1
|
Zhang F, Li W, Zhang Y, Wang D, Li J, Li C, He L. lncRNA TPRG1-AS1 Screened the Onset of Acute Coronary Syndromes and Predicted Severity and the Occurrence of MACE During Patients' Hospitalization. J Inflamm Res 2023; 16:5385-5391. [PMID: 38026258 PMCID: PMC10661923 DOI: 10.2147/jir.s435945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Acute coronary syndrome (ACS) is a common acute myocardial ischemia syndrome and is one of the death-related causes of cardiovascular diseases. Identifying biomarkers to indicate disease severity and predict the occurrence of major adverse cardiovascular events (MACE) would benefit the clinical prognosis of ACS. This study estimated the expression and significance of lncRNA TPRG1-AS1 in the onset and development of ACS, aiming to explore a novel biomarker for the diagnosis and prognosis of ACS. Patients and Methods A total of 109 ACS patients and 66 patients who received coronary angiography and excluded ACS were enrolled in this study. TPRG1-AS1 in the serum of study subjects was analyzed by PCR. The significance of TPRG1-AS1 in screening ACS was evaluated by ROC analysis. The association of TPRG1-AS1 with the disease severity of ACS was assessed by Pearson correlation analysis with patients' clinicopathological features. The potential of TPRG1-AS1 in predicting the occurrence of MACE was assessed by logistic regression analysis. Results Significant upregulation of TPRG1-AS1 was observed in ACS patients, which served as a risk factor for ACS and distinguish between ACS patients and the normal group. TPRG1-AS1 was positively correlated with Gensini score, cys-C, cTnI, and NT-proBNP levels of ACS patients, which indicate severe development of ACS. Additionally, increasing serum TPRG1-AS1 was associated with the high incidence of MACE during patients' hospitalization and was identified as a risk factor for MACE in ACS patients. Conclusion Upregulated TPRG1-AS1 in ACS served as a diagnostic biomarker and predicted the severe development of patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| | - Wei Li
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| | - Yingying Zhang
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| | - Dong Wang
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| | - Jing Li
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| | - Chengpeng Li
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| | - Liqun He
- Department of Cardiology, Intervention Cardiology Center, Wuhan No.1 Hospital, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
2
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
3
|
Raffee LA, Alawneh KZ, Alshehabat MAM, Haddad H, Jaradat SA. MicroRNA profiling in dogs undergoing induced ischemic heart infarction: An experimental study. Vet World 2023; 16:1319-1324. [PMID: 37577186 PMCID: PMC10421551 DOI: 10.14202/vetworld.2023.1319-1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim MicroRNAs (miRNAs) play an important role in various biological functions. According to many studies, miRNA expression is tissue-specific, strongly controlled throughout embryogenesis, and over- or under-expressed in numerous disorders, including cardiovascular pathologies. This study aimed to screen, characterize, and profile many induced biomarkers (miRNAs) in dog serum before and after experimentally inducing a regional myocardial infarction (MI) by occluding the coronary arteries under general anesthesia. Materials and Methods A preclinical experimental animal study recruited 12 healthy canine dogs. The selected canine dogs were anesthetized with 1 mg/kg xylazine and 15 mg/kg ketamine before undergoing femoral arterial catheterization under fluoroscopic supervision. Commercial assay kits were used to purify total RNA and miRNA before the occlusion and 2 h after the occlusion according to the manufacturer's guidelines, and the samples were stored in RNase/DNase-free water at -80°C. Data were analyzed by GraphPad Prism 5.0 software (GraphPad Prism, San Diego, CA) SPSS, and GenEx software (www.multid.se) or (REST V3). Results Among 325 transcribed genes, 20 were identified in 2 h. After MI, 14 biomarkers were negative, indicating downregulation, and 6 (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, 3-F10) were positive, indicating upregulation. Polymerase chain reaction assay results showed a normalized fold-change in gene expression in the test sample. Fold values >1 represented a biologically significant change. Conclusion Profiling of miRNAs before and after MI in a dog model revealed upregulation of six previously unidentified biomarkers (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, and 3-F10), indicating various miRNA regulatory patterns.
