1
|
Xu FF, Li ZC, Zhang WJ, Li Q, Li DJ, Meng HB, Shen FM, Fu H. Activation of α7 Nicotinic Acetylcholine Receptors Inhibits Hepatic Necroptosis and Ameliorates Acute Liver Injury in Mice. Anesthesiology 2024; 141:1119-1138. [PMID: 39186677 DOI: 10.1097/aln.0000000000005206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
BACKGROUND Acute liver injury is a disease characterized by severe liver dysfunction, caused by significant infiltration of immune cells and extensive cell death with a high mortality. Previous studies demonstrated that the α7 nicotinic acetylcholine receptor (α7nAChR) played a crucial role in various liver diseases. The hypothesis of this study was that activating α7nAChR could alleviate acute liver injury and investigate its possible mechanisms. METHODS Acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal) in wild type, α7nAChR knockout (α7nAChR-/-) and stimulator of interferon gene (STING) mutation (Stinggt/gt) mice in the presence or absence of a pharmacologic selective α7nAChR agonist (PNU-282987). The effects of α7nAChR on hepatic injury, inflammatory response, mitochondrial damage, necroptosis, and infiltration of immune cells during acute liver injury were assessed. RESULTS The expression of α7nAChR in liver tissue was increased in LPS/D-Gal-induced acute liver injury mice. Compared to the age-matched wild-type mice, α7nAChR deficiency decreased the survival rate, exacerbated the hepatic injury accompanied with enhanced inflammatory response and oxidative stress, and aggravated hepatic mitochondrial damage and necroptosis. Conversely, pharmacologic activation of α7nAChR by PNU-282987 displayed the opposite trends. Furthermore, PNU-282987 significantly reduced the proportion of infiltrating monocyte-derived macrophages (CD45+CD11bhiF4/80int), M1 macrophages (CD45+CD11b+F4/80+CD86hiCD163low), and Ly6Chi monocytes (CD45+CD11b+MHC [major histocompatibility complex] ⅡlowLy6Chi), but increased the resident Kupffer cells (CD45+CD11bintF4/80hiTIM4hi) in the damaged hepatic tissues caused by LPS/D-Gal. Interestingly, α7nAChR deficiency promoted the STING signaling pathway under LPS/D-Gal stimulation, while PNU-282987 treatment significantly prevented its activation. Finally, it was found that Sting mutation abolished the protective effects against hepatic injury by activating α7nAChR. CONCLUSIONS The authors' study revealed that activating α7nAChR could protect against LPS/D-Gal-induced acute liver injury by inhibiting hepatic inflammation and necroptosis possibly via regulating immune cells infiltration and inhibiting STING signaling pathway. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Fang-Fang Xu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Chen Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Jing Zhang
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Qiao Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Bo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Dobovišek L, Borštnar S, Debeljak N, Kranjc Brezar S. Cannabinoids and triple-negative breast cancer treatment. Front Immunol 2024; 15:1386548. [PMID: 39176080 PMCID: PMC11338791 DOI: 10.3389/fimmu.2024.1386548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for about 10-20% of all breast cancer cases and is associated with an unfavorable prognosis. Until recently, treatment options for TNBC were limited to chemotherapy. A new successful systemic treatment is immunotherapy with immune checkpoint inhibitors, but new tumor-specific biomarkers are needed to improve patient outcomes. Cannabinoids show antitumor activity in most preclinical studies in TNBC models and do not appear to have adverse effects on chemotherapy. Clinical data are needed to evaluate efficacy and safety in humans. Importantly, the endocannabinoid system is linked to the immune system and immunosuppression. Therefore, cannabinoid receptors could be a potential biomarker for immune checkpoint inhibitor therapy or a novel mechanism to reverse resistance to immunotherapy. In this article, we provide an overview of the currently available information on how cannabinoids may influence standard therapy in TNBC.
