1
|
Lu CT, Ko JL, Ou CC, Hsu CT, Hsiao YP, Tang SC. Genistein inhibited endocytosis and fibrogenesis in keloid via CTGF signaling pathways. GENES & NUTRITION 2024; 19:23. [PMID: 39465374 PMCID: PMC11520065 DOI: 10.1186/s12263-024-00758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study aimed to evaluate soy isoflavones' effect and potential use-specifically genistein-in treating human keloid fibroblast cells (KFs) and in a keloid tissue culture model. METHODS To investigate the effects of genistein on keloid, a wound-healing assay was performed to detect cell migration. Flow cytometry was used to measure apoptosis. Western blotting and immunofluorescence staining were performed to detect the expression of target proteins. KF tissues were isolated, cultured, and divided into the control, silenced connective tissue growth factor (CTGF) proteins, and shNC (negative control) groups. RESULTS Genistein suppressed cell proliferation and migration, triggering the cell cycle at the G2/M phase and increasing the expression of p53 dose-dependent in keloids. Genistein inhibited the expression of COL1A1, FN, and CTGF mRNA and protein. Knockdown CTGF reduced the migrated ability in KFs. Genistein also abated TGF-β1-induced keloid fibrosis through the endocytosis model. Separated and cultured the keloid patient's tissues decreased the cell migration ability by genistein treatment and was time-dose dependent. CONCLUSIONS This study indicated that genistein-induced p53 undergoes cell cycle arrest via the CTGF pathway-inhibited keloid cultured cells, and genistein suppressed the primary keloid cell migration, suggesting that our research provides a new strategy for developing drugs for treating keloids.
Collapse
Affiliation(s)
- Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chih-Ting Hsu
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Manufacturing Class, Puli Brewery, Taiwan Tobacco & Liquor Corporation, Nantou, 545, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
2
|
Bai R, Hao L, Zhou G, Fu Q, Zhang P, Lin P, Chen M. The mechanism of TGF-β mediating BRD4/STAT3 signaling pathway to promote fibroblast proliferation and thus promote keloid progression. Heliyon 2024; 10:e38188. [PMID: 39391472 PMCID: PMC11466596 DOI: 10.1016/j.heliyon.2024.e38188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The purpose of this study was to investigate the effect of TGF-β on keloid and its molecular mechanism in fibroblasts. METHODS The difference between normal tissue and keloid tissue can be detected using HE staining. Fibroblasts were treated with TGF-β, and then treated with the BRD4 inhibitor JQ1 and the STAT3 activator Colivelin TFA. Western blot was used to measure the relative protein expression of TGF-β, BRD4, p-STAT3, p-EZH2, C-myc, KLF2, KLF4, α-SMA, and Collagen-I. Immunofluorescence staining was used to measure the relative fluorescence intensity of BRD4, p-STAT3, α-SMA, and Collagen-I. Cell proliferation ability was evaluated by CCK-8 assay and colony formation assay. RESULTS The expression of TGF-β and BRD4 was significantly higher in keloid tissue compared to normal tissue. TGF-β mediated the BRD4/STAT3 signaling pathway to inhibit p-EZH2 and promote the expression of C-myc, KLF2, KLF4, α-SMA, and Collagen-I. Additionally, TGF-β mediated the BRD4/STAT3 signaling pathway to enhance fibroblast proliferation. CONCLUSION TGF-β mediates the BRD4/STAT3 signaling pathway to promote fibroblast proliferation and contribute to the progression of keloid.