Collapse
Affiliation(s)
- Liqaa A. Raffee
- Department of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Khaled Z. Alawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Musa Ahmed Mohammed Alshehabat
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saied A. Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
4
|
Barbalata T, Scarlatescu AI, Sanda GM, Toma L, Stancu CS, Dorobantu M, Micheu MM, Sima AV, Niculescu LS. Mitochondrial DNA Together with miR-142-3p in Plasma Can Predict Unfavorable Outcomes in Patients after Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms23179947. [PMID: 36077347 PMCID: PMC9456000 DOI: 10.3390/ijms23179947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial infarction is one of the leading causes of death worldwide, despite numerous efforts to find efficient prognostic biomarkers and treatment targets. In the present study, we aimed to assess the potential of six microRNAs known to be involved in cardiovascular diseases, cell-free DNA (cfDNA), and mitochondrial DNA (mtDNA) circulating in plasma to be used as prognostic tools for the occurrence of unfavorable outcomes such as major adverse cardiovascular events (MACE) after acute ST-segment elevation myocardial infarction (STEMI). Fifty STEMI patients were enrolled and monitored for 6 months for the occurrence of MACE. Plasma was collected at three time points: upon admission to hospital (T0), at discharge from hospital (T1), and 6 months post-STEMI (T6). Plasma levels of miR-223-3p, miR-142-3p, miR-155-5p, miR-486-5p, miR-125a-5p, and miR-146a-5p, as well as of cfDNA and mtDNA, were measured by RT-qPCR. Results showed that the levels of all measured miRNAs, as well as of cfDNA and mtDNA, were the most increased at T1, compared to the other two time points. In the plasma of STEMI patients with MACE compared to those without MACE, we determined increased levels of miRNAs, cfDNA, and mtDNA at T1. Hence, we used the levels of all measured parameters at T1 for further statistical analysis. Statistical analysis demonstrated that all six miRNAs and cfDNA plus mtDNA levels, respectively, were associated with MACE. The minimal statistical model that could predict MACE in STEMI patients was the combination of mtDNA and miR-142-3p levels, as evidenced by ROC analysis (AUC = 0.97, p < 0.001). In conclusion, the increased plasma levels of mtDNA, along with miR-142-3p, could be used to predict unfavorable outcomes in STEMI patients.
Collapse
Affiliation(s)
- Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina I. Scarlatescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Gabriela M. Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Camelia S. Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Maria Dorobantu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Miruna M. Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Anca V. Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
- Correspondence: (A.V.S.); (L.S.N.)
| | - Loredan S. Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
- Correspondence: (A.V.S.); (L.S.N.)
| |
Collapse
|
5
|
miR-146a-5p, miR-223-3p and miR-142-3p as Potential Predictors of Major Adverse Cardiac Events in Young Patients with Acute ST Elevation Myocardial Infarction-Added Value over Left Ventricular Myocardial Work Indices. Diagnostics (Basel) 2022; 12:diagnostics12081946. [PMID: 36010296 PMCID: PMC9406722 DOI: 10.3390/diagnostics12081946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Acute ST elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality worldwide despite continuous advances in diagnostic, prognostic and therapeutic methods. Myocardial work (MW) indices and miRNAs have both emerged as potential prognostic markers in acute coronary syndromes in recent years. In this study we aim to assess the prognostic role of myocardial work indices and of a group of miRNAs in young patients with STEMI. We enrolled 50 young patients (<55 years) with STEMI who underwent primary PCI and 10 healthy age-matched controls. We performed standard 2D and 3D echocardiography; we also calculated left ventricular global longitudinal strain (GLS) and the derived myocardial work indices. Using RT-PCR we determined the plasmatic levels of six miRNAs: miR-223-3p, miR-142-3p, miR-146a-5p, miR-125a-5p, miR-486-5p and miR-155-5p. We assessed the occurrence of major adverse cardiac events (MACE) at up to one year after STEMI. Out of 50 patients, 18% experienced MACE at the one-year follow-up. In a Cox univariate logistic regression analysis, myocardial work indices were all significantly associated with MACE. The ROC analysis showed that GWI, GCW and GWE as a group have a better predictive value for MACE than each separately (AUC 0.951, p = 0.000). Patients with higher miRNAs values at baseline (miR-223-3p, miR-142-3p and miR-146a-5p) appear to have a higher probability of developing adverse events at 12 months of follow-up. ROC curves outlined for each variable confirmed their good predictive value (AUC = 0.832, p = 0.002 for miR-223-3p; AUC = 0.732, p = 0.031 for miR-142-3p and AUC = 0.848, p = 0.001 for miR-146a-5p); the group of three miRNAs also proved to have a better predictive value for MACE together than separately (AUC = 0.862). Moreover, adding each of the miRNAs (miR-233, miR-142-3p and miR-146a-5p) or all together over the myocardial work indices in the regression models improved their prognostic value. In conclusion, both myocardial work indices (GWI, GCW and GWE) and three miRNAs (miR-223-3p, miR-142-3p and miR-146a-5p) have the potential to be used as prognostic markers for adverse events after acute myocardial infarction. The combination of miRNAs and MW indices (measured at baseline) rather than each separately has very good predictive value for MACE in young STEMI patients (C-statistic 0.977).