Collapse
Affiliation(s)
- Luka Dobovišek
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Simona Borštnar
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
4
|
Cai SL, Fan XG, Wu J, Wang Y, Hu XW, Pei SY, Zheng YX, Chen J, Huang Y, Li N, Huang ZB. CB2R agonist GW405833 alleviates acute liver failure in mice via inhibiting HIF-1α-mediated reprogramming of glycometabolism and macrophage proliferation. Acta Pharmacol Sin 2023; 44:1391-1403. [PMID: 36697976 PMCID: PMC10310807 DOI: 10.1038/s41401-022-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2022] [Indexed: 01/26/2023] Open
Abstract
The inflammatory responses involving infiltration and activation of liver macrophages play a vital role in acute liver failure (ALF). In the liver of ALF mice, cannabinoid receptor 2 (CB2R) is significantly upregulated on macrophages, while CB2R agonist GW405833 (GW) could protect against cell death in acute liver damage. In this study, we investigated the molecular mechanisms underlying the protective effects of GW against ALF in vivo and in vitro from a perspective of macrophage glycometabolism. Mice were pretreated with GW (10 mg/kg, i.p.), then were injected with D-GalN (750 mg/kg, i.p.) and LPS (10 mg/kg, i.p.) to induce ALF. We verified the protective effects of GW pretreatment in ALF mice. Furthermore, GW pretreatment significantly reduced liver macrophage infiltration and M1 polarization, and inhibited the release of inflammatory factors TNF-α and IL-1β in ALF mice. These protective effects were eliminated by CB2R antagonist SR144528 or in CB2R-/- ALF mice. We used LPS-stimulated RAW264.7 cells as an in vitro M1 macrophage-centered model of inflammatory response, and demonstrated that pretreatment with GW (10 μM) significantly reduced glucose metabolism by inhibiting glycolysis, which inhibited LPS-induced macrophage proliferation and inflammatory cytokines release. We verified these results in a stable CB2R-/- RAW264.7 cell line. Moreover, we found that GW significantly inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Using a stable HIF-1α-/- RAW264.7 cell line, we confirmed that GW reduced the release of inflammatory cytokines from macrophages and inhibited glycolysis by downregulating HIF-1α expression. In conclusion, activation of CB2Rs inhibits the proliferation of hepatic macrophages and release of inflammatory factors in ALF mice through downregulating HIF-1α to inhibit glycolysis.
Collapse
Affiliation(s)
- Sheng-Lan Cai
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yang Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xing-Wang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi-Xiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Chen L, Kang X, Meng X, Huang L, Du Y, Zeng Y, Liao C. MALAT1-mediated EZH2 Recruitment to the GFER Promoter Region Curbs Normal Hepatocyte Proliferation in Acute Liver Injury. J Clin Transl Hepatol 2023; 11:97-109. [PMID: 36406327 PMCID: PMC9647095 DOI: 10.14218/jcth.2021.00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The goal of this study was to investigate the mechanism by which the long noncoding RNA MALAT1 inhibited hepatocyte proliferation in acute liver injury (ALI). METHODS Lipopolysaccharide (LPS) was used to induce an ALI cellular model in HL7702 cells, in which lentivirus vectors containing MALAT1/EZH2/GFER overexpression or knockdown were introduced. A series of experiments were performed to determine their roles in liver injury, oxidative stress injury, and cell biological processes. The interaction of MALAT1 with EZH2 and enrichment of EZH2 and H3K27me3 in the GFER promoter region were identified. Rats were treated with MALAT1 knockdown or GFER overexpression before LPS induction to verify the results derived from the in vitro assay. RESULTS MALAT1 levels were elevated and GFER levels were reduced in ALI patients and the LPS-induced cell model. MALAT1 knockdown or GFER overexpression suppressed cell apoptosis and oxidative stress injury induced cell proliferation, and reduced ALI. Functionally, MALAT1 interacted directly with EZH2 and increased the enrichment of EZH2 and H3K27me3 in the GFER promoter region to reduce GFER expression. Moreover, MALAT1/EZH2/GFER was activated the AMPK/mTOR signaling pathway. CONCLUSION Our study highlighted the inhibitory role of reduced MALAT1 in ALI through the modulation of EZH2-mediated GFER.