Collapse
Affiliation(s)
| | | | - Guiwen Zhou
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100142, China
| | - Qiang Fu
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100142, China
| | - Peixuan Zhang
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100142, China
| | - Pianpian Lin
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100142, China
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100142, China
| |
Collapse
|
3
|
Kim HJ, Kim YH. Comprehensive Insights into Keloid Pathogenesis and Advanced Therapeutic Strategies. Int J Mol Sci 2024; 25:8776. [PMID: 39201463 PMCID: PMC11354446 DOI: 10.3390/ijms25168776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments, including surgical excision, radiation, laser therapies, and intralesional injections, yield variable success but are limited by high recurrence rates and potential adverse effects. Emerging therapies targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially offering more effective and lasting treatment outcomes. Despite advancements, further research is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights into practical treatments that can markedly enhance the quality of life for individuals affected by keloid scars.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14:e1755. [PMID: 39135385 PMCID: PMC11319607 DOI: 10.1002/ctm2.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
Heat shock protein 47 (HSP47) is a chaperone protein responsible for regulating collagen maturation and transport, directly impacting collagen synthesis levels. Aberrant HSP47 expression or malfunction has been associated with collagen-related disorders, most notably fibrosis. Recent reports have uncovered new functions of HSP47 in various cellular processes. Hsp47 dysregulation in these alternative roles has been linked to various diseases, such as cancer, autoimmune and neurodegenerative disorders, thereby highlighting its potential as both a diagnostic biomarker and a therapeutic target. In this review, we discuss the pathophysiological roles of HSP47 in human diseases, its potential as a diagnostic tool, clinical screening techniques and its role as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Essak. S. Khan
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
- German Consortium for Translational Cancer Research (DKTK)DKFZ Frankfurt‐MainzFrankfurt am MainGermany
| | - Tobias Däinghaus
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
| |
Collapse
|
5
|
Gu S, Huang X, Luo S, Liu Y, Khoong Y, Liang H, Tu L, Xu R, Yang E, Zhao Y, Yao M, Zan T. Targeting the nuclear long noncoding transcript LSP1P5 abrogates extracellular matrix deposition by trans-upregulating CEBPA in keloids. Mol Ther 2024; 32:1984-1999. [PMID: 38553852 PMCID: PMC11184311 DOI: 10.1016/j.ymthe.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 06/09/2024] Open
Abstract
Keloids are characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix (ECM) and are a major global health care burden among cutaneous diseases. However, the function of long noncoding RNA (lncRNA)-mediated ECM remodeling during the pathogenesis of keloids is still unclear. Herein, we identified a long noncoding transcript, namely, lymphocyte-specific protein 1 pseudogene 5 (LSP1P5), that modulates ECM component deposition in keloids. First, high-throughput transcriptome analysis showed that LSP1P5 was selectively upregulated in keloids and correlated with more severe disease in a clinical keloid cohort. Therapeutically, the attenuation of LSP1P5 significantly decreased the expression of ECM markers (COL1, COL3, and FN1) both in vitro and in vivo. Intriguingly, an antifibrotic gene, CCAAT enhancer binding protein alpha (CEBPA), is a functional downstream candidate of LSP1P5. Mechanistically, LSP1P5 represses CEBPA expression by hijacking Suppressor of Zeste 12 to the promoter of CEBPA, thereby enhancing the polycomb repressive complex 2-mediated H3K27me3 and changing the chromosomal opening status of CEBPA. Taken together, these findings indicate that targeting LSP1P5 abrogates fibrosis in keloids through epigenetic regulation of CEBPA, revealing a novel antifibrotic therapeutic strategy that bridges our current understanding of lncRNA regulation, histone modification and ECM remodeling in keloids.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Liying Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Ruoqing Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - En Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| |
Collapse
|
6
|