Collapse
|
6
|
Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. J Clin Med 2022; 11:jcm11071763. [PMID: 35407371 PMCID: PMC8999342 DOI: 10.3390/jcm11071763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Micro-ribonucleic acids (microRNAs) are small molecules that take part in the regulation of gene expression. Their function has been extensively investigated in cardiovascular diseases (CVD). Most recently, miRNA expression levels have been suggested as potential biomarkers of platelet reactivity or response to antiplatelet therapy and tools for risk stratification for recurrence of ischemic evens. Among these, miR-126 and miR-223 have been found to be of particular interest. Despite numerous studies aimed at understanding the prognostic value of miRNA levels, no final conclusions have been drawn thus far regarding their utility in clinical practice. The aim of this review is to critically appraise the evidence on the association between miRNA expression, cardiovascular risk and on-treatment platelet reactivity as well as provide insights on future developments in the field.
Collapse
|
7
|
Vavassori C, Cipriani E, Colombo GI. Circulating MicroRNAs as Novel Biomarkers in Risk Assessment and Prognosis of Coronary Artery Disease. Eur Cardiol 2022; 17:e06. [PMID: 35321524 PMCID: PMC8924954 DOI: 10.15420/ecr.2021.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease is among the leading causes of death worldwide. Nevertheless, available cardiovascular risk prediction algorithms still miss a significant portion of individuals at-risk. Thus, the search for novel non-invasive biomarkers to refine cardiovascular risk assessment is both an urgent need and an attractive topic, which may lead to a more accurate risk stratification and/or prognostic score definition for coronary artery disease. A new class of such non-invasive biomarkers is represented by extracellular microRNAs (miRNAs) circulating in the blood. MiRNAs are non-coding RNA of 22–25 nucleotides in length that play a significant role in both cardiovascular physiology and pathophysiology. Given their high stability and conservation, resistance to degradative enzymes, and detectability in body fluids, circulating miRNAs are promising emerging biomarkers, and specific expression patterns have already been associated with a wide range of cardiovascular conditions. In this review, an overview of the role of blood miRNAs in risk assessment and prognosis of coronary artery disease is given.
Collapse
Affiliation(s)
- Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eleonora Cipriani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | |
Collapse
|
8
|
Pedersen OB, Hvas AM, Grove EL, Larsen SB, Pasalic L, Kristensen SD, Nissen PH. Association of whole blood microRNA expression with platelet function and turnover in patients with coronary artery disease. Thromb Res 2022; 211:98-105. [DOI: 10.1016/j.thromres.2022.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
|
9
|
Noncoding RNA Roles in Pharmacogenomic Responses to Aspirin: New Molecular Mechanisms for an Old Drug. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6830560. [PMID: 34926688 PMCID: PMC8677408 DOI: 10.1155/2021/6830560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Aspirin, as one of the most frequently prescribed drugs, can have therapeutic effects on different conditions such as cardiovascular and metabolic disorders and malignancies. The effects of this common cardiovascular drug are exerted through different molecular and cellular pathways. Altered noncoding RNA (ncRNA) expression profiles during aspirin treatments indicate a close relationship between these regulatory molecules and aspirin effects through regulating gene expressions. A better understanding of the molecular networks contributing to aspirin efficacy would help optimize efficient therapies for this very popular drug. This review is aimed at discussing and highlighting the identified interactions between aspirin and ncRNAs and their targeting pathways and better understanding pharmacogenetic responses to aspirin.
