1
|
Karankar VS, Awasthi S, Srivastava N. Peptide-driven strategies against lung cancer. Life Sci 2025; 366-367:123453. [PMID: 39923837 DOI: 10.1016/j.lfs.2025.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Lung cancer remains one of the most significant global health challenges, accounting for 18 % of all cancer-related deaths. While risk factors such as heavy metal exposure and cigarette smoking are well-known contributors, the limitations of conventional treatments including severe side effects and drug resistance highlight the urgent need for more targeted and safer therapeutic options. In this context, peptides have emerged as a novel, precise, and effective class of therapies for lung cancer treatment. They have shown promise in limiting lung cancer progression by targeting key molecular pathways involved in tumour growth. Anti-non-small cell lung cancer peptides that specifically target proteins such as EGFR, TP53, BRAF, MET, ROS1, and ALK have demonstrated potential in improving lung cancer outcomes. Additionally, anti-inflammatory and apoptosis-inducing peptides offer further therapeutic benefits. This review provides a comprehensive overview of the peptides currently in use or under investigation for the treatment of lung cancer, highlighting their mechanisms of action and therapeutic potential. As research continues to advance, peptides are poised to become a promising new therapeutic option in the fight against lung cancer.
Collapse
Affiliation(s)
- Vijayshree S Karankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Saurabh Awasthi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Jin Y, Dong N, Shimizu S, Li Y, Yao Y, Qiao H, Liu X, Liu S, Guo C, Wang L. Hesperidin enhanced anti-breast cancer effect and alleviated cisplatin induced nephrotoxicity through silk fibroin delivery system. Toxicol Appl Pharmacol 2025; 495:117234. [PMID: 39832567 DOI: 10.1016/j.taap.2025.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared. The in vitro results showed that SFP/HE NFs significantly inhibited the proliferation and migration of breast cancer cell MDA-MB-231 compared with free HE. The mechanism results demonstrated that SFP/HE NFs induced apoptosis and DNA double stranded damage (DSBs) and further activated the cyclic monophosphate guanosine adenosine monophosphate synthase- stimulator of interferon gene (cGAS-STING) pathway. The in vivo studies showed that SFP/HE NFs treatment significantly inhibited the growth of breast cancer, with an inhibition rate of 65.9 % (100 mg/kg). In vivo mechanism studies also demonstrated that the anti-tumor activity of SFP/HE NFs was related to the activation of the cGAS-STING pathway. Interestingly, we found that the combination of SFP/HE NFs and cisplatin not only enhanced the anti-tumor activity of cisplatin, but also alleviated cisplatin induced nephrotoxicity. In conclusion, our results demonstrate the benefits of activating the cGAS-STING pathway in the treatment of breast cancer, which is expected to provide potential candidates for combined treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nina Dong
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shosei Shimizu
- Department of Radiotherapy, Yizhou Tumor Hospital, Zhuozhou 072750, China; Department of Radiotherapy, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yinuo Li
- Department of Radiotherapy, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yuan Yao
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hong Qiao
- Hauolilly-MEDICAL company, Tokyo, Japan
| | - Xiguang Liu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shuai Liu
- Qingdao University of Science and Technology, Qingdao 266041, China
| | - Chuanlong Guo
- Qingdao University of Science and Technology, Qingdao 266041, China
| | - Lijie Wang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
3
|
Han YM, Ahn HR, Lee DY, Song MY, Lee SW, Jang YK, Jeon BY, Kim EH. Therapeutic Potential of Hongjam in A Diethylnitrosamine and Thioacetamide-induced Hepatocellular Carcinoma Mouse Model. J Cancer Prev 2024; 29:165-174. [PMID: 39790225 PMCID: PMC11706731 DOI: 10.15430/jcp.24.