1
|
Ren Y, Wu F, Huo L, Wang X, Zhang Y, Fan M, Tan M, Zhao J, Cheng J, Zhao Z, Bao J. Switchable ROS generator and scavenger to prevent the cisplatin induced acute kidney injury and improve efficacy via synergistic chemodynamic/immune therapy. Mater Today Bio 2024; 29:101328. [PMID: 39569165 PMCID: PMC11576404 DOI: 10.1016/j.mtbio.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Acute kidney injury (AKI) induced by cisplatin (DDP), which is accompanied with the generation of reactive oxygen species (ROS), is a severe side effect during treatment and restricts the application of DDP. In this study, we develop ultrasmall Mn3O4 nanozyme (UMON) with tumor microenvironment (TME) responsive ROS scavenging and generating as adjuvant to alleviate DDP induced AKI with improved efficacy. In kidney, UMON with superoxide dismutase and catalase activity acts as ROS scavenger to eliminate ROS generated by DDP, successfully protecting the renal cells/tissue and alleviating AKI during DDP treatment. Alternatively, UMON rapidly responses to the high GSH level in TME and release Mn2+ in tumor. This unique feature endows it to generate hydroxyl radicals (∙OH) through a Fenton-like reaction and deplete GSH in tumor cell and tissue, achieving high efficient chemodynamic therapy (CDT). More importantly, the Mn2+ successfully activates the cGAS-STING pathway, initiating the immune response and effectively inhibiting the tumor metastases. The synergistic CDT and immune therapy effectively improve the anti-tumor efficacy of DDP in vitro and in vivo. This study demonstrates that TME responsive ROS scavenger/generator shows the potential to reduce side effects of DDP while improve its therapeutic efficacy, providing a new avenue to achieve efficient chemotherapy and promoting the progress of clinical chemotherapy.
Collapse
Affiliation(s)
- Yanan Ren
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Fei Wu
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Wang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengke Fan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Mingya Tan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Du Y, Wang Q, Zheng Z, Zhou H, Han Y, Qi A, Jiao L, Gong Y. Gut microbiota influence on lung cancer risk through blood metabolite mediation: from a comprehensive Mendelian randomization analysis and genetic analysis. Front Nutr 2024; 11:1425802. [PMID: 39323566 PMCID: PMC11423778 DOI: 10.3389/fnut.2024.1425802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Gut microbiota (GM) and metabolic alterations play pivotal roles in lung cancer (LC) development and host genetic variations are known to contribute to LC susceptibility by modulating the GM. However, the causal links among GM, metabolite, host genes, and LC remain to be fully delineated. Method Through bidirectional MR analyses, we examined the causal links between GM and LC, and utilized two-step mediation analysis to identify potential mediating blood metabolite. We employed diverse MR methods, including inverse-variance-weighted (IVW), weighted median, MR-Egger, weighted mode, and simple mode, to ensure a robust examination of the data. MR-Egger intercept test, Radial MR, MR-PRESSO, Cochran Q test and Leave-one-out (LOO) analysis were used for sensitivity analyses. Analyses were adjusted for smoking, alcohol intake frequency and air pollution. Linkage disequilibrium score regression and Steiger test were used to probe genetic causality. The study also explored the association between specific host genes and the abundance of gut microbes in LC patients. Results The presence of Bacteroides clarus was associated with an increased risk of LC (odds ratio [OR] = 1.07, 95% confidence interval [CI]: 1.03-1.11, p = 0.012), whereas the Eubacteriaceae showed a protective effect (OR = 0.82, 95% CI: 0.75-0.89, p = 0.001). These findings remained robust after False Discovery Rate (FDR) correction. Our mediator screening identified 13 blood metabolites that significantly influence LC risk after FDR correction, underscoring cystine and propionylcarnitine in reducing LC risk, while linking specific lipids and hydroxy acids to an increased risk. Our two-step mediation analysis demonstrated that the association between the bacterial pathway of synthesis of guanosine ribonucleotides and LC was mediated by Fructosyllysine, with mediated proportions of 11.38% (p = 0.037). LDSC analysis confirmed the robustness of these associations. Our study unveiled significant host genes ROBO2 may influence the abundance of pathogenic gut microbes in LC patients. Metabolic pathway analysis revealed glutathione metabolism and glutamate metabolism are the pathways most enriched with significant metabolites related to LC. Conclusion These findings underscore the importance of GM in the development of LC, with metabolites partly mediating this effect, and provide dietary and lifestyle recommendations for high-risk lung cancer populations.