Collapse
|
10
|
Wang H, Xu J, Wu X, Zheng S, Han Y, Ding G. Longitudinal change in microRNA-130a expression and its correlation with the risk of developing major adverse cardiovascular and cerebral events in patients undergoing continuous ambulatory peritoneal dialysis. J Clin Lab Anal 2021; 35:e24039. [PMID: 34708454 DOI: 10.1002/jcla.24039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND MicroRNA-130a (miR-130a) regulates angio-cellular dysregulation, atherosclerosis, and cardiocerebral injuries, serving as a biomarker for major adverse cardiovascular and cerebral events (MACCE) in several chronic diseases. However, its clinical application in patients with end-stage renal disease (ESRD) undergoing continuous ambulatory peritoneal dialysis (CAPD), who are at a high risk of developing MACCE, has not been reported. Therefore, this study aimed to explore this aspect. METHODS miR-130a expression in peripheral blood mononuclear cells obtained from 50 healthy controls (HCs) at recruitment and 257 ESRD patients undergoing CAPD at month (M)0, M12, M24, and M36 was determined by reverse transcription-quantitative polymerase chain reaction. ESRD patients undergoing CAPD were followed up until MACCE occurred or M36. Then, MACCE were recorded, and MACCE-free survival was calculated. RESULTS miR-130a expression was significantly lower in ESRD patients undergoing CAPD than in HCs (p < 0.001). In addition, miR-130a expression significantly decreased from M0 to M36 in ESRD patients undergoing CAPD (p < 0.001). Moreover, miR-130a expression at M0, M12, and M24 was significantly lower in patients with MACCE than in those without MACCE (all p < 0.05). Furthermore, high miR-130a expression at M0, M12, and M36 was significantly correlated with prolonged MACCE-free survival in ESRD patients undergoing CAPD (all p < 0.05), and high miR-130a expression at M0 was an independent factor for improved MACCE-free survival (p = 0.015; hazard ratio (HR) (95% confidential interval): 0.456 (0.243-0.857)). CONCLUSION miR-130a expression decreases continuously with disease progression in patients with ESRD undergoing CAPD. Additionally, this expression is negatively correlated with MACCE risk in these patients.
Collapse
Affiliation(s)
- Hong Wang
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Jinglin Xu
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Xinhong Wu
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Shouhao Zheng
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Yingmin Han
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Guoming Ding
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
11
|
Zhang Y, Yang Y, Xiao J, Sun Y, Yang S, Fu X. Effect of multidimensional comprehensive intervention on medication compliance, social function and incidence of MACE in patients undergoing PCI. Am J Transl Res 2021; 13:8058-8066. [PMID: 34377288 PMCID: PMC8340263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To analyze the effect of multidimensional comprehensive intervention on medication compliance, social function and incidence of major adverse cardiovascular events (MACE) in patients undergoing percutaneous coronary intervention (PCI). METHODS Ninety-eight patients with coronary heart disease (CHD) who underwent PCI in our hospital were selected and divided into the regular group (n=46, receiving regular nursing intervention) and the comprehensive group (n=52, receiving multidimensional comprehensive nursing intervention) according to the different nursing intervention methods. The medication compliance, social function, quality of life, and incidence of MACE were compared between the two groups. RESULTS The comprehensive group showed significantly higher rates of taking medication on time, taking medication according to the proper amount, taking medication at the recomended times, no increase or decrease in the amount of medication, and taking medication without interruption than the regular group (P < 0.05). The comprehensive group exhibited significantly higher scores of medication compliance than the regular group (P < 0.05). The Social Disability Screening Schedule (SDSS) scores of both groups during intervention for 8 weeks were lower than those before intervention and after intervention for 2 and 4 weeks (P < 0.05). The SDSS scores of intervention for 2, 4, and 8 weeks in the comprehensive group were significantly lower than that in the regular group (P < 0.05). After intervention, the comprehensive group showed significantly higher scores of physiological function, psychological function, cognitive function, emotional function, role function, and total quality of life than the regular group (P < 0.05). The incidence of MACE in the comprehensive group was significantly lower than that in the regular group (P < 0.05). CONCLUSION The use of multidimensional comprehensive intervention for patients undergoing PCI can effectively improve patients' medication compliance, social function and quality of life, and reduce the incidence of MACE.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Medicine, Jinan People’s Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Yuhua Yang
- Department of Drug Dispensing, Zibo Central HospitalZibo, Shandong, China
| | - Jinggang Xiao
- The Second Department of Cardiovascular Medicine, Linqing People’s HospitalLinqing, Shandong, China
| | - Yao Sun
- Department of General Practice, Zibo Central HospitalZibo, Shandong, China
| | - Suping Yang
- Department of Geriatrics, Binzhou Hospital of Traditional Chinese MedicineBinzhou, Shandong, China
| | - Xintao Fu
