively higher expression of SATL1 transcripts in ASD related parts of the brain including the cerebellum, amygdala and frontal cortex. Additionally, spermidine has been characterized in the context of learning and memory and supplementations with spermidine increase neuroprotective effects and decrease age-induced memory impairment. Furthermore, spermidine biosynthesis is required for spontaneous axonal regeneration and prevents α-synuclein neurotoxicity in invertebrate models. Thus, we report, for the first time, that a mutation in the SATL1 gene could be a contributing factor in the development of autistic symptoms in our patients.
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Basic Medical Sciences, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia
| | - Muhammad Iqbal
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hassan Aman
- Al-Amal Psychiatry Hospital Medina, Almadinah Almunawwarrah, Saudi Arabia
| | - Jamil A Hashmi
- Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarrah, Saudi Arabia
| | - Laila Alayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sulman Basit
- Department of Basic Medical Sciences, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia.
- Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarrah, Saudi Arabia.
- Department of Basic Medical Sciences, Taibah University Medina, Almadinah Almunawwarrah, Saudi Arabia.
| |
Collapse
|
4
|
Mei T, Llera A, Forde NJ, van Rooij D, Floris DL, Beckmann CF, Buitelaar JK. Gray matter covariations in autism: out-of-sample replication using the ENIGMA autism cohort. Mol Autism 2024; 15:3. [PMID: 38229192 PMCID: PMC10792893 DOI: 10.1186/s13229-024-00583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (henceforth autism) is a complex neurodevelopmental condition associated with differences in gray matter (GM) volume covariations, as reported in our previous study of the Longitudinal European Autism Project (LEAP) data. To make progress on the identification of potential neural markers and to validate the robustness of our previous findings, we aimed to replicate our results using data from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) autism working group. METHODS We studied 781 autistic and 927 non-autistic individuals (6-30 years, IQ ≥ 50), across 37 sites. Voxel-based morphometry was used to quantify GM volume as before. Subsequently, we used spatial maps of the two autism-related independent components (ICs) previously identified in the LEAP sample as templates for regression analyses to separately estimate the ENIGMA-participant loadings to each of these two ICs. Between-group differences in participants' loadings on each component were examined, and we additionally investigated the relation between participant loadings and autistic behaviors within the autism group. RESULTS The two components of interest, previously identified in the LEAP dataset, showed significant between-group differences upon regressions into the ENIGMA cohort. The associated brain patterns were consistent with those found in the initial identification study. The first IC was primarily associated with increased volumes of bilateral insula, inferior frontal gyrus, orbitofrontal cortex, and caudate in the autism group relative to the control group (β = 0.129, p = 0.013). The second IC was related to increased volumes of the bilateral amygdala, hippocampus, and parahippocampal gyrus in the autism group relative to non-autistic individuals (β = 0.116, p = 0.024). However, when accounting for the site-by-group interaction effect, no significant main effect of the group can be identified (p > 0.590). We did not find significant univariate association between the brain measures and behavior in autism (p > 0.085). LIMITATIONS The distributions of age, IQ, and sex between LEAP and ENIGMA are statistically different from each other. Owing to limited access to the behavioral data of the autism group, we were unable to further our understanding of the neural basis of behavioral dimensions of the sample. CONCLUSIONS The current study is unable to fully replicate the autism-related brain patterns from LEAP in the ENIGMA cohort. The diverse group effects across ENIGMA sites demonstrate the challenges of generalizing the average findings of the GM covariation patterns to a large-scale cohort integrated retrospectively from multiple studies. Further analyses need to be conducted to gain additional insights into the generalizability of these two GM covariation patterns.
Collapse
Affiliation(s)
- Ting Mei
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands.