Collapse
Affiliation(s)
- Yizhao Du
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongmei Zheng
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Han
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Liu R, Wang Y, Bu J, Li Q, Chen F, Zhu M, Chi H, Yu G, Zhu T, Zhu X, Zhao G. Construction and Validation of Novel Ferroptosis-related Risk Score Signature and Prognostic Prediction Nomogram for Patients with Colorectal Cancer. Int J Med Sci 2024; 21:1103-1116. [PMID: 38774759 PMCID: PMC11103399 DOI: 10.7150/ijms.91446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/25/2024] [Indexed: 05/24/2024] Open
Abstract
Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Jiawen Bu
- Department of Colorectal Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qingqing Li
- Department of Endoscopy, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Mengying Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Huanyu Chi
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Guilin Yu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Tong Zhu
- Department of Breast Surgery, Panjin Central Hospital, Panjin, Liaoning 124010, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning 110042, China
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States of America
| | - Guohua Zhao
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
4
|
Huang W, Wen F, Yang P, Li Y, Li Q, Shu P. Yi-qi-hua-yu-jie-du decoction induces ferroptosis in cisplatin-resistant gastric cancer via the AKT/GSK3β/NRF2/GPX4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155220. [PMID: 38056149 DOI: 10.1016/j.phymed.2023.155220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Resistance to chemotherapy in gastric cancer (GC) is a ubiquitous challenge for its treatment. Yi-qi-hua-yu-jie-du decoction (YJD), an empirical formula in Traditional Chinese Medicine (TCM), demonstrated survival-prolonging functions in patients with GC. Previous research has shown that YJD could also inhibit drug resistance in GC. However, the precise mechanisms for how YJD accomplishes this remain incompletely explained. PURPOSE The research aimed to identify differential metabolic characteristics in cisplatin-resistant GC and investigate whether YJD can target these differences to suppress GC drug resistance. METHODS Metabolomic analysis was conducted to identify metabolic disparities between cisplatin-resistant and parental GC cells, as well as metabolic modifications resulting from YJD intervention in cisplatin-resistant GC cells. The effect of YJD on ferroptosis stimulation was assessed by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA), iron ions, the reduced glutathione (GSH) to oxidised glutathione (GSSG) ratio, and alterations in mitochondrial morphology. Western blotting and quantitative real-time polymerase chain reaction (Q-PCR) were employed to verity the mechanisms of YJD-triggered ferroptosis through GPX4 and NRF2 overexpression models, alongside the AKT activator SC79. In vivo validation was conducted using nude mouse xenograft models. RESULTS Cisplatin-resistant GC exhibited altered GSH/GPX4 metabolism, and ferroptosis was a significantly enriched cell death pattern with YJD treatment in cisplatin-resistant GC cells. Ferroptosis biomarkers, including ROS, MDA, iron ions, the GSH/GSSG ratio, and mitochondrial morphology, were remarkably changed with the YJD intervention. Mechanistic experiments demonstrated that YJD inhibited the phosphorylation cascade activity of the AKT/GSK3β pathway, thereby reducing NRF2 expression. The level of GPX4, a crucial enzyme involved in glutathione metabolism, was attenuated, facilitating ferroptosis induction in cisplatin-resistant GC. CONCLUSION The research reveals, for the first time, changes in GSH/GPX4 metabolism in cisplatin-resistant GC cells based on metabolomic analysis. YJD induced ferroptosis in cisplatin-resistant GC by inhibiting GPX4 through the AKT/GSK3β/NRF2 pathway, thus attenuating the cisplatin drug resistance in GC. Our findings identify metabolic changes in cisplatin-resistant GC and establish a theoretical framework for YJD on tackling drug resistance in GC through ferroptosis.