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model. Mice were administered DEN intraperitoneally for 8 weeks, followed by TAA in drinking water for 9 weeks, with Hongjam supplementation (0.01, 0.1, and 1 g/kg) provided daily through food. Hongjam markedly reduced the tumor incidence, the size, and the histological lesions compared to the DEN/TAA group. Serum biochemical analysis revealed reduction in liver damage markers, including alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, and total bilirubin, with a notable decrease in total bilirubin surpassing. Immunohistochemical and Western blot analyses demonstrated that Hongjam downregulated expression of proliferation markers, including Ki67, phosphorylation of protein kinase B, and proliferating cell nuclear antigen, while upregulating the pro-apoptotic protein Bcl-2-associated X protein, indicating its dual role in suppressing proliferation and promoting apoptosis. Furthermore, Hongjam inhibited angiogenesis by suppressing the expression of key markers, including interleukin 6, VEGF, hypoxia-inducible factor-1 subunit alpha, platelet-derived growth factor subunit beta, matrix metalloproteinase-2, and cluster of differentiation 31, thereby disrupting the tumor microenvironment. These findings suggest that Hongjam exerts multifaceted protective effects against HCC by targeting proliferation, apoptosis, and angiogenesis pathways, while also mitigating liver damage. This study highlights the potential of Hongjam as a functional food or a complementary therapeutic agent for HCC prevention and management.
Collapse
Affiliation(s)
- Young-Min Han
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Hye-Rin Ahn
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Seung-Won Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | | | | | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| |
Collapse
|
4
|
Shi R, Wang F, Fu Q, Zeng P, Chen G, Chen Z. Molecular mechanism analysis of apoptosis induced by silk fibroin peptides. Int J Biol Macromol 2024; 264:130687. [PMID: 38462112 DOI: 10.1016/j.ijbiomac.2024.130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Silk fibroin derived from silkworm cocoons exhibits excellent mechanical properties, good biocompatibility, and low immunogenicity. Previous studies showed that silk fibroin had an inhibitory effect on cells, suppressing proliferation and inducing apoptosis. However, the source of the toxicity and the mechanism of apoptosis induction are still unclear. In this study, we hypothesized that the toxicity of silk fibroin might originate from the crystalline region of the heavy chain of silk fibroin. We then verified the hypothesis and the specific induction mechanism. A target peptide segment was obtained from α-chymotrypsin. The potentially toxic mixture of silk fibroin peptides (SFPs) was separated by ion exchange, and the toxicity was tested by an MTT assay. The results showed that SFPs obtained after 4 h of enzymatic hydrolysis had significant cytotoxicity, and SFPs with isoelectric points of 4.0-6.8 (SFPα II) had a significant inhibitory effect on cell growth. LC-MS/MS analysis showed that SFPα II contained a large number of glycine-rich and alanine-rich repetitive sequence polypeptides from the heavy-chain crystallization region. A series of experiments showed that SFPα II mediated cell death through the apoptotic pathway by decreasing the expression of Bcl-2 protein and increasing the expression of Bax protein. SFPα II mainly affected the p53 pathway and the AMPK signaling pathway in HepG2 cells. SFPα II may indirectly increase the expression of Cers2 by inhibiting the phosphorylation of EGFR, which activated apoptotic signaling in the cellular mitochondrial pathway and inhibited the Akt/NF-κB pathway by increasing the expression of PPP2R2A.
Collapse
Affiliation(s)
- Ruyu Shi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qiang Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Peng Zeng
- The Seventh People's Hospital of Chongqing, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
5
|
Kumari N, Pullaguri N, Sahu V, Ealla KKR. Research and therapeutic applications of silk proteins in cancer. J Biomater Appl 2023:8853282231184572. [PMID: 37343291 DOI: 10.1177/08853282231184572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Despite the availability of advanced treatments, cancer remains the second leading cause of death worldwide. This is due to the many challenges prevailing in the research field and cancer therapy. Resistance to therapy and side effects provide major hindrances to recovery from cancer. As a result, in addition to the aim of killing cancer cells, the focus should also be on reducing or preventing side effects of the treatment. To enhance the effectiveness of cancer treatment, many researchers are studying drug delivery systems based on silk proteins: fibroin and sericin. These proteins have high biocompatibility, biodegradability, and ease of modification. Consequently, many researchers have developed several formulations of silk proteins such as scaffolds, nanoparticles, and hydrogels by combining them with other materials or drugs. This review summarizes the use of silk proteins in various forms in cancer research and therapy. The use of silk proteins to study cancer cells, to deliver cancer drugs to a target site, in cancer thermal therapy, and as an anti-cancer agent is described here.