Hou S, Chen Y, Jin C, Lin N. Integrative analysis of bulk RNA-seq and scRNA-seq data indicates the prognostic and immunologic values of SERPINH1 in glioma. ENVIRONMENTAL TOXICOLOGY 2024; 39:3654-3665. [PMID: 38506564 DOI: 10.1002/tox.24192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND SERPINH1 is abnormally expressed in multiple cancers and is associated with malignant progression. However, few reports detail its role in the etiopathogenesis of glioma. Hence, the aim of this article was to investigate the potential value of SERPINH1 in glioma using an integrative analysis. METHODS Data of RNA-seq and scRNA-seq was obtained and evaluated using online databases. The expression of SERPINH1 was confirmed by qRT-PCR and immunohistochemistry. The prognostic value of SERPINH1 was evaluated using univariate and multivariate Cox regression analyses. SERPINH1-related signaling pathways and the interaction of SERPINH1 with immunity were also investigated. RESULTS SERPINH1 exhibited a markedly elevated expression in glioma compared to normal brain tissues in the online databases. Similar results were confirmed by qRT-PCR and immunohistochemistry. SERPINH1 was found to be an independent prognosis factor, and high expression of SERPINH1 indicated poor survival. Moreover, a nomogram was constructed to predict prognosis more accurately and intuitively. GSEA analysis showed that SERPINH1 was involved in seven signaling pathways, including JAK-STAT pathway. Further analysis indicated SERPINH1 was significantly associated with immunity, especially in low-grade glioma. Additionally, an examination of scRNA-seq data revealed that SERPINH1 was primarily expressed in T cells of the CD4+ and CD8+ subsets. CONCLUSIONS SERPINH1 is a key biomarker of glioma prognosis and is immunologically relevant, which provides additional options for targeted therapy of glioma.
Collapse
Affiliation(s)
- Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Yinan Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunjing Jin
- Laboratory Medicine Center, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| |
Collapse
|
7
|
Liu Y, Wang S, Yang F, Wang X, Zhang J, Han X, Zhang X, Wang Z. Application and progress of new technologies and new materials in the treatment of pathological scar. Front Chem 2024; 12:1389399. [PMID: 38752199 PMCID: PMC11094272 DOI: 10.3389/fchem.2024.1389399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Pathological scars (PS), including hypertrophic scars (HTS) and keloids, are a common complication of poor wound healing that significantly affects patients' quality of life. Currently, there are several treatment options for PS, including surgery, drug therapy, radiation therapy, and biological therapy. However, these treatments still face major challenges such as low efficacy, high side effects, and a high risk of recurrence. Therefore, the search for safer and more effective treatments is particularly urgent. New materials often have less immune rejection, good histocompatibility, and can reduce secondary damage during treatment. New technology can also reduce the side effects of traditional treatments and the recurrence rate after treatment. Furthermore, derivative products of new materials and biomaterials can improve the therapeutic effect of new technologies on PS. Therefore, new technologies and innovative materials are considered better options for enhancing PS. This review concentrates on the use of two emerging technologies, microneedle (MN) and photodynamic therapy (PDT), and two novel materials, photosensitizers and exosomes (Exos), in the treatment of PS.
Collapse
Affiliation(s)
- Yining Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Sisi Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fan Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuepeng Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jierui Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xinkun Han
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xipeng Zhang
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Xu W, Sinaki DG, Tang Y, Chen Y, Zhang Y, Zhang Z. Acne-induced pathological scars: pathophysiology and current treatments. BURNS & TRAUMA 2024; 12:tkad060. [PMID: 38585341 PMCID: PMC10998535 DOI: 10.1093/burnst/tkad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 04/09/2024]
Abstract
Acne is a common chronic inflammatory dermatosis that can lead to pathological scars (PSs, divided into hypertrophic scars and keloids). These kinds of abnormal scars seriously reduce the quality of life of patients. However, their mechanism is still unclear, resulting in difficult clinical prevention, unstable treatment effects and a high risk of recurrence. Available evidence supports inflammatory changes caused by infection as one of the keys to abnormal proliferation of skin fibroblasts. In acne-induced PSs, increasing knowledge of the immunopathology indicates that inflammatory cells directly secrete growth factors to activate fibroblasts and release pro-inflammatory factors to promote the formation of PSs. T helper cells contribute to PSs via the secretion of interleukin (IL)-4 and IL-13, the pro-inflammatory factors; while regulatory T cells have anti-inflammatory effects, secrete IL-10 and prostaglandin E2, and suppress fibrosis production. Several treatments are available, but there is a lack of combination regimens to target different aspects of acne-induced PSs. Overall, this review indicates that the joint involvement of inflammatory response and fibrosis plays a crucial role in acne-induced PSs, and also analyzes the interaction of current treatments for acne and PS.
