1
|
Hu X, Yu X, Zhang L, Zhang Q, Ji M, Qi K, Wang S, Li Z, Xu K, Fu C. The aberrantly activated AURKB supports and complements the function of AURKA in CALR mutated cells through regulating the cell growth and differentiation. Exp Cell Res 2025; 444:114377. [PMID: 39706286 DOI: 10.1016/j.yexcr.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Aurora kinase B (AURKB) was reported to assist Aurora kinase A (AURKA) to regulate cellular mitosis. AURKA has been found activated in myeloproliferative neoplasms (MPNs) patients with CALR gene mutation, however, it's unclear whether AURKB displays a compensatory function of AURKA in regulation of CALR mutant cell growth and differentiation. Here, we found that AURKB, similar with AURKA, was aberrantly activated in CALR mutant patients, and displayed a more tolerance to the aurora kinase inhibitor. Inhibition of AURKA decreased cell growth and colony formation, induced cell differentiation and apoptosis, while, this inhibitive degree was further enhanced when AURKB was blocked by incremental inhibitor. Transcriptomic analyses revealed a more significant gene enrichment in cells with knockdown of AURKB than that of AURKA, mainly reflecting in oxidative phosphorylation, mitosis, proliferation and apoptosis signaling pathway. Moreover, downregulation of AURKB enhanced cell growth arrest and apoptosis more obviously than that of AURKA, and additionally promoted cell differentiation and metabolism-oxygen consumption rate (OCR). Otherwise, overexpression of AURKA or AURKB facilitated the cell proliferation of CALR mutant cells, and made cells more sensitive to the aurora kinase inhibitor. These results suggest that activated AURKB not only supports the functions of AURKA in promoting the growth of CALR mutated cells, but also has impeded the differentiation of these cells.
Collapse
Affiliation(s)
- Xueting Hu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Liwei Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qigang Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Mengchu Ji
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Chunling Fu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Faiz M, Riedemann M, Jutzi JS, Mullally A. Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications. Curr Hematol Malig Rep 2025; 20:4. [PMID: 39775969 DOI: 10.1007/s11899-024-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN. RECENT FINDINGS Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface. Targeting mutant CALR utilizing antibodies is the leading therapeutic approach, while mutant CALR-directed vaccines are also in early clinical trials. Additionally, chimeric antigen receptor (CAR) T-cells directed against mutant CALR are under evaluation in preclinical models. Approaches addressing the cellular effects of mutant CALR beyond MPL-JAK-STAT activation, such as targeting the unfolded protein response, proteasome, and N-glycosylation pathways, have been tested in preclinical models. In CALR-mutant MPN, the path from discovery to mechanistic understanding to direct therapeutic targeting has advanced rapidly. The longer-term goal remains clonally-selective therapies that modify the disease course in patients.
Collapse
Affiliation(s)
- Mifra Faiz
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Merle Riedemann
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Roerden M, Spranger S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat Rev Immunol 2025:10.1038/s41577-024-01111-8. [PMID: 39748116 DOI: 10.1038/s41577-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cancers can avoid immune-mediated elimination by acquiring traits that disrupt antitumour immunity. These mechanisms of immune evasion are selected and reinforced during tumour evolution under immune pressure. Some immunogenic subclones are effectively eliminated by antitumour T cell responses (a process known as immunoediting), which results in a clonally selected tumour. Other cancer cells arise to resist immunoediting, which leads to a tumour that includes several distinct cancer cell populations (referred to as intratumour heterogeneity (ITH)). Tumours with high ITH are associated with poor patient outcomes and a lack of responsiveness to immune checkpoint blockade therapy. In this Review, we discuss the different ways that cancer cells evade the immune system and how these mechanisms impact immunoediting and tumour evolution. We also describe how subclonal antigen presentation in tumours with high ITH can result in immune evasion.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Ragon Institute of Mass General Hospital, Massachusetts Institute for Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Shivarov V, Tsvetkova G, Micheva I, Hadjiev E, Petrova J, Ivanova A, Madjarova G, Ivanova M. Differential modulation of mutant CALR and JAK2 V617F-driven oncogenesis by HLA genotype in myeloproliferative neoplasms. Front Immunol 2024; 15:1427810. [PMID: 39351227 PMCID: PMC11439724 DOI: 10.3389/fimmu.2024.1427810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Ilina Micheva
- Department of Clinical Hematology, Saint Marina University Hospital, Medical University Varna, Varna, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Jasmina Petrova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Galia Madjarova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
5
|
Coltoff A, Kuykendall A. Emerging drug profile: JAK inhibitors. Leuk Lymphoma 2024; 65:1258-1269. [PMID: 38739701 DOI: 10.1080/10428194.2024.2353434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Dysregulated JAK/STAT hyperactivity is essential to the pathogenesis of myelofibrosis, and JAK inhibitors are the first-line treatment option for many patients. There are four FDA-approved JAK inhibitors for patients with myelofibrosis. Single-agent JAK inhibition can improve splenomegaly, symptom burden, cytopenias, and possibly survival in patients with myelofibrosis. Despite their efficacy, JAK inhibitors produce variable or short-lived responses, in part due to the large network of cooperating signaling pathways and downstream targets of JAK/STAT, which mediates upfront or acquired resistance to JAK inhibitors. Synergistic inhibition of JAK/STAT accessory pathways can increase the rates and duration of response for patients with myelofibrosis. Two recently reported, placebo-controlled phase III trials of novel agents added to JAK inhibition met their primary endpoint, and additional late-stage studies are ongoing. This paper will review role of dysregulated JAK/STAT signaling, biological plausible additional therapeutic targets and the recent advancements in combination strategies with JAK inhibitors for myelofibrosis.