Collapse
Affiliation(s)
- Neema Kumari
- Center for Research Development and Sustenance, Malla Reddy Institute of Medical Sciences, Hyderabad, India
| | - Narasimha Pullaguri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Institute of Dental Sciences, Hyderabad, India
| | - Kranti Kiran Reddy Ealla
- Center for Research Development and Sustenance, Malla Reddy Institute of Dental Sciences, Hyderabad, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Li S, Li Y, Liu Y, Wu Y, Wang Q, Jin L, Zhang D. Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. Int J Mol Sci 2023; 24:ijms24108642. [PMID: 37239989 DOI: 10.3390/ijms24108642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Various lung diseases endanger people's health. Side effects and pharmaceutical resistance complicate the treatment of acute lung injury, pulmonary fibrosis, and lung cancer, necessitating the development of novel treatments. Antimicrobial peptides (AMPs) are considered to serve as a viable alternative to conventional antibiotics. These peptides exhibit a broad antibacterial activity spectrum as well as immunomodulatory properties. Previous studies have shown that therapeutic peptides including AMPs had remarkable impacts on animal and cell models of acute lung injury, pulmonary fibrosis, and lung cancer. The purpose of this paper is to outline the potential curative effects and mechanisms of peptides in the three types of lung diseases mentioned above, which may be used as a therapeutic strategy in the future.
Collapse
Affiliation(s)
- Shujiao Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Yuying Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qiuyu Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
7
|
Yu B, Li Y, Lin Y, Zhu Y, Hao T, Wu Y, Sun Z, Yang X, Xu H. Research progress of natural silk fibroin and the appplication for drug delivery in chemotherapies. Front Pharmacol 2023; 13:1071868. [PMID: 36686706 PMCID: PMC9845586 DOI: 10.3389/fphar.2022.1071868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Silk fibroin has been widely used in biological fields due to its biocompatibility, mechanical properties, biodegradability, and safety. Recently, silk fibroin as a drug carrier was developed rapidly and achieved remarkable progress in cancer treatment. The silk fibroin-based delivery system could effectively kill tumor cells without significant side effects and drug resistance. However, few studies have been reported on silk fibroin delivery systems for antitumor therapy. The advancement of silk fibroin-based drug delivery systems research and its applications in cancer therapy are highlighted in this study. The properties, applications, private opinions, and future prospects of silk fibroin carriers are discussed to understand better the development of anti-cancer drug delivery systems, which may also contribute to advancing silk fibroin innovation.