- Department of Cardiac Surgery, Zibo Municipal HospitalZibo, Shandong, China
| |
Collapse
|
12
|
Pedersen OB, Grove EL, Kristensen SD, Nissen PH, Hvas AM. MicroRNA as Biomarkers for Platelet Function and Maturity in Patients with Cardiovascular Disease. Thromb Haemost 2021; 122:181-195. [PMID: 34091883 DOI: 10.1055/s-0041-1730375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with cardiovascular disease (CVD) are at increased risk of suffering myocardial infarction. Platelets are key players in thrombus formation and, therefore, antiplatelet therapy is crucial in the treatment and prevention of CVD. MicroRNAs (miRs) may hold the potential as biomarkers for platelet function and maturity. This systematic review was conducted using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). To identify studies investigating the association between miRs and platelet function and maturity in patients with CVD, PubMed and Embase were searched on October 13 and December 13, 2020 without time boundaries. Risk of bias was evaluated using a standardized quality assessment tool. Of the 16 included studies, 6 studies were rated "good" and 10 studies were rated "fair." In total, 45 miRs correlated significantly with platelet function or maturity (rho ranging from -0.68 to 0.38, all p < 0.05) or differed significantly between patients with high platelet reactivity and patients with low platelet reactivity (p-values ranging from 0.0001 to 0.05). Only four miRs were investigated in more than two studies, namely miR-223, miR-126, miR-21 and miR-150. Only one study reported on the association between miRs and platelet maturity. In conclusion, a total of 45 miRs were associated with platelet function or maturity in patients with CVD, with miR-223 and miR-126 being the most frequently investigated. However, the majority of the miRs were only investigated in one study. More data are needed on the potential use of miRs as biomarkers for platelet function and maturity in CVD patients.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Paschou SA, Siasos G, Katsiki N, Tentolouris N, Tousoulis D. The Role of microRNAs in the Development of Type 2 Diabetes Complications. Curr Pharm Des 2021; 26:5969-5979. [PMID: 33138753 DOI: 10.2174/1381612826666201102102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs represent a class of small (19-25 nucleotides) single-strand pieces of RNA that are noncoding ones. They are synthesized by RNA polymerase II from transcripts that fold back on themselves. They mostly act as gene regulatory agents that pair with complementary sequences on mRNA and produce silencing complexes, which, in turn, suppress coding genes at a post-transcriptional level. There is now evidence that microRNAs may affect insulin secretion or insulin action, as they can alter pancreatic beta cells development, insulin production, as well as insulin signaling. Any molecular disorder that affects these pathways can deteriorate insulin resistance and lead to type 2 diabetes mellitus (T2DM) onset. Furthermore, the expression of several microRNAs is up- or down-regulated in the presence of diabetic microvascular complications (i.e., peripheral neuropathy, nephropathy, retinopathy, foot ulcers), as well as in patients with coronary heart disease, stroke, and peripheral artery disease. However, more evidence is needed, specifically regarding T2DM patients, to establish the use of such microRNAs as diagnostical biomarkers or therapeutic targets in daily practice.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Centre, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Garcia A, Dunoyer-Geindre S, Nolli S, Reny JL, Fontana P. An Ex Vivo and In Silico Study Providing Insights into the Interplay of Circulating miRNAs Level, Platelet Reactivity and Thrombin Generation: Looking beyond Traditional Pharmacogenetics. J Pers Med 2021; 11:jpm11050323. [PMID: 33919053 PMCID: PMC8143175 DOI: 10.3390/jpm11050323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Platelet reactivity (PR), a key pharmacodynamic (PD) component of the action of antiplatelet drugs in cardiovascular disease (CVD) patients, is highly variable. PR is associated with occurrence or recurrence of thrombotic and bleeding events, but this association is modulated by several factors. Conventional pharmacogenetics explains a minor part of this PR variability, and among determinants of PR, circulating microRNAs (miRNAs) have been the focus of attention during these last years as biomarkers to predict PR and clinical outcomes in CVD. This being said, the impact of miRNAs on platelet function and the mechanisms behind it are largely unknown. The level of a set of candidate miRNAs including miR-126-3p, miR-150-5p, miR-204-5p and miR-223-3p was quantified in plasma samples of stable CVD patients and correlated with PR as assessed by light-transmission aggregometry and in vivo thrombin generation markers. Finally, miRNA target networks were built based on genes involved in platelet function. We show that all candidate miRNAs were associated with platelet aggregation, while only miR-126-3p and miR-223-3p were positively correlated with in vivo thrombin generation markers. In silico analysis identified putative miRNA targets involved in platelet function regulation. Circulating miRNAs were associated with different aspects of platelet reactivity, including platelet aggregation and platelet-supported thrombin generation. This paves the way to a personalized antithrombotic treatment according to miRNA profile in CVD patients.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (A.G.); (S.D.-G.); (S.N.); (J.-L.R.)