Collapse
Affiliation(s)
- Alexander Coltoff
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew Kuykendall
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
6
|
Fulvio G, Baldini C, Mosca M, di Paolo A, Bocci G, Palumbo GA, Cacciola E, Migliorini P, Cacciola R, Galimberti S. Philadelphia chromosome-negative myeloproliferative chronic neoplasms: is clonal hematopoiesis the main determinant of autoimmune and cardio-vascular manifestations? Front Med (Lausanne) 2023; 10:1254868. [PMID: 37915324 PMCID: PMC10616863 DOI: 10.3389/fmed.2023.1254868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
In this article, we reviewed the possible mechanisms linking the clonal hematopoiesis of indeterminate potential (CHIP) to chronic myeloproliferative neoplasms (MPNs), autoimmune diseases (ADs), and cardiovascular diseases (CADs). CHIP is characterized by the presence of clonal mutations with an allelic frequency >2% in the peripheral blood without dysplasia, overt hematological neoplasms, or abnormalities in blood cell count. The prevalence may reach 20% of elderly healthy individuals and is considered a risk factor for myelodysplastic neoplasms and acute leukemia. In MPNs, CHIP is often associated with mutations such as JAK2V617F or DNMT3A, TET2, or ASXL1, which exhibit a 12.1- and 1.7-2-fold increase in CADs. Specifically, JAK2-mutated cells produce excessive cytokines and reactive oxygen species, leading to proinflammatory modifications in the bone marrow microenvironment. Consequently, the likelihood of experiencing thrombosis is influenced by the variant allele frequency (VAF) of the JAK2V617F mutation, which also appears to be correlated with anti-endothelial cell antibodies that sustain thrombosis. However, DNMT3A mutations induce pro-inflammatory T-cell polarization and activate the inflammasome complex, while TET2 downregulation leads to endothelial cell autophagy and inflammatory factor upregulation. As a result, in patients with TET2 and DNMT3A-related CHIP, the inflammasome hyperactivation represents a potential cause of CADs. CHIP also occurs in patients with large and small vessel vasculitis, while ADs are more frequently associated with MPNs. In these diseases, monocytes and neutrophils play a key role in the formation of neutrophil extracellular trap (NET) as well as anti-endothelial cell antibodies, resulting in a final procoagulant effect. ADs, such as systemic lupus erythematosus, psoriasis, and arthritis, are also characterized by an overexpression of the Rho-associated coiled-coil containing protein kinase 2 (ROCK2), a serine/threonine kinase that can hyperactivate the JAK-STAT pathway. Interestingly, hyperactivation of ROCK2 has also been observed in myeloid malignancies, where it promotes the growth and survival of leukemic cells. In summary, the presence of CHIP, with or without neoplasia, can be associated with autoimmune manifestations and thrombosis. In the presence of these manifestations, it is necessary to consider a "disease-modifying therapy" that may either reduce the clonal burden or inhibit the clonally activated JAK pathway.
Collapse
Affiliation(s)
- Giovanni Fulvio
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
- Department of Clinical and Translational Science, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Antonello di Paolo
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hematology, University of Catania, Catania, Italy
| | - Emma Cacciola
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hemostasis, University of Catania, Catania, Italy
| | - Paola Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology, University of Pisa, Pisa, Italy
| | - Rossella Cacciola
- Department of Clinical and Experimental Medicine, Hemostasis, University of Catania, Catania, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Holmström MO, Andersen M, Traynor S, Ahmad SM, Lisle TL, Handlos Grauslund J, Skov V, Kjær L, Ottesen JT, Gjerstorff MF, Hasselbalch HC, Andersen MH. Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow. Front Immunol 2023; 14:1240678. [PMID: 37662956 PMCID: PMC10470021 DOI: 10.3389/fimmu.2023.1240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Background Therapeutic cancer vaccination against mutant calreticulin (CALR) in patients with CALR-mutant (CALRmut) myeloproliferative neoplasms (MPN) induces strong T-cell responses against mutant CALR yet fails to demonstrate clinical activity. Infiltration of tumor specific T cells into the tumor microenvironment is needed to attain a clinical response to therapeutic cancer vaccination. Aim Determine if CALRmut specific T cells isolated from vaccinated patients enrich in the bone marrow upon completion of vaccination and explore possible explanations for the lack of enrichment. Methods CALRmut specific T cells from four of ten vaccinated patients were expanded, enriched, and analyzed by T-cell receptor sequencing (TCRSeq). The TCRs identified were used as fingerprints of CALRmut specific T cells. Bone marrow aspirations from the four patients were acquired at baseline and at the end of trial. T cells were enriched from the bone marrow aspirations and analyzed by TCRSeq to identify the presence and fraction of CALRmut specific T cells at the two different time points. In silico calculations were performed to calculate the ratio between transformed cells and effector cells in patients with CALRmut MPN. Results The fraction of CALRmut specific T cells in the bone marrow did not increase upon completion of the vaccination trial. In general, the T cell repertoire in the bone marrow remains relatively constant through the vaccination trial. The enriched and expanded CALRmut specific T cells recognize peripheral blood autologous CALRmut cells. In silico analyses demonstrate a high imbalance in the fraction of CALRmut cells and CALRmut specific effector T-cells in peripheral blood. Conclusion CALRmut specific T cells do not enrich in the bone marrow after therapeutic cancer peptide vaccination against mutant CALR. The specific T cells recognize autologous peripheral blood derived CALRmut cells. In silico analyses demonstrate a high imbalance between the number of transformed cells and CALRmut specific effector T-cells in the periphery. We suggest that the high burden of transformed cells in the periphery compared to the number of effector cells could impact the ability of specific T cells to enrich in the bone marrow.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Centre for Mathematical Modeling – Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Johnny T. Ottesen