Collapse
Affiliation(s)
- Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,Department of Pharmacy, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Yuxian Lin
- Department of Pharmacy, Wenzhou People’s Hospital of The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Yuanying Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Teng Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| |
Collapse
|
8
|
Liu S, Gao X, Wang Y, Wang J, Qi X, Dong K, Shi D, Wu X, Guo C. Baicalein-loaded silk fibroin peptide nanofibers protect against cisplatin-induced acute kidney injury: fabrication, characterization and mechanism. Int J Pharm 2022; 626:122161. [PMID: 36058409 DOI: 10.1016/j.ijpharm.2022.122161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Silk fibroin (SF) is a natural polymeric biomaterial widely used in the preparation of drug delivery systems. Herein, silk fibroin peptide (SFP) was self-assembled into nanofibers, encapsulated a poorly water-soluble drug baicalein (SFP/BA NFs), and then used to protect against cisplatin-induced acute kidney injury (AKI). Specifically, the SFP/BA NFs significantly enhanced the aqueous dispersity, storage stability, and in vitro antioxidant activity of BA. SFP/BA NFs increased the drug uptake and localization to mitochondria. In vitro results demonstrated that SFP/BA NFs can relieve the cisplatin-induced HK-2 cell damage, and inhibit the cisplatin-induced accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) disruption. Mechanism studies demonstrated that SFP/BA NFs may exert nephroprotective effects by inhibiting both the cisplatin-induced DNA damage and the cGAS/STING pathway activation. In vivo results showed that cisplatin treatment resulted in decreased body weight, increased serum creatinine (SCr), and increased blood urea nitrogen (BUN) levels, while SFP/BA NFs reversed the above symptoms. Furthermore, SFP/BA NFs reversed the cisplatin-induced abnormal changes of antioxidant enzymes (e.g., SOD and GSH), and inhibited the cisplatin-induced DNA damage as well as the activation of cGAS/TING. Above all, our results revealed the potential of SFP/BA NFs to protect against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yaqi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China.
| |
Collapse
|
9
|
In vitro biological activities of the flexible and virus nanoparticle-decorated silk fibroin-based films. Int J Biol Macromol 2022; 216:437-445. [PMID: 35809668 DOI: 10.1016/j.ijbiomac.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Flexible films were prepared from silk fibroin (SF) and gelatin (GA) with a presence of glycerol (Gly), followed by water vapor annealing to achieve water-insoluble matrices. The blended SF/GA/Gly films were chemically conjugated with tobacco mosaic virus (TMV), either native (TMV-wt) or genetically modified with Arg-Gly-Asp (RGD) sequences (TMV-rgd), to improve cellular responses. The attachment and proliferation of L929 cells on TMV-decorated films were improved, possibly due to enhanced surface roughness. The cellular responses were pronounced with TMV-rgd, due to the proper decoration of RGD, which is an integrin recognition motif supporting cell binding. However, the biological results were inconclusive for human primary cells because of an innate slow growth kinetic of the cells. Additionally, the cells on SF/GA/Gly films were greater populated in S and G2/M phase, and the cell cycle arrest was notably increased in the TMV-conjugated group. Our findings revealed that the films modified with TMV were cytocompatible and the cellular responses were significantly enhanced when conjugated with its RGD mutants. The biological analysis on the cellular mechanisms in response to TMV is further required to ensure the safety concern of the biomaterials toward clinical translation.
Collapse
|
10
|
Kandhasamy S, Zeng Y. Fabrication of vitamin K3-carnosine peptide-loaded spun silk fibroin fibers/collagen bi-layered architecture for bronchopleural fistula tissue repair and regeneration applications. BIOMATERIALS ADVANCES 2022; 137:212817. [PMID: 35929255 DOI: 10.1016/j.bioadv.2022.212817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Bronchial and pleural injuries with persistent air leak pose a threat in the repair and regeneration of pulmonary diseases. The need to arrive at a highly efficient therapy for closure of bronchopleural fistula (BPF) so as to effectively suppress inflammation, infection and repair the damaged pleural space caused by cancer as well as contractile restoration of bronchopleural scars remain a significant clinical challenge. Herein, we have designed and developed potent bioactive vitamin K3 carnosine peptide (VKC)-loaded spun SF fibroin fibers/collagen bi-layered 3D scaffold for bronchopleural fistula tissue engineering applications. The VKC drug showed excellent cell viability in human bronchial epithelial cells (HBECs), in addition to its pronounced higher cytotoxicity against the A549 lung cancer cell line with an IC50 of 5 μg/mL. Furthermore, VKC displayed a strong affinity with the catalytic site of EGFR (PDB ID: 1M17) and VEGFR2 (PDB ID: 4AGD, 4ASD) receptors in molecular docking studies. Following which the spun SF-VKC (primary layer) and collagen film (top layer) constructed bi-layered CSVKC were structurally elucidated and its morphological, physicochemical and biological characterizations were well examined. The bi-layered scaffold showed superior biocompatibility and cell migration ability in HBECs than other scaffolds. Interestingly, the CSVKC revealed rapid HBECs motility towards scratched regions for fast healing in vitro bronchial tissue engineering. In vivo biocompatibility and angiogenesis studies of the prepared scaffolds were evaluated and the results obtained demonstrated excellent new tissue formation and neovascularization in the bi-layered architecture rather than others. Therefore, our results suggest that the potent antibacterial and anticancer therapeutic agent (VKC)-impregnated silk fibroin fibers/collagen bi-layered 3D biomaterial could be useful in treating cancerous BPF and pulmonary diseases in future.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