| | - Sylvie Dunoyer-Geindre
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (A.G.); (S.D.-G.); (S.N.); (J.-L.R.)
| | - Séverine Nolli
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (A.G.); (S.D.-G.); (S.N.); (J.-L.R.)
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (A.G.); (S.D.-G.); (S.N.); (J.-L.R.)
- Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (A.G.); (S.D.-G.); (S.N.); (J.-L.R.)
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-372-97-51
| |
Collapse
|
15
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|
16
|
Ravanidis S, Grundler F, de Toledo FW, Dimitriou E, Tekos F, Skaperda Z, Kouretas D, Doxakis E. Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans. Food Chem Toxicol 2021; 152:112187. [PMID: 33839215 DOI: 10.1016/j.fct.2021.112187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, 88662, Überlingen, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | | | - Evangelos Dimitriou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.
| |
Collapse
|
17
|
Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny JL, Fontana P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb Haemost 2021; 121:409-421. [PMID: 33124028 PMCID: PMC8263142 DOI: 10.1055/s-0040-1718730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
18
|
Therapeutic Value of miRNAs in Coronary Artery Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8853748. [PMID: 33953838 PMCID: PMC8057887 DOI: 10.1155/2021/8853748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerotic ischemic coronary artery disease (CAD) is a significant community health challenge and the principal cause of morbidity and mortality in both developed and developing countries for all ethnic groups. The progressive chronic coronary atherosclerosis is the main underlying cause of CAD. Although enormous progress occurred in the last three decades in the management of cardiovascular diseases, the prevalence of CAD continues to increase worldwide, indicating the need for discovery of deeper molecular insights of CAD mechanisms, biomarkers, and innovative therapeutic targets. Recently, several research groups established that microRNAs essentially regulate various cardiovascular development and functions, and a deregulated cardiac enriched microRNA profile plays a vital role in the pathogenesis of CAD and its biological aging. Numerous studies established that over- or downregulation of a single miRNA gene by ago-miRNA or anti-miRNA is enough to modify the CAD disease process, significantly prevent age-dependent cardiac cell death, and markedly improve cardiac function. In the light of more recent experimental and clinical evidences, we briefly reviewed and discussed the involvement of miRNAs in CAD and their possible diagnostic/therapeutic values. Moreover, we also focused on the role of miRNAs in the initiation and progression of the atherosclerosis plaque as the strongest risk factor for CAD.
Collapse
|
19
|
Barbalata T, Moraru OE, Stancu CS, Devaux Y, Simionescu M, Sima AV, Niculescu LS. Increased miR-142 Levels in Plasma and Atherosclerotic Plaques from Peripheral Artery Disease Patients with Post-Surgery Cardiovascular Events. Int J Mol Sci 2020; 21:ijms21249600. [PMID: 33339419 PMCID: PMC7766790 DOI: 10.3390/ijms21249600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is an intensive effort to identify biomarkers to predict cardiovascular disease evolution. We aimed to determine the potential of microRNAs to predict the appearance of cardiovascular events (CVEs) in patients with peripheral artery disease (PAD) following femoral artery bypass surgery. Forty-seven PAD patients were enrolled and divided into two groups, without CVEs (n = 35) and with CVEs (n = 12), during 1 year follow-up. Intra-surgery atherosclerotic plaques from femoral arteries were collected and the levels of miR-142, miR-223, miR-155, and miR-92a of the primary transcripts of these microRNAs (pri-miRNAs), and gene expression of Drosha and Dicer were determined. Results showed that, in the plaques, miR-142, miR-223, and miR-155 expression levels were significantly increased in PAD patients with CVEs compared to those without CVEs. Positive correlations between these miRNAs and their pri-miRNAs levels and the Dicer/Drosha expression were observed. In the plasma of PAD patients with CVEs compared to those without CVEs, miR-223 and miR-142 were significantly increased. The multiple linear regression analyses revealed significant associations among several plasma lipids, oxidative and inflammatory parameters, and plasma miRNAs levels. Receiver operator characteristic (ROC) analysis disclosed that plasma miR-142 levels could be an independent predictor for CVEs in PAD patients. Functional bioinformatics analyses supported the role of these miRNAs in the regulation of biological processes associated with atherosclerosis. Taken together, these data suggest that plasma levels of miR-142, miR-223, miR-155, and miR-92a can significantly predict CVEs among PAD patients with good accuracy, and that plasma levels of miR-142 can be an independent biomarker to predict post-surgery CVEs development in PAD patients.
