1
|
Cheng YH, Chiang CY, Wu CH, Chien CT. 2'-Hydroxycinnamaldehyde, a Natural Product from Cinnamon, Alleviates Ischemia/Reperfusion-Induced Microvascular Dysfunction and Oxidative Damage in Rats by Upregulating Cytosolic BAG3 and Nrf2/HO-1. Int J Mol Sci 2024; 25:12962. [PMID: 39684673 DOI: 10.3390/ijms252312962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
2'-Hydroxycinnamaldehyde (HCA), a natural product isolated from the bark of Cinnamomum cassia, has anti-inflammatory and anti-tumor activities. In this study, we explored whether HCA preconditioning could protect the heart against ischemia/reperfusion (I/R)-induced oxidative injury through cytosolic Bcl-2-associated athanogene 3 (BAG3) upregulation. In vivo HCA preconditioning was performed intraperitoneally in adult male Wistar rats (50 mg/kg body weight) three times/week for 2 weeks before cardiac I/R injury. The animals were divided into sham control (sham), I/R, and HCA preconditioning plus I/R (HCA+I/R) groups. We examined left ventricular pressure cardiac hemodynamics, the microcirculation, electrocardiograms, infarct size, and oxidative stress and performed Western blots, immunohistochemistry, and cytokine array assays. HCA pretreatment, via BAG3 overexpression, inhibited H2O2-induced H9c2 cell death. Cardiac I/R injury increased ST-segment elevation, left ventricular end-diastolic pressure, infarct size, myocardial disruption, tissue edema, erythrocyte accumulation, leukocyte infiltration, reactive oxygen species, malondialdehyde, 8-isoprostane, caspase 3-mediated apoptosis, 4HNE/GPX4-mediated ferroptosis, and fibrosis but decreased the microcirculation, cytosolic BAG3, and Beclin-1/LC3 II-mediated autophagy in the I/R hearts. HCA preconditioning significantly decreased these oxidative injuries by increasing cardiac cytosolic BAG3 and Nrf2/HO-1 signaling. HCA preconditioning significantly decreased cardiac I/R-enhanced mitochondrial fission DRP1 expression. Our data suggest that HCA preconditioning can efficiently improve myocardial I/R injury-induced cardiac dysfunction, apoptosis, ferroptosis, mitochondrial fission, and autophagy inhibition through cardiac BAG3 and Nrf2/HO-1 upregulation.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- School of Life Science, National Taiwan Normal University, Taipei 117, Taiwan
| | - Chih-Yao Chiang
- Department of Medicial Research and Division of Cardiovascular Surgery, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei 114, Taiwan
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 117, Taiwan
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei 117, Taiwan
| |
Collapse
|
2
|
Casciaro C, Hamada H, Bloise E, Matthews SG. The paternal contribution to shaping the health of future generations. Trends Endocrinol Metab 2024:S1043-2760(24)00275-3. [PMID: 39562264 DOI: 10.1016/j.tem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Paternal health and exposure to adverse environments in the period prior to conception have a profound impact on future generations. Adversities such as stress, diet, and toxicants influence offspring health. Emerging evidence indicates that epigenetic mechanisms including noncoding RNA, DNA methylation, and chromatin remodelling mediate these effects. Preclinical studies have contributed to advancing mechanistic understanding in the field; however, human research is limited and primarily observational. Here, we discuss the evidence linking paternal to offspring health and advocate for further research in this area, which may ultimately inform policy and healthcare guidelines to improve paternal preconception health and offspring outcomes.