Collapse
Affiliation(s)
- Wenjie Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fang Wen
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peipei Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qiurong Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Yang X, Zhang X, Shu X, Gong J, Yang J, Li B, Lin J, Chai Y, Liu J. The effects of polyethylene microplastics on the growth, reproduction, metabolic enzymes, and metabolomics of earthworms Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115390. [PMID: 37619398 DOI: 10.1016/j.ecoenv.2023.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The existing data regarding the effects of polyethylene (PE) microplastics (MPs) smaller than 5 mm in size on earthworms are insufficient to fully comprehend their toxicity. In this study, earthworms Eisenia fetida were exposed to artificially added PE at a concentration ranging from 0.05 to 20 g/kg soil (0.005%-2%) for 60 days to determine the concentration range causing negative effects on earthworms and to uncover the potential toxic mechanisms. The individual growth, reproduction, and metabolic enzyme activities, including phase I enzymes (cytochrome P450 [CYP] 1A2, 2B6, 2C9, and 3A4), and phase II metabolic enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione sulfotransferase (GST)), and metabolomics were measured. The observed variations in responses of multiple cross-scale endpoints indicated that individual indices are less responsive to PE MPs than metabolic enzymes or metabolomics. Despite the absence of significant alterations in growth inhibition based on body weight, PE MPs at concentrations equal to or exceeding 2.5 g/kg were found to exert a toxic effect on earthworms, which was evidenced by significant changes in metabolic enzyme activities (CYP1A2, 2B6, 2C9, and 3A4, SOD, CAT, and GST) and important small molecule metabolites screened based on metabolomics, likely due to the bioaccumulation of PE. The toxicity of PE MPs to earthworms is inferred to be associated with neurotoxicity, oxidative damage, decreased detoxification capacity, energy metabolism imbalance, and impaired amino acid and purine metabolism due to bioaccumulation. The findings of this study will enhance our understanding of the molecular toxicity mechanisms of PE MPs and contribute to a more accurate assessment of the ecological risks posed by PE MPs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Biquan Li
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junjie Lin
- Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| |
Collapse
|
6
|
Dual-responsive nanoparticles loading bevacizumab and gefitinib for molecular targeted therapy against non-small cell lung cancer. Acta Pharmacol Sin 2023; 44:244-254. [PMID: 35705687 DOI: 10.1038/s41401-022-00930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023] Open
Abstract
The combination of vascular endothelial growth factor (VEGF) inhibitors and tyrosine kinase inhibitors (TKIs) is newly available for molecular targeted therapy against non-small cell lung cancer (NSCLC) in clinic. However, the therapeutic benefits remain unsatisfying due to the poor drug delivery to targets of interest. In this study, we developed bevacizumab-coated gefitinib-loaded nanoparticles (BCGN) with dual-responsive drug release for inhibiting tumor angiogenesis and phosphorylation of epidermal growth factor receptor (EGFR). Through an exogenous corona strategy, bevacizumab is easily coated on gefitinib-loaded nanoparticles via electrostatic interaction. After intravenous injection, BCGN are efficiently accumulated in NSCLC tumors as confirmed by dual-model imaging. Bevacizumab is released from BCGN upon oxidation in tumor microenvironment, whereas gefitinib is released after being internalized by tumor cells and disassembled in reduction cytoplasm. The dual-responsive release of bevacizumab and gefitinib significantly inhibits tumor growth in both A549 and HCC827 human NSCLC models. Our approach provides a promising strategy to improve combinational molecular targeted therapy of NSCLC with precisely controlled drug release.
Collapse
|
7
|
Lee J, Roh JL. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 2022; 11:antiox11122444. [PMID: 36552652 PMCID: PMC9774303 DOI: 10.3390/antiox11122444] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
SLC7A11 is a cell transmembrane protein composing the light chain of system xc-, transporting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance. Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and interacting with redox-active proteins and their substrates could be a promising strategy for cancer treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-2988
| |
Collapse
|
8
|
Wang Q, Wu M, Li H, Rao X, Ao L, Wang H, Yao L, Wang X, Hong X, Wang J, Aa J, Sun M, Wang G, Liu J, Zhou F. Therapeutic targeting of glutamate dehydrogenase 1 that links metabolic reprogramming and Snail-mediated epithelial–mesenchymal transition in drug-resistant lung cancer. Pharmacol Res 2022; 185:106490. [DOI: 10.1016/j.phrs.2022.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 10/31/2022]
|
9
|
Magnesium Isoglycyrrhizinate Reduces the Target-Binding Amount of Cisplatin to Mitochondrial DNA and Renal Injury through SIRT3. Int J Mol Sci 2022; 23:ijms232113093. [DOI: 10.3390/ijms232113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrotoxicity is the dose-limiting factor of cisplatin treatment. Magnesium isoglycyrrhizinate (MgIG) has been reported to ameliorate renal ischemia–reperfusion injury. This study aimed to investigate the protective effect and possible mechanisms of MgIG against cisplatin-induced nephrotoxicity from the perspective of cellular pharmacokinetics. We found that cisplatin predominantly accumulated in mitochondria of renal tubular epithelial cells, and the amount of binding with mitochondrial DNA (mtDNA) was more than twice that with nuclear DNA (nDNA). MgIG significantly lowered the accumulation of cisplatin in mitochondria and, in particular, the degree of target-binding to mtDNA. MgIG notably ameliorated cisplatin-induced changes in mitochondrial membrane potential, morphology, function, and cell viability, while the magnesium donor drugs failed to work. In a mouse model, MgIG significantly alleviated cisplatin-caused renal dysfunction, pathological changes of renal tubules, mitochondrial ultrastructure variations, and disturbed energy metabolism. Both in vitro and in vivo data showed that MgIG recovered the reduction of NAD+-related substances and NAD+-dependent deacetylase sirtuin-3 (SIRT3) level caused by cisplatin. Furthermore, SIRT3 knockdown weakened the protective effect of MgIG on mitochondria, while SIRT3 agonist protected HK-2 cells from cisplatin and specifically reduced platinum-binding activity with mtDNA. In conclusion, MgIG reduces the target-binding amount of platinum to mtDNA and exerts a protective effect on cisplatin-induced renal injury through SIRT3, which may provide a new strategy for the treatment of cisplatin-induced nephrotoxicity.