Collapse
Affiliation(s)
- Li Chen
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence to: Li Chen, Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China. ORCID: https://orcid.org/0000-0003-2385-2858. Tel: +86-13755192409, E-mail:
| | - Xintong Kang
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Xiujuan Meng
- Hospital-Acquired Infection Control Center, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liang Huang
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yiting Du
- Department of Emergency, Chengdu Women’s and Children’s Central Hospital, Chengdu, Sichuan, China
| | - Yilan Zeng
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chunfeng Liao
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
6
|
Hu XW, Li XM, Wang AM, Fu YM, Zhang FJ, Zeng F, Cao LP, Long H, Xiong YH, Xu J, Li J. Caffeine alleviates acute liver injury by inducing the expression of NEDD4L and deceasing GRP78 level via ubiquitination. Inflamm Res 2022; 71:1213-1227. [PMID: 35802146 DOI: 10.1007/s00011-022-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Acute liver injury is liver cell injury that occurs rapidly in a short period of time. Caffeine has been shown to maintain hepatoprotective effect with an unclear mechanism. Endoplasmic reticulum stress (ERS) has significant effects in acute liver injury. Induction of GRP78 is a hallmark of ERS. Whether or not caffeine's function is related to GRP78 remains to be explored. METHODS Acute liver injury model was established by LPS-treated L02 cells and in vivo administration of LPS/D-Gal in mice. Caffeine was pre-treated in L02 cells or mice. Gene levels was determined by real-time PCR and western blot. Cell viability was tested by CCK-8 assay and cell apoptosis was tested by flow cytometry. The interaction of GRP78 and NEDD4L was determined by Pull-down and co-immunoprecipitation (Co-IP) assay. The ubiquitination by NEDD4L on GRP78 was validated by in vitro ubiquitination assay. RESULTS Caffeine protected liver cells against acute injury induced cell apoptosis and ERS both in vitro and in vivo. Suppression of GRP78 could block the LPS-induced cell apoptosis and ERS. NEDD4L was found to interact with GRP78 and ubiquitinate its lysine of 324 site directly. Caffeine treatment induced the expression of NEDD4L, resulting in the ubiquitination and inhibition of GRP78. CONCLUSION Caffeine mitigated the acute liver injury by stimulating NEDD4L expression, which inhibited GRP78 expression via ubiquitination at its K324 site. Low dose of caffeine could be a promising therapeutic treatment for acute liver injury.
Collapse
Affiliation(s)
- Xing-Wang Hu
- Department of Emergency, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xiang-Min Li
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ai-Min Wang
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Yong-Ming Fu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Fang-Jie Zhang
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Feng Zeng
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Li-Ping Cao
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Hui Long
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ying-Hui Xiong
- Department of Emergency, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ji Xu
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jia Li
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
7
|
Simard M, Rakotoarivelo V, Di Marzo V, Flamand N. Expression and Functions of the CB 2 Receptor in Human Leukocytes. Front Pharmacol 2022; 13:826400. [PMID: 35273503 PMCID: PMC8902156 DOI: 10.3389/fphar.2022.826400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023] Open
Abstract
The cannabinoid CB2 receptor was cloned from the promyeloid cell line HL-60 and is notably expressed in most, if not all leukocyte types. This relatively restricted localization, combined to the absence of psychotropic effects following its activation, make it an attractive drug target for inflammatory and autoimmune diseases. Therefore, there has been an increasing interest in the past decades to identify precisely which immune cells express the CB2 receptor and what are the consequences of such activation. Herein, we provide new data on the expression of both CB1 and CB2 receptors by human blood leukocytes and discuss the impact of CB2 receptor activation in human leukocytes. While the expression of the CB2 mRNA can be detected in eosinophils, neutrophils, monocytes, B and T lymphocytes, this receptor is most abundant in human eosinophils and B lymphocytes. We also review the evidence obtained from primary human leukocytes and immortalized cell lines regarding the regulation of their functions by the CB2 receptor, which underscore the urgent need to deepen our understanding of the CB2 receptor as an immunoregulator in humans.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy.,Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec City, QC, Canada.,Joint International Unit Between the Consiglio Nazionale Delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Naples, Italy
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| |
Collapse
|
8
|
Jayarajan S, Meissler JJ, Adler MW, Eisenstein TK. A Cannabinoid 2-Selective Agonist Inhibits Allogeneic Skin Graft Rejection In Vivo. Front Pharmacol 2022; 12:804950. [PMID: 35185546 PMCID: PMC8850832 DOI: 10.3389/fphar.2021.804950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous work from our laboratory showed that a CB2 selective agonist, O-1966, blocked the proliferative response of C57BL/6 mouse spleen cells exposed to spleen cells of C3HeB/FeJ mice in vitro in the mixed lymphocyte reaction (MLR). The MLR is widely accepted as an in vitro correlate of in vivo grant rejection. Mechanisms of the immunosuppression induced by the cannabinoid were explored, and it was shown that O-1966 in this in vitro assay induced CD25+Foxp3+ Treg cells and IL-10, as well as down-regulated mRNA for CD40 and the nuclear form of the transcription factors NF-κB and NFAT in T-cells. The current studies tested the efficacy of O-1966 in prolonging skin grafts in vivo. Full thickness flank skin patches (1-cm2) from C3HeB/FeJ mice were grafted by suturing onto the back of C57BL/6 mice. O-1966 or vehicle was injected intraperitoneally into treated or control groups of animals beginning 1 h pre-op, and then every other day until 14 days post-op. Graft survival was scored based on necrosis and rejection. Treatment with 5 mg/kg of O-1966 prolonged mean graft survival time from 9 to 11 days. Spleens harvested from O-1966 treated mice were significantly smaller than those of vehicle control animals based on weight. Flow cytometry analysis of CD4+ spleen cells showed that O-1966 treated animals had almost a 3-fold increase in CD25+Foxp3+ Treg cells compared to controls. When dissociated spleen cells were placed in culture ex vivo and stimulated with C3HeB/FeJ cells in an MLR, the cells from the O-1966 treated mice were significantly suppressed in their proliferative response to the allogeneic cells. These results support CB2 selective agonists as a new class of compounds to prolong graft survival in transplant patients.