Collapse
Affiliation(s)
| | - Hirotaka Hamada
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada.
| |
Collapse
|
3
|
Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic Corticosterone Administration-Induced Mood Disorders in Laboratory Rodents: Features, Mechanisms, and Research Perspectives. Int J Mol Sci 2024; 25:11245. [PMID: 39457027 PMCID: PMC11508944 DOI: 10.3390/ijms252011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Mood disorders mainly affect the patient's daily life, lead to suffering and disability, increase the incidence rate of many medical illnesses, and even cause a trend of suicide. The glucocorticoid (GC)-mediated hypothalamus-pituitary-adrenal (HPA) negative feedback regulation plays a key role in neuropsychiatric disorders. The balance of the mineralocorticoid receptor (MR)/glucocorticoid receptor (GR) level contributes to maintaining the homeostasis of the neuroendocrine system. Consistently, a chronic excess of GC can also lead to HPA axis dysfunction, triggering anxiety, depression, memory loss, and cognitive impairment. The animal model induced by chronic corticosterone (CORT) administration has been widely adopted because of its simple replication and strong stability. This review summarizes the behavioral changes and underlying mechanisms of chronic CORT administration-induced animal models, including neuroinflammatory response, pyroptosis, oxidative stress, neuroplasticity, and apoptosis. Notably, CORT administration at different doses and cycles can destroy the balance of the MR/GR ratio to make dose-dependent effects of CORT on the central nervous system (CNS). This work aims to offer an overview of the topic and recommendations for future cognitive function research.
Collapse
Affiliation(s)
- Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Huan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Shuijin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| |
Collapse
|
4
|
Chen S, Ding S, Pang Y, Jin Y, Sun P, Li Y, Cao M, Wang Y, Wang Z, Wang T, Zou Y, Zhang Y, Xiao M. Dysregulated miR-124 mediates impaired social memory behavior caused by paternal early social isolation. Transl Psychiatry 2024; 14:392. [PMID: 39341799 PMCID: PMC11438908 DOI: 10.1038/s41398-024-03109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Early social isolation (SI) leads to various abnormalities in emotion and behavior during adulthood. However, the negative impact of SI on offspring remains unclear. This study has discovered that paternal early SI causes social memory deficits and anxiety-like behavior in F1 young adult mice, with alterations of myelin and synapses in the medial prefrontal cortex (mPFC). The 2-week SI in the F1 progeny exacerbates social memory impairment and hypomyelination in the mPFC. Furthermore, the down-regulation of miR-124, a key inhibitor of myelinogenesis, or over-expression of its target gene Nr4a1 in the mPFC of the F1 mice improves social interaction ability and enhances oligodendrocyte maturation and myelin formation. Mechanistically, elevated levels of miR-124 in the sperm of paternal SI mice are transmitted epigenetically to offspring, altering the expression levels of miR-124/Nr4a1/glucocorticoid receptors in mPFC oligodendrocytes. This, in turn, impedes the establishment of myelinogenesis-dependent social behavior. This study unveils a novel mechanism through which miR-124 mediates the intergenerational effects of early isolation stress, ultimately impairing the establishment of social behavior and neurodevelopment.
Collapse
Affiliation(s)
- Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxi Jin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yimiao Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, 213000, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| |
Collapse
|
5
|
Wang Y, Chang S, Chen D. Research trends and hotspots of ketamine from 2014 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1407301. [PMID: 38948929 PMCID: PMC11211255 DOI: 10.3389/fnins.2024.1407301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Background Despite this growing interest, there remains a lack of comprehensive and systematic bibliometric analyses of ketamine research. This study aimed to summarize the progress in ketamine research through bibliometric analysis, providing insights into the development and direction of the field. Methods Publications related to ketamine were retrieved from the Web of Science Core Collection (WoSCC) database on February 15, 2024. In conducting a comprehensive bibliometric analysis, a variety of bibliographic elements were meticulously collected to map the landscape of research within a specific field. Results Between January 1, 2014, and December 31, 2023, a total of 10,328 articles on ketamine research were published across 1,752 academic journals by 45,891 authors from 8,914 institutions in 128 countries. The publication volume has shown a steady increase over this period. The United States of America (USA) and the People's Republic of China lead in both publication and citation counts. The National Institute of Mental Health (NIMH) and Yale University emerge as the most active institutions in this research domain. Carlos Zarate of the NIH National Institute of Mental Health was noted for the highest number of significant publications and received the most co-citations. The analysis revealed key research themes including mechanism of action, adverse events, psychiatric applications, and perioperative implications. Conclusion This study provided comprehensive bibliometric and knowledge mapping analysis of the global ketamine research landscape, offering valuable insights into the trends, key contributors, and thematic focus areas within the field. By delineating the evolution of ketamine research, this study aims to guide future scholarly endeavors and enhance our understanding of ketamine's therapeutic potential.