- Centre for Mathematical Modeling – Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
How J, Garcia JS, Mullally A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 2023; 141:1922-1933. [PMID: 36534936 PMCID: PMC10163317 DOI: 10.1182/blood.2022017416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
9
|
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023; 141:1909-1921. [PMID: 36347013 PMCID: PMC10646774 DOI: 10.1182/blood.2022017578] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
Collapse
Affiliation(s)
- Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Kyllesbech C, Trier N, Mughal F, Hansen P, Holmström M, El Fassi D, Hasselbalch H, Skov V, Kjær L, Andersen M, Ciplys E, Slibinskas R, Frederiksen J, Højrup P, Houen G. Antibodies to calnexin and mutated calreticulin are common in human sera. Curr Res Transl Med 2023; 71:103380. [PMID: 36738659 DOI: 10.1016/j.retram.2023.103380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE OF THE STUDY Calreticulin is an endoplasmic reticulum chaperone protein, which is involved in protein folding and in peptide loading of major histocompatibility complex class I molecules together with its homolog calnexin. Mutated calreticulin is associated with a group of hemopoietic disorders, especially myeloproliferative neoplasms. Currently only the cellular immune response to mutated calreticulin has been described, although preliminary findings have indicated that antibodies to mutated calreticulin are not specific for myeloproliferative disorders. These findings have prompted us to characterize the humoral immune response to mutated calreticulin and its chaperone homologue calnexin. PATIENTS AND METHODS We analyzed sera from myeloproliferative neoplasm patients, healthy donors and relapsing-remitting multiple sclerosis patients for the occurrence of autoantibodies to wild type and mutated calreticulin forms and to calnexin by enzyme-linked immunosorbent assay. RESULTS Antibodies to mutated calreticulin and calnexin were present at similar levels in serum samples of myeloproliferative neoplasm and multiple sclerosis patients as well as healthy donors. Moreover, a high correlation between antibodies to mutated calreticulin and calnexin was seen for all patient and control groups. Epitope binding studies indicated that cross-reactive antibodies bound to a three-dimensional epitope encompassing a short linear sequence in the C-terminal of mutated calreticulin and calnexin. CONCLUSION Collectively, these findings indicate that calreticulin mutations may be common and not necessarily lead to onset of myeloproliferative neoplasm, possibly due to elimination of cells with mutations. This, in turn, may suggest that additional molecular changes may be required for development of myeloproliferative neoplasm.
Collapse
Affiliation(s)
- C Kyllesbech
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - N Trier
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark
| | - F Mughal
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - P Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - M Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Borgmester Ib Juuls Vej 25C, Copenhagen University Hospital, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - D El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - H Hasselbalch
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - V Skov
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - L Kjær
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - M Andersen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - E Ciplys
- Institute of Biotechnology, University of Vilnius, Sauletékio al. 7, Vilnius, Lithuania
| | - R Slibinskas
- Institute of Biotechnology, University of Vilnius, Sauletékio al. 7, Vilnius, Lithuania
| | - J Frederiksen
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark
| | - P Højrup
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - G Houen
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
11
|
Grauslund JH, Holmström MO, Martinenaite E, Lisle TL, Glöckner HJ, El Fassi D, Klausen U, Mortensen REJ, Jørgensen N, Kjær L, Skov V, Svane IM, Hasselbalch HC, Andersen MH. An arginase1- and PD-L1-derived peptide-based vaccine for myeloproliferative neoplasms: A first-in-man clinical trial. Front Immunol 2023; 14:1117466. [PMID: 36911725 PMCID: PMC9996128 DOI: 10.3389/fimmu.2023.1117466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Arginase-1 (ARG1) and Programed death ligand-1 (PD-L1) play a vital role in immunosuppression in myeloproliferative neoplasms (MPNs) and directly inhibit T-cell activation and proliferation. We previously identified spontaneous T-cell responses towards PD-L1 and ARG1 derived peptide epitopes in patients with MPNs. In the present First-in-Man study we tested dual vaccinations of ARG1- derived and PD-L1-derived peptides, combined with Montanide ISA-51 as adjuvant, in patients with Janus Kinase 2 (JAK2) V617F-mutated MPN. Methods Safety and efficacy of vaccination with ARG1- derived and PD-L1-derived peptides with montanide as an adjuvant was tested in 9 patients with MPN The primary end point was safety and toxicity evaluation. The secondary end point was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT04051307). Results The study included 9 patients with JAK2-mutant MPN of which 8 received all 24 planned vaccines within a 9-month treatment period. Patients reported only grade 1 and 2 vaccine related adverse events. No alterations in peripheral blood counts were identified, and serial measurements of the JAK2V617F allelic burden showed that none of the patients achieved a molecular response during the treatment period. The vaccines induced strong immune responses against both ARG1 and PD-L1- derived epitopes in the peripheral blood of all patients, and vaccine-specific skin-infiltrating lymphocytes from 5/6 patients could be expanded in vitro after a delayed-type hypersensitivity test. In two patients we also detected both ARG1- and PD-L1-specific T cells in bone marrow samples at the end of trial. Intracellular cytokine staining revealed IFNγ and TNFγ producing CD4+- and CD8+- T cells specific against both vaccine epitopes. Throughout the study, the peripheral CD8/CD4 ratio increased significantly, and the CD8+ TEMRA subpopulation was enlarged. We also identified a significant decrease in PD-L1 mRNA expression in CD14+ myeloid cells in the peripheral blood in all treated patients and a decrease in ARG1 mRNA expression in bone marrow of 6 out of 7 evaluated patients. Conclusion Overall, the ARG1- and PD-L1-derived vaccines were safe and tolerable and induced strong T-cell responses in all patients. These results warrant further studies of the vaccine in other settings or in combination with additional immune-activating treatments.