Collapse
|
9
|
Yue S, Wang T, Yang Y, Fan Y, Zhou L, Li M, Fu F. Lipopolysaccharide/D-galactosamine-induced acute liver injury could be attenuated by dopamine receptor agonist rotigotine via regulating NF-κB signaling pathway. Int Immunopharmacol 2021; 96:107798. [PMID: 34162160 DOI: 10.1016/j.intimp.2021.107798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
The pathological of lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury is similar to what is seen clinically, and be mediated by the release of pro-inflammatory mediators. A growing body of studies have shown that dopamine (DA) and DA receptor agonist are associated with inflammation and immune response. Rotigotine, a non-ergoline dopamine receptor agonist, is a drug for the treatment of Parkinson's disease. Rotigotine-loaded microspheres (RoMS) is an intramuscular extended-release agent, which can steadily release rotigotine for more than 7 days after a single administration. The present study aimed to investigate the effects of rotigotine and RoMS on inflammation and acute liver injury induced by LPS/D-Gal in mice. The LPS/D-Gal-induced liver injury was evidenced by increases of serum aminotransferases activities and liver histological lesions. Pretreatment with rotigotine or RoMS not only ameliorated the liver histologic lesions, but also reduced the activities of serum aminotransferases and the production of TNF-α. It also showed that rotigotine and RoMS increased DA receptor 2 (DRD2) expression in LPS/D-Gal-exposed mice. Rotigotine and RoMS activated β-arrestin 2, inhibited the phosphorylation of Akt, IκB and the transposition of NF-κB. In line with the above findings, the protective effects of rotigotine and RoMS were abrogated by haloperidol, a DA receptor antagonist. In conclusion, dopamine receptor agonist can regulate NF-κB inflammatory signaling pathway and exert protective effects in LPS/D-Gal-induced liver injury.
Collapse
Affiliation(s)
- Shumin Yue
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunqi Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yiqian Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
10
|
Vaseghi S, Arjmandi-Rad S, Nasehi M, Zarrindast MR. Cannabinoids and sleep-wake cycle: The potential role of serotonin. Behav Brain Res 2021; 412:113440. [PMID: 34216647 DOI: 10.1016/j.bbr.2021.113440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Cannabis sativa (Marijuana) has a long history as a medicinal plant and Δ9-tetrahydrocannabinol (Δ9-THC) is the most active component in this plant. Cannabinoids are interesting compounds with various modulatory effects on physiological processes and cognitive functions. The use of cannabinoids is a double-edged sword, because they induce both adverse and therapeutic properties. One of the most important roles of cannabinoids is modulating sleep-wake cycle. Sleep, its cycle, and its mechanism are highly unknown. Also, the effects of cannabinoids on sleep-wake cycle are so inconsistent. Thus, understanding the role of cannabinoids in modulating sleep-wake cycle is a critical scientific goal. Cannabinoids interact with many neurotransmitter systems. In this review article, we chose serotonin due to its important role in regulating sleep-wake cycle. We found that the interaction between cannabinoids and serotonergic signaling especially in the dorsal raphe is extensive, unknown, and controversial.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Song J, Zhu Y, Zu W, Duan C, Xu J, Jiang F, Wang X, Li S, Liu C, Gao Q, Li H, Zhang Y, Tang W, Lu T, Chen Y. The discovery of quinoline derivatives, as NF-κB inducing kinase (NIK) inhibitors with anti-inflammatory effects in vitro, low toxicities against T cell growth. Bioorg Med Chem 2021; 29:115856. [PMID: 33199201 DOI: 10.1016/j.bmc.2020.115856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
NIK is a critical regulatory protein of the non-classical NF-kB pathway, and its dysregulated activation has been proved to be one of the pathogenic factors in a variety of autoimmune diseases and inflammatory diseases. Nevertheless, its corresponding development of inhibitors faces many obstacles, including the lack of structure types of known inhibitors, immature activity evaluation methods of compounds in vitro. In this study, a series of quinoline derivatives were obtained through rational design and chemical synthesis. Among them, the representative compounds 17c and 24c have excellent inhibitory activities on LPS-induced macrophage (J774) nitric oxide release and anti-Con A-stimulated primary T cell proliferation. This evaluation method has good universality and overcomes the obstacles mentioned above, which are faced by the current inhibitor research to a certain extent. Besides, the compound's toxicity against the growth of T cells under non-stress conditions was evaluated, for the first time, as an indicator for the investigation to avoid potential safety risks. Pharmacokinetic properties evaluation of the less toxic compound 24c confirmed its good metabolic behavior (especially oral properties, F% = 21.7%), and subsequent development value.