Collapse
|
10
|
Chen K, Gong S, Fang X, Li Q, Ye M, Li J, Huang S, Zhao Y, Liu N, Li Y, Ma J. Non-coding RNA-mediated high expression of SFXN3 as a prognostic biomarker associated with paclitaxel resistance and immunosuppressive microenvironment in head and neck cancer. Front Immunol 2022; 13:920136. [PMID: 36159813 PMCID: PMC9493355 DOI: 10.3389/fimmu.2022.920136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Chemoresistance is the leading cause of poor prognosis in head and neck squamous cell carcinoma (HNSC); however, promising biomarkers to identify patients for stratified chemotherapy are lacking. Sideroflexin 3 (SFXN3) is an important mitochondrial serine transporter during one-carbon metabolism, which is involved in the proliferation of cancer cells. However, the specific role of SFXN3 in HNSC remains unknown. In this study, we performed expression and survival analysis for SFXN3 in pan-cancer using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) and found that SFXN3 served as a potential oncogene in HNSC. Notably, SFXN3 expression was found to be positively associated with enriched tumor-infiltrating macrophages, other immune suppressive cells, and immune checkpoint expression and resistance to paclitaxel. Gene, clinical, and immune variables included in the univariate and multivariate analyses showed that SFXN3 expression was an independent risk factor. Moreover, the LINC01270/hsa-miR-29c-3p/SFXN3 axis was identified as the most likely upstream non-coding RNA-related pathway of SFXN3 in HNSC using bioinformatic analysis, expression analysis, correlation analysis, and survival analysis. Taken together, our findings demonstrated that a non-coding RNA-mediated high expression of SFXN3 is a prognostic biomarker and is associated with the immunosuppressive microenvironment in HNSC.
Collapse
Affiliation(s)
- Kailin Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Gong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueliang Fang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingliang Ye
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junyan Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shengyan Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuheng Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Na Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingqin Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
12
|
Wang D, Tang Y, Feng F, Qi M, Fang J, Zhang Y, Chai Y, Cao Y, Lv D. Investigation of the apoptosis-inducing effect of docetaxel by a comprehensive LC-MS based metabolomics and network pharmacology approaches. Biomed Chromatogr 2022; 36:e5417. [PMID: 35633112 DOI: 10.1002/bmc.5417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
Docetaxel is one of the clinical first-line drugs and its combination with other chemotherapy agents for advanced or metastatic cancers has attracted widespread attention. Therefore, to promote the clinical application of docetaxel alone or in combination, a comprehensive investigation of the metabolic mechanism of docetaxel is of great importance. Here, we apply an integrative analysis of metabolomics and network pharmacology to elucidate the underlying mechanisms of docetaxel. After taking the intersection of the above two methods, 5 pathways including ABC transporters, Central carbon metabolism in cancer, Glycolysis and Gluconeogenesis, Cysteine and methionine metabolism, and Arginine biosynthesis have been screened out. In concern of the interaction network of these pathways and the anti-apoptosis effect of docetaxel itself, the Central carbon metabolism in cancer pathway was mainly focused. This study may help delineate global landscapes of cellular protein-metabolite interactions, to provide molecular insights about their mechanisms of action, to promote the clinical applications at well.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Fei Feng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Minyu Qi
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiahao Fang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|