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus E. J. Mortensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Gigoux M, Holmström MO, Zappasodi R, Park JJ, Pourpe S, Bozkus CC, Mangarin LMB, Redmond D, Verma S, Schad S, George MM, Venkatesh D, Ghosh A, Hoyos D, Molvi Z, Kamaz B, Marneth AE, Duke W, Leventhal MJ, Jan M, Ho VT, Hobbs GS, Knudsen TA, Skov V, Kjær L, Larsen TS, Hansen DL, Lindsley RC, Hasselbalch H, Grauslund JH, Lisle TL, Met Ö, Wilkinson P, Greenbaum B, Sepulveda MA, Chan T, Rampal R, Andersen MH, Abdel-Wahab O, Bhardwaj N, Wolchok JD, Mullally A, Merghoub T. Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Sci Transl Med 2022; 14:eaba4380. [PMID: 35704596 PMCID: PMC11182673 DOI: 10.1126/scitranslmed.aba4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The majority of JAK2V617F-negative myeloproliferative neoplasms (MPNs) have disease-initiating frameshift mutations in calreticulin (CALR), resulting in a common carboxyl-terminal mutant fragment (CALRMUT), representing an attractive source of neoantigens for cancer vaccines. However, studies have shown that CALRMUT-specific T cells are rare in patients with CALRMUT MPN for unknown reasons. We examined class I major histocompatibility complex (MHC-I) allele frequencies in patients with CALRMUT MPN from two independent cohorts. We observed that MHC-I alleles that present CALRMUT neoepitopes with high affinity are underrepresented in patients with CALRMUT MPN. We speculated that this was due to an increased chance of immune-mediated tumor rejection by individuals expressing one of these MHC-I alleles such that the disease never clinically manifested. As a consequence of this MHC-I allele restriction, we reasoned that patients with CALRMUT MPN would not efficiently respond to a CALRMUT fragment cancer vaccine but would when immunized with a modified CALRMUT heteroclitic peptide vaccine approach. We found that heteroclitic CALRMUT peptides specifically designed for the MHC-I alleles of patients with CALRMUT MPN efficiently elicited a CALRMUT cross-reactive CD8+ T cell response in human peripheral blood samples but not to the matched weakly immunogenic CALRMUT native peptides. We corroborated this effect in vivo in mice and observed that C57BL/6J mice can mount a CD8+ T cell response to the CALRMUT fragment upon immunization with a CALRMUT heteroclitic, but not native, peptide. Together, our data emphasize the therapeutic potential of heteroclitic peptide-based cancer vaccines in patients with CALRMUT MPN.
Collapse
Affiliation(s)
- Mathieu Gigoux
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Morten O. Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Joseph J. Park
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephane Pourpe
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Levi M. B. Mangarin
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Redmond
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Svena Verma
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Sara Schad
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Mariam M. George
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Divya Venkatesh
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arnab Ghosh
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY 10065, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Baransel Kamaz
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna E. Marneth
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William Duke
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Max Jan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vincent T. Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela S. Hobbs
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | | | - Dennis Lund Hansen
- Department of Hematology, Odense University Hospital, Odense 5000, Denmark
| | - R. Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hans Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | - Jacob H. Grauslund
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Thomas L. Lisle
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Patrick Wilkinson
- Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19002, USA
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Manuel A. Sepulveda
- Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19002, USA
| | - Timothy Chan
- Weill Cornell Medical College, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mads H. Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nina Bhardwaj
- Parker Institute for Cancer Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jedd D. Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Ann Mullally
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
13
|
Carnaz Simões AM, Holmström MO, Aehnlich P, Rahbech A, Radziwon-Balicka A, Zamora C, Wirenfeldt Klausen T, Skov V, Kjær L, Ellervik C, Fassi DE, Vidal S, Hasselbalch HC, Andersen MH, Thor Straten P. Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Front Immunol 2022; 13:866610. [PMID: 35603202 PMCID: PMC9120544 DOI: 10.3389/fimmu.2022.866610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic cancers of the hematopoietic stem cells in the bone marrow, and patients often harbor elevated numbers of circulating platelets (PLT). We investigated the frequencies of circulating PLT-lymphocyte aggregates in MPN patients and the effect of PLT-binding on CD8 T cell function. The phenotype of these aggregates was evaluated in 50 MPN patients and 24 controls, using flow cytometry. In vitro studies compared the proliferation, cytokine release, and cytoxicity of PLT-bound and PLT-free CD8 T cells. Frequencies of PLT-CD8 T cell aggregates, were significantly elevated in MPN patients. Advanced disease stage and CALR mutation associated with the highest aggregate frequencies with a predominance of PLT-binding to antigen-experienced CD8 T cells. PLT-bound CD8 T cells showed reduction in proliferation and cytotoxic capacity. Our data suggest that CD8 T cell responses are jeopardized in MPN patients. JAK2 and CALR exon 9 mutations – the two predominant driver mutations in MPN – are targets for natural T cell responses in MPN patients. Moreover, MPN patients have more infections compared to background. Thus, PLT binding to antigen experienced CD8 T cells could play a role in the inadequacy of the immune system to control MPN disease progression and prevent recurrent infections.