Collapse
Affiliation(s)
- Wanyu Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dorsa Gholamali Sinaki
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yuchen Tang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yunsheng Chen
- Department of Burns and Plastic Surgery, Shanghai Institute of Burns Research, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
9
|
Qi W, Xiao X, Tong J, Guo N. Progress in the clinical treatment of keloids. Front Med (Lausanne) 2023; 10:1284109. [PMID: 38046417 PMCID: PMC10690427 DOI: 10.3389/fmed.2023.1284109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Keloid is a pathological scar that is higher than the skin surface following skin damage. Its lesion range often extends beyond the original damage boundary and does not naturally subside over time. Its pathogenesis is very complex, currently the main causes include fibroblast excessive proliferation, collagen and extracellular matrix (Extracellular matrix, ECM) excessive deposition, excessive angiogenesis, and so on. The traditional treatment method primarily involves surgical intervention, but it is associated with a high recurrence rate post-surgery. Consequently, many treatment methods are derived according to the different clinical characteristics of keloid. This paper will review the therapeutic progress in recent years from surgical treatment, physiotherapy, drug therapy, and biological therapy, with the goal of offering valuable insights for the clinical treatment of keloids.
Collapse
Affiliation(s)
| | | | - Jing Tong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Knoedler S, Knoedler L, Kauke-Navarro M, Rinkevich Y, Hundeshagen G, Harhaus L, Kneser U, Pomahac B, Orgill DP, Panayi AC. Regulatory T cells in skin regeneration and wound healing. Mil Med Res 2023; 10:49. [PMID: 37867188 PMCID: PMC10591349 DOI: 10.1186/s40779-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
As the body's integumentary system, the skin is vulnerable to injuries. The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality. To this end, multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue. Such temporally- and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation. In this context, regulatory T cells (Tregs) hold a key role in balancing immune homeostasis and mediating cutaneous wound healing. A comprehensive understanding of Tregs' multifaceted field of activity may help decipher wound pathologies and, ultimately, establish new treatment modalities. Herein, we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair. Further, we discuss how Tregs operate during fibrosis, keloidosis, and scarring.
Collapse
Affiliation(s)
- Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany.
| |
Collapse
|
11
|
Qiu ZK, Zhang MZ, Zhang WC, Li ZJ, Si LB, Long X, Yu NZ, Wang XJ. Role of HIF-1α in pathogenic mechanisms of keloids. J Cosmet Dermatol 2023; 22:1436-1448. [PMID: 36718786 DOI: 10.1111/jocd.15601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUDS AND OBJECTIVE Keloids are defined as overrepairing products that develop after skin lesions. Keloids are characterized by the proliferation of fibroblasts and the overaccumulation of extracellular matrix components (mainly collagen), leading to a locally hypoxic microenvironment. Hence, this article was aimed to review hypoxia in pathogenesis of keloids. METHODS We reviewed and summarized the relevant published studies. RESULTS Hypoxia results in the accumulation of hypoxia-inducible factor 1α (HIF-1α) in keloids, contributing to overactivation of the fibrotic signaling pathway, epithelial-mesenchymal transition, and changes in metabolism, eventually leading to aggravated fibrosis, infiltrative growth, and radiotherapy resistance. CONCLUSION It is, therefore, essential to understand the role of HIF-1α in the pathogenic mechanisms of keloids in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Zi-Kai Qiu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Jin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lou-Bin Si