Collapse
Affiliation(s)
- Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Oriana E. Moraru
- Emergency Clinical Hospital “Prof. Dr. Agrippa Ionescu”, 149 I.C. Brătianu Street, 077015 Baloteşti, Ilfov County, Romania;
| | - Camelia S. Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Maya Simionescu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Anca V. Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Loredan S. Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
- Correspondence:
| |
Collapse
|
20
|
Paseban M, Marjaneh RM, Banach M, Riahi MM, Bo S, Sahebkar A. Modulation of microRNAs by aspirin in cardiovascular disease. Trends Cardiovasc Med 2020; 30:249-254. [DOI: 10.1016/j.tcm.2019.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/12/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
|
21
|
Latini A, Borgiani P, Novelli G, Ciccacci C. miRNAs in drug response variability: potential utility as biomarkers for personalized medicine. Pharmacogenomics 2020; 20:1049-1059. [PMID: 31559917 DOI: 10.2217/pgs-2019-0089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are 18-22 nucleotide RNA molecules that modulate the expression of multiple protein-encoding genes at the post-transcriptional level. Almost all physiological conditions are probably modulated by miRNAs, including pharmacological response. Indeed, acting on the regulation of numerous genes involved in the pharmacokinetics and pharmacodynamics of drugs, differences in the levels of circulating miRNAs or genetic variants in the sequences of the miRNA genes can contribute to interindividual variability in drug response, both in terms of toxicity and efficacy. For their stability in body fluids and the easy availability and accurate quantification, miRNAs could be ideal biomarkers of individual response to drugs. This review aims to give an overview on the available studies that have investigated the relationship between miRNAs and response to drugs in different classes of diseases and considered their possible clinical application as therapy response predictive biomarkers. A comprehensive search was conducted from the international web database PubMed. We included papers that investigated the relationship between miRNAs and response to drugs, published before January 2019.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, taly
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, taly
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, taly.,IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, taly.,UniCamillus, Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| |
Collapse
|
22
|
Liu S, Guo X, Zhong W, Weng R, Liu J, Gu X, Zhong Z. Circulating MicroRNA Expression Profiles in Patients with Stable and Unstable Angina. Clinics (Sao Paulo) 2020; 75:e1546. [PMID: 32667489 PMCID: PMC7337223 DOI: 10.6061/clinics/2020/e1546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES High incidence and case fatality of unstable angina (UA) is, to a large extent, a consequence of the lack of highly sensitive and specific non-invasive markers. Circulating microRNAs (miRNAs) have been widely recommended as potential biomarkers for numerous diseases. In the present study, we characterized distinctive miRNA expression profiles in patients with stable angina (SA), UA, and normal coronary arteries (NCA), and identified promising candidates for UA diagnosis. METHODS Serum was collected from patients with SA, UA, and NCA who visited the Department of Cardiovascular Diseases of the Meizhou People's Hospital. Small RNA sequencing was carried out on an Illumina HiSeq 2500 platform. miRNA expression in different groups of patients was profiled and then confirmed based on that in an independent set of patients. Functions of differentially expressed miRNAs were predicted using gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS Our results indicated that circulating miRNA expression profiles differed between SA, UA, and NCA patients. A total of 36 and 161 miRNAs were dysregulated in SA and UA patients, respectively. miRNA expression was validated by reverse transcription quantitative polymerase chain reaction. CONCLUSION The results suggest that circulating miRNAs are potential biomarkers of UA.