Collapse
Affiliation(s)
- Ana Micaela Carnaz Simões
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Anne Rahbech
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Aneta Radziwon-Balicka
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Carlos Zamora
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tobias Wirenfeldt Klausen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Data and Innovation Support, Region Zealand, Sorø, Denmark
| | - Daniel El Fassi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Silvia Vidal
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
15
|
Wang F, Qiu T, Wang H, Yang Q. State-of-the-Art Review on Myelofibrosis Therapies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e350-e362. [PMID: 34903489 DOI: 10.1016/j.clml.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms and acute myeloid leukemia progression. Currently, allogeneic haematopoietic stem cell transplantation (AHSCT) therapy is the only curative option for MF patients. However, AHSCT is strictly limited due to the high rates of morbidity and mortality. Janus kinase 2 (JAK2) inhibitor Ruxolitinib is the first-line treatment for intermediate-II or high-risk MF patients with splenomegaly and constitutional symptoms, but most MF patients develop resistance or intolerance to Ruxolitinib. Therefore, MF treatment is a challenge for the medical community. This review summarizes 3 investigated directions for MF therapy: monotherapies of JAK inhibitors, monotherapies of non-JAK targeted agents, combination therapies of Ruxolitinib and other agents. We emphasize combination of Ruxolitinib and other agents is a promising strategy.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
16
|
Ichimiya S, Fujimura A, Masuda M, Masuda S, Yasumatsu R, Umebayashi M, Tanaka H, Koya N, Nakagawa S, Yew PY, Yoshimura S, Onishi H, Nakamura M, Nakamura Y, Morisaki T. Contribution of pre-existing neoantigen-specific T cells to a durable complete response after tumor-pulsed dendritic cell vaccine plus nivolumab therapy in a patient with metastatic salivary duct carcinoma. Immunol Invest 2021; 51:1498-1514. [PMID: 34486463 DOI: 10.1080/08820139.2021.1973491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although immune checkpoint inhibitors (ICIs) have emerged as new therapeutic options for refractory cancer, they are only effective in select patients. Tumor antigen-pulsed dendritic cell (DC) vaccine therapy activates tumor-specific cytotoxic T lymphocytes, making it an important immunotherapeutic strategy. Salivary ductal carcinoma (SDC) carries a poor prognosis, including poor long-term survival after metastasis or recurrence. In this study, we reported a case of refractory metastatic SDC that was treated with a tumor lysate-pulsed DC vaccine followed by a single injection of low-dose nivolumab, and a durable complete response was achieved. We retrospectively analyzed the immunological factors that contributed to these long-lasting clinical effects. First, we performed neoantigen analysis using resected metastatic tumor specimens obtained before treatment. We found that the tumor had 256 non-synonymous mutations and 669 class I high-affinity binding neoantigen peptides. Using synthetic neoantigen peptides and ELISpot analysis, we found that peripheral blood mononuclear leukocytes cryopreserved before treatment contained pre-existing neoantigen-specific T cells, and the cells obtained after treatment exhibited greater reactivity to neoantigens than those obtained before treatment. Our results collectively suggest that the rapid and long-lasting effect of this combination therapy in our patient may have resulted from the presence of pre-existing neoantigen-specific T cells and stimulation and expansion of those cells following tumor lysate-pulsed DC vaccine and ICI therapy.
Collapse
Affiliation(s)
- Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Fujimura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shogo Masuda
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuji Yasumatsu
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayo Umebayashi
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Hiroto Tanaka
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Norihiro Koya
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Shinichiro Nakagawa
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Poh Yin Yew
- R&D Department, Cancer Precision Medicine Inc, Kanagawa, Japan
| | | | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| |
Collapse
|
17
|
Shide K. Calreticulin mutations in myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:179-226. [PMID: 34756244 DOI: 10.1016/bs.ircmb.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin (CALR) is a chaperone present in the endoplasmic reticulum, which is involved in the quality control of N-glycosylated proteins and storage of calcium ions. In 2013, the C-terminal mutation in CALR was identified in half of the patients with essential thrombocythemia and primary myelofibrosis who did not have a JAK2 or MPL mutation. The results of 8 years of intensive research are changing the clinical practice associated with treating myeloproliferative neoplasms (MPNs). The presence or absence of CALR mutations and their mutation types already provide important information for diagnosis and treatment decision making. In addition, the interaction with the thrombopoietin receptor MPL, which is the main mechanism of transformation by CALR mutation, and the expression of the mutant protein on the cell surface have a great potential as targets for molecular-targeted drugs and immunotherapy. This chapter presents recent findings on the clinical significance of the CALR mutation and the molecular basis by which this mutation drives MPNs.