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Yin Q, Wolkerstorfer A, Lapid O, Niessen FB, Van Zuijlen PPM, Gibbs S. The JAK-STAT pathway in keloid pathogenesis: a systematic review with qualitative synthesis. Exp Dermatol 2023; 32:588-598. [PMID: 36652549 DOI: 10.1111/exd.14747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Keloid tissues contain inflammatory cells and upregulated pro-inflammatory cytokines. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediate cellular responses to these cytokines. We performed a systematic review on the role of the JAK-STAT pathway in keloid pathogenesis and the evidence for JAK-STAT inhibitors in keloid treatment. The search combined the terms (1) keloid and (2) JAK or TYK or STAT and included MeSH terms and synonyms. Two reviewers screened the articles and assessed the full texts on eligibility. Data were collected on the tested drugs and molecules, the type of cells and tissues used in the experiments, and study findings on the association between the JAK-STAT pathway and keloid cells and tissues. A total of twenty preclinical studies were included. Eleven preclinical studies proved that STAT3 expression and phosphorylation are enhanced in keloid tissue and keloid fibroblasts. Thirteen different JAK and/or STAT inhibitors were investigated. Tested drugs inhibited keloid progression as demonstrated by different processes, including reduced collagen production, cell proliferation and migration, increased cell cycle arrest and apoptosis, enhanced antioxidant responses, decreased (paracrine) signalling, and decreased profibrotic gene expression. No clinical studies have been published to date. Preclinical studies indicate a role for the JAK-STAT pathway in keloid pathogenesis and a potential role for JAK-STAT inhibitors in keloid treatment. The effect of these drugs should be further investigated on relevant biomarkers in a human keloid skin model, preferably including immune cells besides keloid fibroblasts and keratinocytes and in clinical studies.
Collapse
Affiliation(s)
- Qi Yin
- Department of Dermatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Wolkerstorfer
- Department of Dermatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Oren Lapid
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank B Niessen
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Paul P M Van Zuijlen
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands.,Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, The Netherlands.,Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam institute for Infection and Immunity (AII), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Liu X, Li Y, Wang S, Lu M, Zou J, Shi Z, Xu B, Wang W, Hu B, Jin T, Wu F, Liu S, Fan C. PDGF-loaded microneedles promote tendon healing through p38/cyclin D1 pathway mediated angiogenesis. Mater Today Bio 2022; 16:100428. [PMID: 36238965 PMCID: PMC9552114 DOI: 10.1016/j.mtbio.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Tendon injury is one of the most serious orthopedic diseases often leading to disability of patients. Major shortages of tendon healing are due to its multiple comorbidities, uncertainty of therapeutic efficacy and insufficient of angiogenesis. With a deeper understanding of angiogenic mechanism of tendon healing, we investigated an innovative microneedle patch loaded with platelet derived growth factor (PDGF) to achieve a constant systemic administration of PDGF to enhance topical tendon healing. Rat achilles tendon injury model was performed as in vivo animal models. Histological staining showed an enhancement of tendon healing quality, especially angiogenesis. Biomechanical studies demonstrated an increase of tendon stiffness, maximum load and maximum stress with treatment of PDGF-loaded microneedles. Furthermore, MAPK/p38/Cyclin D1 pathway and angiogenesis were found to play an important role in tendon healing process by using a biological high throughput RNA-sequence method and bioinformatic analysis. The high throughput RNA-seq tendon healing results were confirmed by histochemical staining and western blot. These results suggest the novel therapeutic potential of PDGF-loaded microneedle patch in tendon surgery.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuo Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Zou
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Binbin Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bo Hu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, China
| | - Tuo Jin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shen Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
14
|
Yang W, Pan L, Cheng Y, Wu X, Tang B, Zhu H, Zhang M, Zhang Y. Nintedanib alleviates pulmonary fibrosis in vitro and in vivo by inhibiting the FAK/ERK/S100A4 signalling pathway. Int Immunopharmacol 2022; 113:109409. [DOI: 10.1016/j.intimp.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
15
|
