1
|
Zhuo C, Tian H, Zhu J, Fang T, Ping J, Wang L, Sun Y, Cheng L, Chen C, Chen G. Low-dose lithium adjunct to quetiapine improves cognitive task performance in mice with MK801-induced long-term cognitive impairment: Evidence from a pilot study. J Affect Disord 2023; 340:42-52. [PMID: 37506773 DOI: 10.1016/j.jad.2023.07.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Low-dose lithium (LD-Li) has been shown to rescue cognitive impairment in mouse models of short-term mild cognitive impairment, dementia, and schizophrenia. However, few studies have characterized the effects of LD-Li, alone or in conjunction with anti-psychotics, in the mouse model of MK801-induced long term cognitive impairment. METHODS The present study used in vivo Ca2+ imaging and a battery of cognitive function assessments to investigate the long-term effects of LD-Li on cognition in mice exposed to repeated injections of MK801. Prefrontal Ca2+ activity was visualized to estimate alterations in neural activity in the model mice. Pre-pulse inhibition (PPI), novel object recognition (NOR), Morris water maze (MWM), and fear conditioning (FC) tasks were used to characterize cognitive performance; open field activity (OFA) testing was used to observe psychotic symptoms. Two treatment strategies were tested: LD-Li [250 mg/d human equivalent dose (HED)] adjunct to quetiapine (QTP; 600 mg/d HED); and QTP-monotherapy (mt; 600 mg/d HED). RESULTS Compared to the QTP-mt group, the LD-Li + QTP group showed greatly improved cognitive performance on all measures between experimental days 29 and 85. QTP-mt improved behavioral measures compared to untreated controls, but the effects persisted only from day 29 to day 43. These data suggest that LD-Li + QTP is superior to QTP-mt for improving long-term cognitive impairments in the MK801 mouse model. LIMITATIONS There is no medical consensus regarding lithium use in patients with schizophrenia. CONCLUSION More pre-clinical and clinical studies are needed to further investigate effective treatment strategies for patients with long-term cognitive impairments, such as chronic schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAC_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Tianjn Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAC_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Jingjing Zhu
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Tao Fang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAC_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Jing Ping
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Tianjn Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Yun Sun
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Tianjn Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Langlang Cheng
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Chunmian Chen
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Guangdong Chen
- Animal Imaging Center (AIC), Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| |
Collapse
|
2
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Lithium produces bi-directionally regulation of mood disturbance, acts synergistically with anti-depressive/-manic agents, and did not deteriorate the cognitive impairment in murine model of bipolar disorder. Transl Psychiatry 2022; 12:359. [PMID: 36055984 PMCID: PMC9440114 DOI: 10.1038/s41398-022-02087-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Lithium (Li) is a well-established mood disorder treatment and may be neuroprotective. Bi-directional regulation (i.e. affecting manic symptoms and depressive symptoms) by Li has not been demonstrated. This study explored: (1) bidirectional regulation by Li in murine models of depression, mania, and bipolar disorder (BP); and (2) potential Li synergism with antidepressant/anti-mania agents. The chronic unpredictable mild stress (CUMS) and ketamine-induced mania (KM) models were used. These methods were used in series to produce a BP model. In vivo two-photon imaging was used to visualize Ca2+ activity in the dorsolateral prefrontal cortex. Depressiveness, mania, and cognitive function were assessed with the forced swim task (FST), open field activity (OFA) task, and novel object recognition task, respectively. In CUMS mice, Ca2+ activity was increased strongly by Li and weakly by lamotrigine (LTG) or valproate (VPA), and LTG co-administration reduced Li and VPA monotherapy effects; depressive immobility in the FST was attenuated by Li or LTG, and attenuated more strongly by LTG-VPA or LTG-Li; novel object exploration was increased strongly by Li and weakly by LTG-Li, and reduced by LTG, VPA, or LTG-VPA. In KM mice, Li or VPA attenuated OFA mania symptoms and normalized Ca2+ activity partially; Li improved cognitive function while VPA exacerbated the KM alteration. These patterns were replicated in the respective BP model phases. Lithium had bi-directional, albeit weak, mood regulation effects and a cognitive supporting effect. Li co-administration with antidepressant/-manic agents enhanced mood-regulatory efficacy while attenuating their cognitive-impairing effects.
Collapse
|
4
|
Chen M, Chen G, Tian H, Dou G, Fang T, Cai Z, Cheng L, Chen S, Chen C, Ping J, Lin X, Chen C, Zhu J, Zhao F, Liu C, Yue W, Song X, Zhuo C. Brain Neural Activity Patterns in an Animal Model of Antidepressant-Induced Manic Episodes. Front Behav Neurosci 2022; 15:771975. [PMID: 35250499 PMCID: PMC8889145 DOI: 10.3389/fnbeh.2021.771975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: In the treatment of patients with bipolar disorder (BP), antidepressant-induced mania is usually observed. The rate of phase switching (from depressive to manic) in these patients exceeds 22%. The exploration of brain activity patterns during an antidepressant-induced manic phase may aid the development of strategies to reduce the phase-switching rate. The use of a murine model to explore brain activity patterns in depressive and manic phases can help us to understandthe pathological features of BP. The novel object recognition preference ratio is used to assess cognitive ability in such models. Objective: To investigate brain Ca2+ activity and behavioral expression in the depressive and manic phases in the same murine model, to aid understanding of brain activity patterns in phase switching in BP. Methods: In vivo two-photon imaging was used to observe brain activity alterations in a murine model in which induce depressive-like and manic-like behaviors were induced sequentially. The immobility time was used to assess depressive-like symptoms and the total distance traveled was used to assess manic-like symptoms. Results: In vivo two-photon imaging revealed significantly reduced brain Ca2+ activity in temporal cortex pyramidal neurons in the depressive phase in mice exposed to chronic unpredictable mild stress compared with naïve controls. The brain Ca2+ activity correlated negatively with the novel object recognition preference ratio within the immobility time. Significantly increased brain Ca2+ activity was observed in the ketamine-induced manic phase. However, this activity did not correlate with the total distance traveled. The novel object recognition preference ratio correlated negatively with the total distance traveled in the manic phase.
Collapse
Affiliation(s)
- Min Chen
- Micro-imaging Center of Psychiatric Disorder, Institute of Mental Health, Jining Medical University, Jining, China
| | - Guangdong Chen
- Center of Psychiatric Animal Model, Institute of Mental Health, Wenzhou Seventh Peoples Hospital, Wenzhou, China
- Department of Psychiatry Medical Center, Wenzhou Seventh Peoples Hospital, Wenzhou, China
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangqian Dou
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Tao Fang
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Ziyao Cai
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Suling Chen
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Ce Chen
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Xiaodong Lin
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chunmian Chen
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jingjing Zhu
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Feifei Zhao
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chuanxin Liu
- Micro-imaging Center of Psychiatric Disorder, Institute of Mental Health, Jining Medical University, Jining, China
| | - Weihua Yue
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- *Correspondence: Chuanjun Zhuo Weihua Yue Xueqin Song
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo Weihua Yue Xueqin Song
| | - Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo Weihua Yue Xueqin Song
| |
Collapse
|