Collapse
Affiliation(s)
- Kotaro Shide
- Division of Haematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
18
|
Handlos Grauslund J, Holmström MO, Jørgensen NG, Klausen U, Weis-Banke SE, El Fassi D, Schöllkopf C, Clausen MB, Gjerdrum LMR, Breinholt MF, Kjeldsen JW, Hansen M, Koschmieder S, Chatain N, Novotny GW, Petersen J, Kjær L, Skov V, Met Ö, Svane IM, Hasselbalch HC, Andersen MH. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Front Oncol 2021; 11:637420. [PMID: 33718228 PMCID: PMC7952976 DOI: 10.3389/fonc.2021.637420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background The calreticulin (CALR) exon 9 mutations that are identified in 20% of patients with Philadelphia chromosome negative chronic myeloproliferative neoplasms (MPN) generate immunogenic antigens. Thus, therapeutic cancer vaccination against mutant CALR could be a new treatment modality in CALR-mutant MPN. Methods The safety and efficacy of vaccination with the peptide CALRLong36 derived from the CALR exon 9 mutations was tested in a phase I clinical vaccination trial with montanide as adjuvant. Ten patients with CALRmut MPN were included in the trial and received 15 vaccines over the course of one year. The primary end point was evaluation of safety and toxicity of the vaccine. Secondary endpoint was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT03566446). Results Patients had a median age of 59.5 years and a median disease duration of 6.5 years. All patients received the intended 15 vaccines, and the vaccines were deemed safe and tolerable as only two grade three AE were detected, and none of these were considered to be related to the vaccine. A decline in platelet counts relative to the platelets counts at baseline was detected during the first 100 days, however this did not translate into neither a clinical nor a molecular response in any of the patients. Immunomonitoring revealed that four of 10 patients had an in vitro interferon (IFN)-γ ELISPOT response to the CALRLong36 peptide at baseline, and four additional patients displayed a response in ELISPOT upon receiving three or more vaccines. The amplitude of the immune response increased during the entire vaccination schedule for patients with essential thrombocythemia. In contrast, the immune response in patients with primary myelofibrosis did not increase after three vaccines. Conclusion Therapeutic cancer vaccination with peptide vaccines derived from mutant CALR with montanide as an adjuvant, is safe and tolerable. The vaccines did not induce any clinical responses. However, the majority of patients displayed a marked T-cell response to the vaccine upon completion of the trial. This suggests that vaccines directed against mutant CALR may be used with other cancer therapeutic modalities to enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Grønne Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Claudia Schöllkopf
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Mette Borg Clausen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Guy Wayne Novotny
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Jesper Petersen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
19
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021; 22:ijms22041906. [PMID: 33672997 PMCID: PMC7918142 DOI: 10.3390/ijms22041906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
- Correspondence: ; Tel.: +39-059-422-2173
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| |
Collapse
|
20
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021. [PMID: 33672997 DOI: 10.3390/ijms22041906.pmid:33672997;pmcid:pmc7918142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| |
Collapse
|
21
|
Venugopal S, Mascarenhas J. Novel therapeutics in myeloproliferative neoplasms. J Hematol Oncol 2020; 13:162. [PMID: 33267911 PMCID: PMC7709419 DOI: 10.1186/s13045-020-00995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Hyperactive signaling of the Janus-Associated Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway is central to the pathogenesis of Philadelphia-chromosome-negative myeloproliferative neoplasms (MPN), i.e., polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) which are characterized by inherent biological and clinical heterogeneity. Patients with MPNs suffer from substantial symptom burden and curtailed longevity due to thrombohemorrhagic complications or progression to myelofibrosis or acute myeloid leukemia. Therefore, the management strategies focus on thrombosis risk mitigation in PV/ET, alleviation of symptom burden and improvement in cytopenias and red blood cell transfusion requirements, and disease course alteration in PMF. The United States Food and Drug Administration's (USFDA) approval of two JAK inhibitors (ruxolitinib, fedratinib) has transformed the therapeutic landscape of MPNs in assuaging the need for frequent therapeutic phlebotomy (PV) and reduction in spleen and symptom burden (PV and PMF). Despite improving biological understanding of these complex clonal hematopoietic stem/progenitor cell neoplasms, none of the currently available therapies appear to modify the proclivity of the disease per se, thereby remaining an urgent unmet clinical need and an ongoing area of intense clinical investigation. This review will highlight the evolving targeted therapeutic agents that are in early- and late-stage MPN clinical development.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030 USA
| | - John Mascarenhas
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029 USA
| |
Collapse
|
22
|
Ivanova M, Tsvetkova G, Lukanov T, Stoimenov A, Hadjiev E, Shivarov V. Probable HLA-mediated immunoediting of JAK2 V617F-driven oncogenesis. Exp Hematol 2020; 92:75-88.e10. [DOI: 10.1016/j.exphem.2020.09.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
|
23
|
Holmström MO, Andersen MH. Healthy Donors Harbor Memory T Cell Responses to RAS Neo-Antigens. Cancers (Basel) 2020; 12:cancers12103045. [PMID: 33086698 PMCID: PMC7589254 DOI: 10.3390/cancers12103045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/22/2022] Open
Abstract