Myofibroblasts Are Not Characteristic Features of Keloid Lesions. Plast Reconstr Surg Glob Open 2022; 10:e4680. [PMID: 36448015 PMCID: PMC9699581 DOI: 10.1097/gox.0000000000004680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 01/25/2023]
Abstract
UNLABELLED Keloids are disfiguring, scar-like lesions that are challenging to treat, with low response rates to current interventions and frequent recurrence. It has been widely reported that keloids are characterized by myofibroblasts, specialized contractile fibroblasts that express alpha-smooth muscle actin (α-SMA). However, evidence supporting a role for myofibroblasts in keloid pathology is inconclusive, with conflicting reports in the literature. This complicates development of more effective therapies, as the benefit of interventions targeting myofibroblasts is unclear. This study was undertaken to determine whether myofibroblasts can be considered characteristic of keloids. METHODS Myofibroblasts in tissue sections from keloids, hypertrophic scars (HTSs), and normal skin were localized by α-SMA immunostaining. Expression of α-SMA mRNA (ACTA2 gene) in normal skin and keloid tissue, and in fibroblasts from normal skin, keloid, and HTSs, was measured using quantitative polymerase chain reaction. RESULTS Normal skin did not exhibit α-SMA-expressing myofibroblasts, but myofibroblasts were identified in 50% of keloids and 60% of HTSs. No significant differences in ACTA2 expression between keloid and normal skin tissue were observed. Mean ACTA2 expression was higher in HTS (2.54-fold, P = 0.005) and keloid fibroblasts (1.75-fold, P = 0.046) versus normal fibroblasts in vitro. However, α-SMA expression in keloids in vivo was not associated with elevated ACTA2 in keloid fibroblasts in vitro. CONCLUSIONS Despite elevated ACTA2 in cultured keloid fibroblasts, myofibroblast presence is not a consistent feature of keloids. Therefore, therapies that target myofibroblasts may not be effective for all keloids. Further research is required to define the mechanisms driving keloid formation for development of more effective therapies.
Collapse
|
16
|
Huang RL, Liu C, Fu R, Yan Y, Yang J, Wang X, Li Q. Downregulation of PLK4 expression induces apoptosis and G0/G1-phase cell cycle arrest in keloid fibroblasts. Cell Prolif 2022; 55:e13271. [PMID: 35670224 PMCID: PMC9251049 DOI: 10.1111/cpr.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Materials and Methods We evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs. Results We discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro. Conclusions These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinggang Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Li J, Li Z, Wang S, Bi J, Huo R. Exosomes from human adipose-derived mesenchymal stem cells inhibit production of extracellular matrix in keloid fibroblasts via downregulating transforming growth factor-β2 and Notch-1 expression. Bioengineered 2022; 13:8515-8525. [PMID: 35333672 PMCID: PMC9161879 DOI: 10.1080/21655979.2022.2051838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Keloids are an excessive tissue response to dermal damage, characterized by uncontrolled growth and a high recurrence rate after various treatments. Abnormalities with the extracellular matrix (ECM) are one of the most important contributing factors to the formation of keloids. Although exosomes from human adipose-derived mesenchymal stem cells (adMSC-Exos) have been shown to promote repair and regeneration in wounds, they have seldom been studied for the treatment of keloids. In this study, we aimed to investigate the effects of adMSC-Exos on ECM remodeling in keloids using both in vitro and ex vivo models. The results showed that adMSC-Exos inhibited gene and protein expression of collagen I (COL-1), collagen III (COL-3), fibronectin (FN), and α-smooth muscle actin (α-SMA) in keloid fibroblasts (KFs). Furthermore, using an ex vivo tissue explant model, we found that adMSC-Exos significantly suppressed COL production and disrupted the microvessel stucture. We also demonstrated that adMSC-Exos inhibited the protein expression of Smad3 and Notch-1, and the expression of transforming growth factor β2 (TGF-β2) in KFs, and promoted the expression of TGF-β3. These findings largely explain the mechanisms underlying the inhibition of ECM production in keloids by adMSC-Exos. In conclusion, our results revealed that adMSC-Exos effectively inhibited the production of ECM in keloids, which provides a new potential alternative for the systemic treatment of keloids.