Collapse
Affiliation(s)
- Jianing Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yuqin Zhu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Weidong Zu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chunqi Duan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xinren Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shuwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenhe Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Qianqian Gao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
12
|
Liu QR, Canseco-Alba A, Liang Y, Ishiguro H, Onaivi ES. Low Basal CB2R in Dopamine Neurons and Microglia Influences Cannabinoid Tetrad Effects. Int J Mol Sci 2020; 21:E9763. [PMID: 33371336 PMCID: PMC7767340 DOI: 10.3390/ijms21249763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
There are two well-characterized cannabinoid receptors (CB1R and CB2R and other candidates): the central nervous system (CNS) enriched CB1R and peripheral tissue enriched CB2R with a wide dynamic range of expression levels in different cell types of human tissues. Hepatocytes and neurons express low baseline CB1R and CB2R, respectively, and their cell-type-specific functions are not well defined. Here we report inducible expression of CB1R in the liver by high-fat and high sugar diet and CB2R in cortical neurons by methamphetamine. While there is less controversy about hepatocyte CB1R, the presence of functional neuronal CB2R is still debated to date. We found that neuron CB2R basal expression was higher than that of hepatocyte CB1R by measuring mRNA levels of specific isoform CB2A in neurons isolated by fluorescence-activated cell sorting (FACS) and CB1A in hepatocytes isolated by collagenase perfusion of liver. For in vivo studies, we generated hepatocyte, dopaminergic neuron, and microglia-specific conditional knockout mice (Abl-Cnr1Δ, Dat-Cnr2Δ, and Cx3cr1-Cnr2Δ) of CB1R and CB2R by crossing Cnr1f/f and Cnr2f/f strains to Abl-Cre, Dat-Cre, and Cx3cr1-Cre deleter mouse strains, respectively. Our data reveals that neuron and microglia CB2Rs are involved in the "tetrad" effects of the mixed agonist WIN 55212-2, CB1R selective agonist arachidonyl-2'-chloroethylamide (ACEA), and CB2R selective agonist JWH133. Dat-Cnr2Δ and Cx3cr1-Cnr2Δ mice showed genotypic differences in hypomobility, hypothermia, analgesia, and catalepsy induced by the synthetic cannabinoids. Alcohol conditioned place preference was abolished in DAT-Cnr2Δ mice and remained intact in Cx3cr1-Cnr2Δ mice in comparison to WT mice. These Cre-loxP recombinant mouse lines provide unique approaches in cannabinoid research for dissecting the complex endocannabinoid system that is implicated in many chronic disorders.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Cannabinoids/pharmacology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/drug effects
- Microglia/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/physiology
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ana Canseco-Alba
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA;
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China;
| | - Hiroki Ishiguro
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA;
| |
Collapse
|
13
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|
14
|
Zhu Y, Ma Y, Zu W, Song J, Wang H, Zhong Y, Li H, Zhang Y, Gao Q, Kong B, Xu J, Jiang F, Wang X, Li S, Liu C, Liu H, Lu T, Chen Y. Identification of N-Phenyl-7 H-pyrrolo[2,3- d]pyrimidin-4-amine Derivatives as Novel, Potent, and Selective NF-κB Inducing Kinase (NIK) Inhibitors for the Treatment of Psoriasis. J Med Chem 2020; 63:6748-6773. [PMID: 32479083 DOI: 10.1021/acs.jmedchem.0c00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives with NF-κB inducing kinase (NIK) inhibitory activity were obtained through structure-based drug design and synthetic chemistry. Among them, 4-(3-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-4-morpholinophenyl)-2-(thiazol-2-yl)but-3-yn-2-ol (12f) was identified as a highly potent NIK inhibitor, along with satisfactory selectivity. The pharmacokinetics of 12f and its ability to inhibit interleukin 6 secretion in BEAS-2B cells were better than compound 1 developed by Amgen. Oral administration of different doses of 12f in an imiquimod-induced psoriasis mouse model showed effective alleviation of psoriasis, including invasive erythema, swelling, skin thickening, and scales. The underlying pathological mechanism involved attenuation of proinflammatory cytokine and chemokine gene expression, and the infiltration of macrophages after the treatment of 12f. This work provides a foundation for the development of NIK inhibitors, highlighting the potential of developing NIK inhibitors as a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yuqin Zhu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yuxiang Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Weidong Zu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jianing Song