The RAS mutations are the most frequently occurring somatic mutations in humans, and several studies have established that T cells from patients with RAS-mutant cancer recognize and kill RAS-mutant cells. Enhancing the T cell response via therapeutic cancer vaccination against mutant RAS results in a clinical benefit to patients; thus, T cells specific to RAS mutations are effective at battling cancer. As the theory of cancer immuno-editing indicates that healthy donors may clear malignantly transformed cells via immune-mediated killing, and since T cells have been shown to recognize RAS-mutant cancer cells, we investigated whether healthy donors harbor T-cell responses specific to mutant RAS. We identified strong and frequent responses against several epitopes derived from the RAS codon 12 and codon 13 mutations. Some healthy donors demonstrated a response to several mutant epitopes, and some, but not all, exhibited cross-reactivity to the wild-type RAS epitope. In addition, several T cell responses were identified against mutant RAS epitopes in healthy donors directly ex vivo. Clones against mutant RAS epitopes were established from healthy donors, and several of these clones did not cross-react with the wild-type epitope. Finally, CD45RO+ memory T cells from healthy donors demonstrated a strong response to several mutant RAS epitopes. Taken together, these data suggest that the immune system in healthy donors spontaneously clears malignantly transformed RAS-mutant cells, and the immune system consequently generates T-cell memory against the mutations.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, DK-2730 Herlev, Denmark;
- Correspondence: ; Tel.: +45-38-682-602
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, DK-2730 Herlev, Denmark;
- Institute for Immunology and Microbiology, Copenhagen University, DK-2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Holmström MO, Hasselbalch HC, Andersen MH. Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:E1763. [PMID: 32630667 PMCID: PMC7407874 DOI: 10.3390/cancers12071763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPN) are neoplastic diseases of the hematopoietic stem cells in the bone marrow. MPN are characterized by chronic inflammation and immune dysregulation. Of interest, the potent immunostimulatory cytokine interferon-α has been used to treat MPN for decades. A deeper understanding of the anti-cancer immune response and of the different immune regulatory mechanisms in patients with MPN has paved the way for an increased perception of the potential of cancer immunotherapy in MPN. Therapeutic vaccination targeting the driver mutations in MPN is one recently described potential new treatment modality. Furthermore, T cells can directly react against regulatory immune cells because they recognize proteins like arginase and programmed death ligand 1 (PD-L1). Therapeutic vaccination with arginase or PD-L1 therefore offers a novel way to directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens like mutant CALR and mutant JAK2. Other therapeutic options that could be used in concert with therapeutic cancer vaccines are immune checkpoint-blocking antibodies and interferon-α. For more advanced MPN, adoptive cellular therapy is a potential option that needs more preclinical investigation. In this review, we summarize current knowledge about the immune system in MPN and discuss the many opportunities for anti-cancer immunotherapy in patients with MPN.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
25
|
Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci 2020; 111:2682-2688. [PMID: 32462673 PMCID: PMC7419020 DOI: 10.1111/cas.14503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Deregulation of cytokine signaling is frequently associated with various pathological conditions, including malignancies. In patients with myeloproliferative neoplasms (MPNs), recurrent somatic mutations in the calreticulin (CALR) gene, which encodes a molecular chaperone that resides in the endoplasmic reticulum, have been reported. Studies have defined mutant CALR as an oncogene promoting the development of MPN, and deciphered a novel molecular mechanism by which mutant CALR constitutively activates thrombopoietin receptor MPL and its downstream molecules to induce cellular transformation. The mechanism of interaction and activation of MPL by mutant CALR is unique, not only due to the latter forming a homomultimeric complex through a novel mutant‐specific sequence generated by frameshift mutation, but also for its ability to interact with immature asparagine‐linked glycan for eventual engagement with immature MPL in the endoplasmic reticulum. The complex formed between mutant CALR and MPL is then transported to the cell surface, where it induces constitutive activation of downstream kinase JAK2 bound to MPL. Refined structural and cell biological studies can provide an in‐depth understanding of this unusual mechanism of receptor activation by a mutant molecular chaperone. Mutant CALR is also involved in modulation of the immune response, transcription, and intracellular homeostasis, which could contribute to the development of MPN. In the present article, we comprehensively review the current understanding of the underlying molecular mechanisms for mutant molecular chaperone‐induced cellular transformation.
Collapse
Affiliation(s)
- Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Bankar A, Gupta V. Investigational non-JAK inhibitors for chronic phase myelofibrosis. Expert Opin Investig Drugs 2020; 29:461-474. [PMID: 32245330 DOI: 10.1080/13543784.2020.1751121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Patients with myelofibrosis (MF) have no effective treatment option after the failure of approved JAK inhibitor (JAKi) therapy. Non-JAK inhibitors (non-JAKi) that target non-canonical molecular pathways are undergoing clinical evaluations to optimize efficacy and/or to reduce hematological toxicity of JAKi. AREA COVERED This article reviews the efficacy data from completed and ongoing early phase clinical trials of non-JAKi agents for chronic phase MF. The article also illuminates some of the challenges of myelofibrosis drug development. EXPERT OPINION Most non-JAKi agents tested so far have shown modest benefit in improving the efficacy of ruxolitinib. Several novel agents such as BET inhibitor- CPI-0610, activin receptor ligand trap- luspatercept, recombinant pentraxin-PRM-151, telomerase inhibitor- imetelstat and bcl-2 inhibitor- navitoclax, have shown promising activity; however, they require vigorous evaluation in randomized controlled trials to understand the clinical benefit. Drugs that target new molecular pathways (MDM2, p-selectin, TIM-3, TGF-β, aurora kinase) and immune-based strategies (CALR vaccine, anti-PD-1, allogeneic cord blood regulatory T cells) are in early phase trials. Further translational studies to target leukemic stem cells, improvement in trial designs by incorporating control arm and survival endpoints, and patient-focused collaborations among all stakeholders could pave a way for future success in MF drug development.