Collapse
Affiliation(s)
- Jing Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyu Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Song Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianhai Bi
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Li J, Zou Y, Wang S, Guo S, Huang Z, Huo R. Long-term explant culture: an improved method for consistently harvesting homogeneous populations of keloid fibroblasts. Bioengineered 2022; 13:1565-1574. [PMID: 34989327 PMCID: PMC8805853 DOI: 10.1080/21655979.2021.2014674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Explant culture is a more suitable method than enzyme digestion for the isolation of keloid fibroblasts (KFs), but it has a longer isolation period. In this study, we propose a long-term explant culture method. Unlike in the conventional explant culture method, we continued culturing explants to isolate KFs rather than discarding them during passage. We demonstrated that keloid explants could be cultured for more than 4 months to continuously yield enriched KFs, and the KFs from the repeatedly cultured explants had shorter isolation times. The biological behavior and fibrotic phenotypic characteristics of the KFs from the explants cultured long term were investigated, and no statistical differences were found compared with the KFs from the original explants. In conclusion, the long-term explant culture method was shown to be efficient for harvesting a large, homogeneous population of KFs. The high efficiency as well as ease of operation and sample saving make this method convenient for researchers working with KFs.
Collapse
Affiliation(s)
- Jing Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuqing Zou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Song Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shikai Guo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Zhishun Huang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Pinocembrin Ameliorates Skin Fibrosis via Inhibiting TGF-β1 Signaling Pathway. Biomolecules 2021; 11:biom11081240. [PMID: 34439906 PMCID: PMC8393190 DOI: 10.3390/biom11081240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/06/2023] Open
Abstract
Skin fibrotic diseases, such as keloids, are mainly caused by pathologic scarring of wounds during healing and characterized by benign cutaneous overgrowths of dermal fibroblasts. Current surgical and therapeutic modalities of skin fibrosis are unsatisfactory. Pinocembrin, a natural flavonoid, has been shown to possess a vast range of pharmacological activities including antimicrobial, antioxidant, anti-inflammatory, and anti-tumor activities. In this study we explored the potential effect and mechanisms of pinocembrin on skin fibrosis in vitro and in vivo. In vitro studies indicated that pinocembrin dose-dependently suppressed proliferation, migration, and invasion of keloid fibroblasts and mouse primary dermal fibroblasts. The in vivo studies showed that pinocembrin could effectively alleviate bleomycin (BLM)-induced skin fibrosis and reduce the gross weight and fibrosis-related protein expression of keloid tissues in xenograft mice. Further mechanism studies indicated that pinocembrin could suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced activation of skin fibroblasts. In conclusion, our results demonstrate the therapeutic potential of pinocembrin for skin fibrosis.
Collapse
|
20
|
Molecular Changes Underlying Hypertrophic Scarring Following Burns Involve Specific Deregulations at All Wound Healing Stages (Inflammation, Proliferation and Maturation). Int J Mol Sci 2021; 22:ijms22020897. [PMID: 33477421 PMCID: PMC7831008 DOI: 10.3390/ijms22020897] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive connective tissue accumulation, a hallmark of hypertrophic scaring, results in progressive deterioration of the structure and function of organs. It can also be seen during tumor growth and other fibroproliferative disorders. These processes result from a wide spectrum of cross-talks between mesenchymal, epithelial and inflammatory/immune cells that have not yet been fully understood. In the present review, we aimed to describe the molecular features of fibroblasts and their interactions with immune and epithelial cells and extracellular matrix. We also compared different types of fibroblasts and their roles in skin repair and regeneration following burn injury. In summary, here we briefly review molecular changes underlying hypertrophic scarring following burns throughout all basic wound healing stages, i.e. during inflammation, proliferation and maturation.
Collapse
|