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands
- Department of Psychology, Utrecht University, Utrecht, The Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, Han W, Jung S. Nuanced contribution of gut microbiome in the early brain development of mice. Gut Microbes 2023; 15:2283911. [PMID: 38010368 PMCID: PMC10768743 DOI: 10.1080/19490976.2023.2283911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Hae Ung Lee
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
| | - Han-Gyu Bae
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sven Pettersson
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weiping Han
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
6
|
Lee S, Cheong Y, Ryu Y, Kosaka H, Jung M. Vasotocin receptor gene genotypes moderate the relationship between cortical thickness and sensory processing. Transl Psychiatry 2023; 13:356. [PMID: 37990008 PMCID: PMC10663457 DOI: 10.1038/s41398-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Sensory processing is the process by which the central nervous system gathers, interprets, and regulates sensory stimuli in response to environmental cues. However, our understanding of the genetic factors and neuroanatomical correlations that influence sensory processing is limited. The vasotocin system modulates sensory input responsiveness, making it a potential candidate for further investigation. Additionally, human neuroimaging studies have demonstrated that the ability to modulate sensory stimuli is related to neuroanatomical features such as cortical thickness. Therefore, this study aimed to examine the relationship between functional polymorphisms in vasotocin receptor (VTR) genes, sensory profiles, and neuroanatomical correlations. We used structural magnetic resonance imaging (MRI) and the Adolescent/Adult Sensory Profile (AASP) questionnaire in 98 healthy adult participants to assess sensory processing and identified seven single nucleotide polymorphisms. We found that A-allele carriers of rs1042615 in VTR had higher scores for "sensory sensitivity" and "sensation avoiding". Moreover, higher scores for three AASP subscales were associated with decreased cortical thickness in various regions, including the right precentral, paracentral, and fusiform gyri, as well as bilateral inferior temporal gyri. This study sheds light on the potential role of genetic variations in the VTR in modulating sensory processing and correlation with cortical thickness which has future implications for better understanding sensory abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Seonkyoung Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yongjeon Cheong
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yeseul Ryu
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Eiheiji, Japan.
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Ong LT, Fan SWD. Morphological and Functional Changes of Cerebral Cortex in Autism Spectrum Disorder. INNOVATIONS IN CLINICAL NEUROSCIENCE 2023; 20:40-47. [PMID: 38193097 PMCID: PMC10773605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by early-onset impairments in socialization, communication, repetitive behaviors, and restricted interests. ASD exhibits considerable heterogeneity, with clinical presentations varying across individuals and age groups. The pathophysiology of ASD is hypothesized to be due to abnormal brain development influenced by a combination of genetic and environmental factors. One of the most consistent morphological parameters for assessing the abnormal brain structures in patients with ASD is cortical thickness. Studies have shown changes in the cortical thickness within the frontal, temporal, parietal, and occipital lobes of individuals with ASD. These changes in cortical thickness often correspond to specific clinical features observed in individuals with ASD. Furthermore, the aberrant brain anatomical features and cortical thickness alterations may lead to abnormal brain connectivity and synaptic structure. Additionally, ASD is associated with cortical hyperplasia in early childhood, followed by a cortical plateau and subsequent decline in later stages of development. However, research in this area has yielded contradictory findings regarding the cortical thickness across various brain regions in ASD.
Collapse
Affiliation(s)
- Leong Tung Ong
- Both authors are with Faculty of Medicine, University of Malaya in Kuala Lumpur, Malaysia
| | - Si Wei David Fan
- Both authors are with Faculty of Medicine, University of Malaya in Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Yamashita M, Kagitani-Shimono K, Hirano Y, Hamatani S, Nishitani S, Yao A, Kurata S, Kosaka H, Jung M, Yoshida T, Sasaki T, Matsumoto K, Kato Y, Nakanishi M, Tachibana M, Mohri I, Tsuchiya KJ, Tsujikawa T, Okazawa H, Shimizu E, Taniike M, Tomoda A, Mizuno Y. Child Developmental MRI (CDM) project: protocol for a multi-centre, cross-sectional study on elucidating the pathophysiology of attention-deficit/hyperactivity disorder and autism spectrum disorder through a multi-dimensional approach. BMJ Open 2023; 13:e070157. [PMID: 37355265 PMCID: PMC10314540 DOI: 10.1136/bmjopen-2022-070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
INTRODUCTION Neuroimaging studies on attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have demonstrated differences in extensive brain structure, activity and network. However, there remains heterogeneity and inconsistency across these findings, presumably because of the diversity of the disorders themselves, small sample sizes, and site and parameter differences in MRI scanners, and their overall pathogenesis remains unclear. To address these gaps in the literature, we will apply the travelling-subject approach to correct site differences in MRI scanners and clarify brain structure and network characteristics of children with ADHD and ASD using large samples collected in a multi-centre collaboration. In addition, we will investigate the relationship between these characteristics and genetic, epigenetic, biochemical markers, and behavioural and psychological measures. METHODS AND ANALYSIS We will collect resting-state functional MRI (fMRI) and T1-weighted and diffusion-weighted MRI data from 15 healthy adults as travelling subjects and 300 children (ADHD, n=100; ASD, n=100; and typical development, n=100) with multi-dimensional assessments. We will also apply data from more than 1000 samples acquired in our previous neuroimaging studies on ADHD and ASD. ETHICS AND DISSEMINATION The study protocol has been approved by the Research Ethics Committee of the University of Fukui Hospital (approval no: 20220601). Our study findings will be submitted to scientific peer-reviewed journals and conferences.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiyuki Hirano