11
|
Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2076680. [PMID: 35547640 PMCID: PMC9085322 DOI: 10.1155/2022/2076680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Silk fibroin, a natural macromolecular protein without physiological activity, has been widely used in different fields, such as the regeneration of bones, cartilage, nerves, and other tissues. Due to irrevocable neuronal injury, the treatment and prognosis of neurological diseases need to be investigated. Despite attempts to propel neuroprotective therapeutic approaches, numerous attempts to translate effective therapies for brain disease have been largely unsuccessful. As a good candidate for biomedical applications, hydrogels based on silk fibroin effectively amplify their advantages. The ability of nerve tissue regeneration, inflammation regulation, the slow release of drugs, antioxidative stress, regulation of cell death, and hemostasis could lead to a new approach to treating neurological disorders. In this review, we introduced the preparation of SF hydrogels and then delineated the probable mechanism of silk fibroin in the treatment of neurological diseases. Finally, we showed the application of silk fibroin in neurological diseases.
Collapse
|
12
|
Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. INSECTS 2022; 13:286. [PMID: 35323584 PMCID: PMC8950689 DOI: 10.3390/insects13030286] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Silk fibroin (SF) is a natural protein (biopolymer) extracted from the cocoons of Bombyx mori L. (silkworm). It has many properties of interest in the field of biotechnology, the most important being biodegradability, biocompatibility and robust mechanical strength with high tensile strength. SF is usually dissolved in water-based solvents and can be easily reconstructed into a variety of material formats, including films, mats, hydrogels, and sponges, by various fabrication techniques (spin coating, electrospinning, freeze-drying, and physical or chemical crosslinking). Furthermore, SF is a feasible material used in many biomedical applications, including tissue engineering (3D scaffolds, wounds dressing), cancer therapy (mimicking the tumor microenvironment), controlled drug delivery (SF-based complexes), and bone, eye and skin regeneration. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the main methods used for ecological extraction and processing of SF that make it a green material are discussed. Lastly, technological advances in the use of SF-based materials are addressed, especially in healthcare applications such as tissue engineering and cancer therapeutics.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | | | | |
Collapse
|
13
|
A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:1967-1977. [PMID: 35243528 PMCID: PMC8894094 DOI: 10.1007/s00253-022-11857-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Nanobodies show a great potential in biomedical and biotechnology applications. Bacterial expression is the most widely used expression system for nanobody production. However, the yield of nanobodies is relatively low compared to that of eukaryotic systems. In this study, the repetitive amino acid sequence motifs (GAGAGS) found in silk fibroin protein (SFP) were developed as a novel fusion tag (SF-tag) to enhance the expression of nanobodies in Escherichia coli. SF-tags of 1 to 5 hexapeptide units were fused to the C-terminus of 4G8, a nanobody against human epididymis protein 4 (HE4). The protein yield of 4G8 variants was increased by the extension of hexapeptide units and achieved a 2.5 ~ 7.1-fold increase compared with that of untagged 4G8 (protein yield of 4G8-5C = 0.307 mg/g vs that of untagged 4G8 = 0.043 mg/g). Moreover, the fusion of SF-tags not only had no significant effect on the affinity of 4G8, but also showed a slight increase in the thermal stability of SF-tag-fused 4G8 variants. The fusion of SF-tags increased the transcription of 4G8 by 2.3 ~ 7.0-fold, indicating SF-tags enhanced the protein expression at the transcriptional level. To verify the applicability of the SF-tags for other nanobody expression, we further investigated the protein expression of two other anti-HE4 nanobodies 1G8 and 3A3 upon fusion with the SF-tags. Results indicated that the SF-tags enhanced the protein expression up to 5.2-fold and 5.7-fold for 1G8 and 3A3, respectively. For the first time, this study reported a novel and versatile fusion tag system based on the SFP for improving nanobody expression in Escherichia coli, which may enhance its potential for wider applications.Key points• A silk fibroin protein-based fusion tag (SF-tag) was developed to enhance the expression of nanobodies in Escherichia coli.• The SF-tag enhanced the nanobody expression at the transcriptional level.• The fusion of SF-tag had no significant effect on the affinity of nanobodies and could slightly increase the thermal stability of nanobodies.