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hua Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - You Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Qianqian Gao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Bo Kong
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Xinren Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shuwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Chenhe Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Haichun Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| |
Collapse
|
15
|
Asiatic acid ameliorates acute hepatic injury by reducing endoplasmic reticulum stress and triggering hepatocyte autophagy. Biomed Pharmacother 2020; 129:110375. [PMID: 32540645 DOI: 10.1016/j.biopha.2020.110375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), mutual crosstalk between autophagy and apoptosis-related signaling pathway, plays an important role in the process of acute liver injury (ALI). The present study was to investigate the effects and underlying mechanisms of Asiatic acid from Potentilla chinensis (AAPC) on ALI. The model of ALI in mice was induced by administration with Lipopolysaccharide/D-Galactosamine (LPS/D-GalN). The effects of AAPC on hepatic pathology and hepatocyte apoptosis were observed by hematoxylin-eosin (H&E) staining and TUNEL staining. Serum transaminases activities were measured using an automated biochemical analyzer. Moreover, ERS and autophagy were induced in LO2 cells, respectively. Cell cycle and apoptosis were analyzed using flow cytometry. In addition, ERS and autophagy-related pathways were detected in vivo and in vitro. The results showed that AAPC significantly ameliorated LPS/D-GalN-induced ALI in mice, as evidenced by the improvement of liver pathology and the decrease in serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities. Moreover, AAPC pre-treatment markedly inhibited thapsigargin-induced cell apoptosis, accompanied by cell cycle arrest at S/G1 phase in LO2 cells. AAPC notably inhibited the activation of the PERK/ATF6 and IRE1 pathway, alleviating the extent of ERS. Additionally, AAPC significantly promoted autophagy, as evidenced by the increase in the formation of autophagic vacuoles and the number of autophagosomes as well as the increased expressions of LC3II/I, Beclin-1, Atg5 and Atg7. In summary, our results indicate that AAPC significantly ameliorates ALI by inhibiting the ERS pathway and promoting hepatocyte autophagy.
Collapse
|
16
|
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the Prevention of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Bioeng Biotechnol 2020; 8:425. [PMID: 32478050 PMCID: PMC7240035 DOI: 10.3389/fbioe.2020.00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome includes a series of metabolic abnormalities that leads to diabetes mellitus and cardiovascular diseases. Plant extracts, due to their unique advantages like anti-inflammatory, antioxidant, and insulin sensitizing properties, are interesting therapeutic options to manage MetS; however, the poor solubility and low bioavailability of lipophilic bioactive components in the herbal extracts are two critical challenges. Nano-scale delivery systems are suitable to improve delivery of herbal extracts. This review, for the first time, focuses on nanoformulations of herbal extracts in MetS and related complications. Included studies showed that several forms of nano drug delivery systems such as nanoemulsions, solid lipid nanoparticles, nanobiocomposites, and green-synthesized silver, gold, and zinc oxide nanoparticles have been developed using herbal extracts. It was shown that the method of preparation and related parameters such as temperature and type of polymer are important factors affecting physicochemical stability and therapeutic activity of the final product. Many of these formulations could successfully decrease the lipid profile, inflammation, oxidative damage, and insulin resistance in in vitro and in vivo models of MetS-related complications. Further studies are still needed to confirm the safety and efficacy of these novel herbal formulations for clinical application.
Collapse
Affiliation(s)
- Zeinab Nouri
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sun JC, Du JJ, Li XQ, Li N, Wei W, Sun WY. Depletion of β-arrestin 2 protects against CCl4-induced liver injury in mice. Biochem Biophys Res Commun 2020; 522:485-491. [DOI: 10.1016/j.bbrc.2019.11.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
|