Collapse
Affiliation(s)
- Yida Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Sile Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
6
|
Zhang H, Sun Y, Huang Z, Wu Z, Ying Y, Liu R, Lin J, Li C, Chen G. Jiawei-Xiaoyao pill elicits a rapid antidepressant effect, dependent on activating CaMKII/mTOR/BDNF signaling pathway in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117016. [PMID: 37567427 DOI: 10.1016/j.jep.2023.117016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei-Xiaoyao pill (JWX), a traditional Chinese medicine, was recorded in ancient Chinese medicine pharmacopoeia using for treatment of various diseases, including mood disorders. Current mainstream antidepressants have a disadvantage in delayed onset of action. The rapid antidepressant potential of JWX and the underlying mechanisms remain unclear. AIM OF THE STUDY We aimed to assess the rapid antidepressant potential of JWX, within the prescription dose range, and the distinct underlying neuroplasticity signaling mechanism. MATERIALS AND METHODS The rapid antidepressant response of JWX were determined using various behavioral paradigms, and in a corticosterone (CORT)-induced depression model in mice. The molecular neuroplasticity signaling and the expression of BDNF in the hippocampus was evaluated using immunoblotting and immunostaining. The contribution of specific signaling was investigated using pharmacological interventions. RESULTS A single dose of JWX induced rapid and persistent antidepressant effects in both the normal and chronic CORT-exposed mice. The phosphorylation of CaMKII, mTOR, ERK and the expressions of BDNF, synapsin1 and PSD95 increased at 30 min post JWX. JWX restored the expression of BDNF in the hippocampal dentate gyrus reduced by CORT-exposure. The rapid antidepressant effect and upregulation of BDNF expression by JWX was blunted by a mTOR antagonist, rapamycin, or a CaMKII antagonist, KN-93. CaMKII signaling blockade blunted mTOR signaling activated by JWX, but not vice versa. CONCLUSION JWX elicits a rapid antidepressant effect, via quickly stimulating CaMKII signaling, subsequently activating mTOR-BDNF signaling pathway, and thus enhancing hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zihao Huang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yin Ying
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Juan Lin
- Guangzhou Pharmaceutical Holdings Limited., Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, 510515, China
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holdings Limited., Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, 510515, China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Exploring Myocardial Ischemia-Reperfusion Injury Mechanism of Cinnamon by Network Pharmacology, Molecular Docking, and Experiment Validation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:1066057. [PMID: 36873789 PMCID: PMC9981296 DOI: 10.1155/2023/1066057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common complication of acute myocardial infarction that seriously endangers human health. Cinnamon, a traditional Chinese medicine, has been used to counteract MIRI as it has been shown to possess anti-inflammatory and antioxidant properties. To investigate the mechanisms of action of cinnamon in the treatment of MIRI, a deep learning-based network pharmacology method was established to predict potential active compounds and targets. The results of the network pharmacology showed that oleic acid, palmitic acid, beta-sitosterol, eugenol, taxifolin, and cinnamaldehyde were the main active compounds, and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), interleukin (IL)-7, and hypoxia-inducible factor 1 (HIF-1) are promising signaling pathways. Further molecular docking tests revealed that these active compounds and targets exhibited good binding abilities. Finally, experimental validation using a zebrafish model demonstrated that taxifolin, the active compound of cinnamon, has a potential protective effect against MIRI.
Collapse
|