Collapse
|
14
|
Pérez Quiñones J, Roschger C, Zierer A, Peniche-Covas C, Brüggemann O. Self-Assembled Silk Fibroin-Based Aggregates for Delivery of Camptothecin. Polymers (Basel) 2021; 13:polym13213804. [PMID: 34771362 PMCID: PMC8587969 DOI: 10.3390/polym13213804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
A water-soluble hydrolysate of silk fibroin (SF) (~30 kDa) was esterified with tocopherol, ergocalciferol, and testosterone to form SF aggregates for the controlled delivery of the anticancer drug camptothecin (CPT). Elemental analysis and 1H NMR spectroscopy showed a degree of substitution (DS) on SF of 0.4 to 3.8 mol %. Yields of 58 to 71% on vitamins- and testosterone-grafted SF conjugates were achieved. CPT was efficiently incorporated into the lipophilic core of SF aggregates using a dialysis-precipitation method, achieving drug contents of 6.3-8.5 wt %. FTIR spectra and DSC thermograms showed that tocopherol- and testosterone-grafted SF conjugates predominantly adopted a β-sheet conformation. After the esterification of tyrosine residues on SF chains with the vitamin or testosterone, the hydrodynamic diameters almost doubled or tripled that of SF. The zeta potential values after esterification increased to about -30 mV, which favors the stability of aggregates in aqueous medium. Controlled and almost quantitative release of CPT was achieved after 6 days in PBS at 37 °C, with almost linear release during the first 8 h. MCF-7 cancer cells exhibited good uptake of CPT-loaded SF aggregates after 6 h, causing cell death and cell cycle arrest in the G2/M phase. Substantial uptake of the CPT-loaded aggregates into MCF-7 spheroids was shown after 3 days. Furthermore, all CPT-loaded SF aggregates demonstrated superior toxicity to MCF-7 spheroids compared with parent CPT. Blank SF aggregates induced no hemolysis at pH 6.2 and 7.4, while CPT-loaded SF aggregates provoked hemolysis at pH 6.2 but not at pH 7.4. In contrast, parent CPT caused hemolysis at both pH tested. Therefore, CPT-loaded SF aggregates are promising candidates for chemotherapy.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
- Correspondence: or ; Tel.: +43-670-4039820
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); or (A.Z.)