Collapse
Affiliation(s)
- Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xuemin Guo
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Jing Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- *Corresponding author. E-mail:
| |
Collapse
|
23
|
Barraclough JY, Joan M, Joglekar MV, Hardikar AA, Patel S. MicroRNAs as Prognostic Markers in Acute Coronary Syndrome Patients-A Systematic Review. Cells 2019; 8:cells8121572. [PMID: 31817254 PMCID: PMC6952952 DOI: 10.3390/cells8121572] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background: The potential utility of microRNAs (miRNAs) in the diagnosis, prognosis, and treatment of multiple disease states has been an area of great interest since their discovery. In patients with cardiovascular disease, there is a large pool of literature amassed from the last decade assessing their diagnostic and prognostic potential. This systematic review sought to determine whether existing literature supports the use of miRNAs as prognostic markers after an Acute Coronary Syndrome (ACS) presentation. Methods: A systematic review of published articles from 2005–2019 using MEDLINE and EMBASE databases was undertaken independently by two reviewers. Studies addressing prognosis in an ACS population yielded 32 studies and 2 systematic reviews. Results/conclusion: 23 prospective studies reported significant differences in miRNA levels and 16 compared the predictive power of miRNAs. The most common miRNAs assessed included miR-133a, -208b, -21, -1, -34a, -150, and -423, shown to be involved in cell differentiation, apoptosis, and angiogenesis. Barriers to the use of miRNAs as prognostic markers include bias in miRNA selection, small sample size, variable normalization of data, and adjustment for confounders. Therefore, findings from this systematic review do not support the use of miRNAs for prognostication post-ACS beyond traditional cardiovascular risk factors, existing risk scores, and stratifications tools.
Collapse
Affiliation(s)
- Jennifer Y Barraclough
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Heart Research Institute, Sydney 2042, Australia
| | - Michelyn Joan
- Sydney Medical School, The University of Sydney, Sydney 2050, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Sanjay Patel
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Heart Research Institute, Sydney 2042, Australia
| |
Collapse
|
24
|
Scettri M, Seeba H, Staudacher DL, Robinson S, Stallmann D, Heger LA, Grundmann S, Duerschmied D, Bode C, Wengenmayer T, Ahrens I, Hortmann M. Influence of extracorporeal membrane oxygenation on serum microRNA expression. J Int Med Res 2019; 47:6109-6119. [PMID: 31760868 PMCID: PMC7045651 DOI: 10.1177/0300060519884502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective To date, no biomarkers have been established to predict haematological complications and outcomes of extracorporeal membrane oxygenation (ECMO). The aim of this study was to investigate the expression of a panel of microRNAs (miRNAs), which are promising biomarkers in many clinical fields, in patients before and after initiating ECMO. Methods Serum miRNA levels from 14 patients hospitalized for acute respiratory failure and supported with ECMO in our medical intensive care unit were analysed before and 24 hours after ECMO. In total, 179 serum-enriched miRNAs were profiled by using a real-time PCR panel. For validation, differentially expressed miRNAs were individually quantified with conventional real-time quantitative PCR at 0, 24, and 72 hours. Results Under ECMO support, platelet count significantly decreased by 65 × 103/µL (25th percentile = 154.3 × 103/µL; 75th percentile = 33 × 103/µL). Expression of the 179 miRNAs investigated in this study did not change significantly throughout the observational period. Conclusions According to our data, the expression of serum miRNAs was not altered by ECMO therapy itself. We conclude that ECMO does not limit the application of miRNAs as specific clinical biomarkers for the patients’ underlying disease.
Collapse
Affiliation(s)
- M Scettri
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - H Seeba
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - D L Staudacher
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Internal Medicine III, Medical Intensive Care, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - S Robinson
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Medicine, Monash University, Melbourne, Australia
| | - D Stallmann
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - L A Heger
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Internal Medicine III, Medical Intensive Care, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - S Grundmann
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - D Duerschmied
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Internal Medicine III, Medical Intensive Care, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - C Bode
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Internal Medicine III, Medical Intensive Care, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - T Wengenmayer
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - I Ahrens
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Internal Medicine III, Medical Intensive Care, Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Augustinerinnen Hospital, Academic Teaching Hospital University of Cologne, Cologne, Germany
| | - M Hortmann
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Internal Medicine III, Medical Intensive Care, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|