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Sayo Hamatani
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shota Nishitani
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Akiko Yao
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
| | - Sawa Kurata
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Hirotaka Kosaka
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Korea (the Republic of)
| | - Tokiko Yoshida
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Tsuyoshi Sasaki
- Department of Child Psychiatry and Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoko Kato
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mariko Nakanishi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Tachibana
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikuko Mohri
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji J Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Centre, University of Fukui, Fukui, Japan
| | - Eiji Shimizu
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akemi Tomoda
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Yoshifumi Mizuno
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
9
|
Leisman G, Melillo R, Melillo T. Prefrontal Functional Connectivities in Autism Spectrum Disorders: A Connectopathic Disorder Affecting Movement, Interoception, and Cognition. Brain Res Bull 2023; 198:65-76. [PMID: 37087061 DOI: 10.1016/j.brainresbull.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The prefrontal cortex is included in a neuronal system that includes the basal ganglia, the thalamus, and the cerebellum. Most of the higher and more complex motor, cognitive, and emotional behavioral functions are thought to be found primarily in the frontal lobes. Insufficient connectivity between the medial prefrontal cortex (mPFC) and other regions of the brain that are distant from each other involved in top-down information processing rely on the global integration of data from multiple input sources and enhance low level perception processes (bottom-up information processing). The reduced deactivation in mPFC and in the rest of the Default Network during global task processing is consistent with the integrative modulatory role served by the mPFC. We stress the importance of understanding the degree to which sensory and movement anomalies in individuals with autism spectrum disorder (ASD) can contribute to social impairment. Further investigation on the neurobiological basis of sensory symptoms and its relationship to other clinical features found in ASD is required Treatment perhaps should not be first behaviorally based but rather based on facilitating sensory motor development.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel; University of the Medical Sciences of Havana, Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Ty Melillo
- Northeast College of the Health Sciencs, Seneca Falls, NY USA
| |
Collapse
|
10
|
Zayan U, Caccialupi Da Prato L, Muscatelli F, Matarazzo V. Modulation of the thermosensory system by oxytocin. Front Mol Neurosci 2023; 15:1075305. [PMID: 36698777 PMCID: PMC9868264 DOI: 10.3389/fnmol.2022.1075305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.
Collapse
|
11
|
Saponaro S, Giuliano A, Bellotti R, Lombardi A, Tangaro S, Oliva P, Calderoni S, Retico A. Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset. Neuroimage Clin 2022; 35:103082. [PMID: 35700598 PMCID: PMC9198380 DOI: 10.1016/j.nicl.2022.103082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Machine Learning (ML) techniques have been widely used in Neuroimaging studies of Autism Spectrum Disorders (ASD) both to identify possible brain alterations related to this condition and to evaluate the predictive power of brain imaging modalities. The collection and public sharing of large imaging samples has favored an even greater diffusion of the use of ML-based analyses. However, multi-center data collections may suffer the batch effect, which, especially in case of Magnetic Resonance Imaging (MRI) studies, should be curated to avoid confounding effects for ML classifiers and masking biases. This is particularly important in the study of barely separable populations according to MRI data, such as subjects with ASD compared to controls with typical development (TD). Here, we show how the implementation of a harmo- nization protocol on brain structural features unlocks the case-control ML separation capability in the analysis of a multi-center MRI dataset. This effect is demonstrated on the ABIDE data collection, involving subjects encompassing a wide age range. After data harmonization, the overall ASD vs. TD discrimination capability by a Random Forest (RF) classifier improves from a very low performance (AUC = 0.58 ± 0.04) to a still low, but reasonably significant AUC = 0.67 ± 0.03. The performances of the RF classifier have been evaluated also in the age-specific subgroups of children, adolescents and adults, obtaining AUC = 0.62 ± 0.02, AUC = 0.65 ± 0.03 and AUC = 0.69 ± 0.06, respectively. Specific and consistent patterns of anatomical differences related to the ASD condition have been identified for the three different age subgroups.
Collapse
Affiliation(s)
- Sara Saponaro
- University of Pisa, Pisa, Italy; National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Alessia Giuliano
- Medical Physics Department, San Luca Hospital, 55100 Lucca, Italy
| | - Roberto Bellotti
- Physics Department, University of Bari Aldo Moro, Bari, Italy; National Institute of Nuclear Physics (INFN), Bari Division, Bari, Italy
| | - Angela Lombardi
- Physics Department, University of Bari Aldo Moro, Bari, Italy; National Institute of Nuclear Physics (INFN), Bari Division, Bari, Italy.
| | - Sabina Tangaro
- National Institute of Nuclear Physics (INFN), Bari Division, Bari, Italy; Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Piernicola Oliva
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy; National Institute for Nuclear Physics (INFN), Cagliari Division, Cagliari, Italy
| | - Sara Calderoni
- Developmental Psychiatry Unit - IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|