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); or (A.Z.)
| | - Carlos Peniche-Covas
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, La Habana 10400, Cuba;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
| |
Collapse
|
15
|
Cyclometalated Ru(II) β-carboline complexes induce cell cycle arrest and apoptosis in human HeLa cervical cancer cells via suppressing ERK and Akt signaling. J Biol Inorg Chem 2021; 26:793-808. [PMID: 34459988 DOI: 10.1007/s00775-021-01894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Two new cyclometalated Ru(II)-β-carboline complexes, [Ru(dmb)2(Cl-Ph-βC)](PF6) (dmb = 4,4'-dimethyl-2,2'-bipyridine; Cl-Ph-βC = Cl-phenyl-9H-pyrido[3,4-b]indole; RuβC-3) and [Ru(bpy)2(Cl-Ph-βC)](PF6) (bpy = 2,2'-bipyridine; RuβC-4) were synthesized and characterized. The Ru(II) complexes display high cytotoxicity against HeLa cells, the stabilized human cervical cancer cell, with IC50 values of 3.2 ± 0.4 μM (RuβC-3) and 4.1 ± 0.6 μM (RuβC-4), which were considerably lower than that of non-cyclometalated Ru(II)-β-carboline complex [Ru(bpy)2(1-Py-βC)] (PF6)2 (61.2 ± 3.9 μM) by 19- and 15-folds, respectively. The mechanism studies indicated that both Ru(II) complexes could significantly inhibit HeLa cell migration and invasion, and effectively induce G0/G1 cell cycle arrest. The new Ru(II) complexes could also trigger apoptosis through activating caspase-3 and poly (ADP-ribose) polymerase (PARP), increasing the Bax/Bcl-2 ratio, enhancing reactive oxygen species (ROS) generation, decreasing mitochondrial membrane potential (MMP), and inducing cytochrome c release from mitochondria. Further research revealed that RuβC-3 could deactivate the ERK/Akt signaling pathway thus inhibiting HeLa cell invasion and migration, and inducing apoptosis. In addition, RuβC-3-induced apoptosis in HeLa cells was closely associated with the increase of intracellular ROS levels, which may act as upstream factors to regulate ERK and Akt pathways. More importantly, RuβC-3 exhibited low toxicity on both normal BEAS-2B cells in vitro and zebrafish embryos in vivo. Consequently, the developed Ru(II) complexes have great potential on developing novel low-toxic anticancer drugs.
Collapse
|
16
|
Madden PW, Klyubin I, Ahearne MJ. Silk fibroin safety in the eye: a review that highlights a concern. BMJ Open Ophthalmol 2020; 5:e000510. [PMID: 33024827 PMCID: PMC7513638 DOI: 10.1136/bmjophth-2020-000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
The biomedical use of silk as a suture dates back to antiquity. Fibroin is the structural element that determines the strength of silk and here we consider the safety of fibroin in its role in ophthalmology. The high mechanical strength of silk meant sufficiently thin threads could be made for eye microsurgery, but such usage was all but superseded by synthetic polymer sutures, primarily because silk in its entirety was more inflammatory. Significant immunological response can normally be avoided by careful manufacturing to provide high purity fibroin, and it has been utilised in this form for tissue engineering an array of fibre and film substrata deployed in research with cells of the eye. Films of fibroin can also be made transparent, which is a required property in the visual pathway. Transparent layers of corneal epithelial, stromal and endothelial cells have all been demonstrated with maintenance of phenotype, as have constructs supporting retinal cells. Fibroin has a lack of demonstrable infectious agent transfer, an ability to be sterilised and prepared with minimal contamination, long-term predictable degradation and low direct cytotoxicity. However, there remains a known ability to be involved in amyloid formation and potential amyloidosis which, without further examination, is enough to currently question whether fibroin should be employed in the eye given its innervation into the brain.
Collapse
Affiliation(s)
- Peter W Madden
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology Therapeutics, School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Mark J Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Jang SH, Oh MS, Baek HI, Ha KC, Lee JY, Jang YS. Silk peptide treatment potentiates natural killer cell activity in vitro and induces natural killer cell maturation and activation in mouse splenocytes. PHARMACEUTICAL BIOLOGY 2019; 57:369-379. [PMID: 31156004 PMCID: PMC6567191 DOI: 10.1080/13880209.2019.1617749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Context: Silk peptide from cocoons of silkworm (Bombyx mori L., Bombycidae) has been employed as a biomedical material and exhibits various bioactivities, including immune-modulating activity. Objective: We analyzed whether silk peptide exerts direct modulating effects on NK cells using an NK cell line in vitro and ex vivo splenocytes. We also attempted to delineate the mechanism underlying the modulation. Material and methods: In vitro activity of silk peptide on NK cells was determined by measurement of cytolytic activity against K562 cells at an effector-to-target ratio of 5:1 after incubation of NK-92MI cells with silk peptide (0-2000 μg/mL) for 48 and 72 h. Ex vivo activity of silk peptide on mouse splenic NK cells was determined similarly by using YAC-1 cells. Results: Treatment of NK-92MI NK cells with silk peptide (500-2000 μg/mL) significantly increased cytolytic activity on target cells by 2- to 4-fold. The same concentrations (500-2000 μg/mL) of silk peptide treatment also significantly enhanced the cytolytic activity of splenic NK cells against YAC-1 cells. Silk peptide treatment of IL-2-stimulated splenocytes induced enhanced expression of Th1, 2 and 17 cytokines including TNF-α, IFN-γ, IL-6, IL-4 and IL-17. Finally, ex vivo treatment with silk peptide on mouse splenocytes significantly enhanced the degree of NK cell maturation in a dose-dependent manner from 3.49 to 23.79%. Discussion and conclusions: These findings suggest that silk peptide stimulates NK cells, thereby influencing systemic immune functions and improving natural immunity. Thus, silk peptide could be useful as a complementary therapy in cancer patients.
Collapse
Affiliation(s)
- Sun-Hee Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | | | | | - Ki-Chan Ha
- Healthcare Claims and Management Inc, Jeonju, Korea
| | | | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
- CONTACT Yong-Suk Jang Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, 567 Baekje-daero, Dukjin-gu, Jeonju54896, Korea
| |
Collapse
|
18
|
Jang SH, Oh MS, Baek HI, Ha KC, Lee JY, Jang YS. Oral Administration of Silk Peptide Enhances the Maturation and Cytolytic Activity of Natural Killer Cells. Immune Netw 2018; 18:e37. [PMID: 30402332 PMCID: PMC6215900 DOI: 10.4110/in.2018.18.e37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Silk peptide, the hydrolysate of silk protein derived from cocoons, has been employed as a biomedical material and is believed to be safe for human use. Silk peptide display various bioactivities, including anti-inflammatory, immune-regulatory, anti-tumor, anti-viral, and anti-bacterial. Although earlier investigations demonstrated that silk peptide stimulates macrophages and the production of pro-inflammatory cytokines, its effect on natural killer (NK) cell function has not yet been explored. In this study, we initially confirmed that silk peptide enhances NK cell activity in vitro and ex vivo. To assess the modulatory activity of silk peptide on NK cells, mice were fed various amounts of a silk peptide-supplemented diet for 2 months and the effects on immune stimulation, including NK cell activation, were evaluated. Oral administration of silk peptide significantly enhanced the proliferation of mitogen- or IL-2-stimulated splenocytes. In addition, oral silk peptide treatment enhanced the frequency and degree of maturation of NK cells in splenocytes. The same treatment also significantly enhanced the target cell cytolytic activity of NK cells, which was determined by cell surface CD107a expression and intracellular interferon-γ expression. Finally, oral administration of silk peptide stimulated T helper 1-type cytokine expression from splenic lymphocytes. Collectively, our results suggest that silk peptide potentiates NK cell activity in vivo and could be used as a compound for immune-modulating anti-tumor treatment.
Collapse
Affiliation(s)
- Sun-Hee Jang
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Mi-Sun Oh
- Worldway Co., Ltd., Sejong 30003, Korea
| | - Hyang-Im Baek
- Healthcare Claims & Management Inc., Jeonju 54810, Korea
| | - Ki-Chan Ha
- Healthcare Claims & Management Inc., Jeonju 54810, Korea
| | | | - Yong-Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|