Collapse
Affiliation(s)
- Aniket Bankar
- Medical Oncology and Hematology, Princess Margaret Cancer Center , Toronto, Ontario, Canada
| | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Center , Toronto, Ontario, Canada
| |
Collapse
|
27
|
Mutant calreticulin in myeloproliferative neoplasms. Blood 2020; 134:2242-2248. [PMID: 31562135 DOI: 10.1182/blood.2019000622] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/19/2019] [Indexed: 01/03/2023] Open
Abstract
Recurrent mutations in calreticulin are present in ∼20% of patients with myeloproliferative neoplasms (MPNs). Since its discovery in 2013, we now have a more precise understanding of how mutant CALR, an endoplasmic reticulum chaperone protein, activates the JAK/STAT signaling pathway via a pathogenic binding interaction with the thrombopoietin receptor MPL to induce MPNs. In this Spotlight article, we review the current understanding of the biology underpinning mutant CALR-driven MPNs, discuss clinical implications, and highlight future therapeutic approaches.
Collapse
|
28
|
McLornan DP, Harrison CN. Forging ahead or moving back: dilemmas and disappointments of novel agents for myeloproliferative neoplasms. Br J Haematol 2020; 191:21-36. [PMID: 32167592 DOI: 10.1111/bjh.16573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
The common 'Philadelphia chromosome'-negative myeloproliferative neoplasms (MPN) comprise essential thrombocythaemia, polycythaemia vera and myelofibrosis. These are clinically diverse disorders and present many challenges during their course, ranging from the management of very indolent, chronic-phase disease through to very aggressive stages frequently associated with poor quality of life, heavy symptom burdens and potentially life expectancies of <18 months. Their management also requires expertise in thrombosis and haemostasis in addition to marrow failure, debilitating symptom control and balancing the 'pros and cons' of intensive therapy such as allogeneic stem cell transplant versus novel and established therapies. In the past 15 years this field has seen rapid advances following an understanding of the pivotal importance of constitutive Janus kinase/signal transducers and activators of transcription (JAK/STAT) signalling, the interplay of the wider genomic landscape and the development of updated diagnostic criteria, prognostic scores and targeted therapies. In this article, we review the successes and failures of novel agents and approaches to MPN management.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Holmström MO, Cordua S, Skov V, Kjær L, Pallisgaard N, Ellervik C, Hasselbalch HC, Andersen MH. Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer. Cancer Immunol Immunother 2020; 69:315-324. [PMID: 31915854 DOI: 10.1007/s00262-019-02473-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
There is mounting evidence that the immune system can spontaneously clear malignant lesions before they manifest as overt cancer, albeit this activity has been difficult to demonstrate in humans. The calreticulin (CALR) exon 9 mutations are driver mutations in patients with chronic myeloproliferative neoplasms (MPN), which are chronic blood cancers. The CALR mutations generate a neo-antigen that is recognized by patient T cells, and T cells isolated from a patient with a CALR-mutation can recognize and kill autologous CALR-mutant cells. Surprisingly, healthy individuals display frequent and strong T cell responses to the CALR neo-antigens too. Furthermore, healthy individuals display immune responses to all parts of the mutant CALR epitope, and the CALR neo-epitope specific responses are memory T cell responses. These data suggest that although healthy individuals might acquire a CALR mutation, the mutant cells can be eliminated by the immune system. Additionally, a small fraction of healthy individuals harbor a CALR exon 9 mutation. Four healthy individuals carrying CALR mutations underwent a full medical examination including a bone marrow biopsy after a median follow up of 6.2 years. None of these patients displayed any signs of CALR-mutant MPN. Additionally, all healthy individuals displayed strong CALR neo-epitope specific T cell responses suggesting that these healthy individuals retained their CALR-mutant cells in the editing stage for several years. Thus, we suggest that CALR-mutant MPN could be a disease model of cancer immuno-editing, as we have demonstrated that CALR-mutant MPN displays all three stages described in the theory of cancer immuno-editing.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Herlev Hospital, Borgmester Ib Juuls Vej 25C, 5. Sal, 2730, Herlev, Denmark.
| | - Sabrina Cordua
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Niels Pallisgaard
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Production, Research, and Innovation, Region Zealand, Sorø, Denmark.,Department of Laboratory Medicine, Harvard Medical School, Boston Children's Hospital, Boston, USA
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Herlev Hospital, Borgmester Ib Juuls Vej 25C, 5. Sal, 2730, Herlev, Denmark.,Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Roerden M, Nelde A, Walz JS. Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy? Front Immunol 2019; 10:3004. [PMID: 31921218 PMCID: PMC6934135 DOI: 10.3389/fimmu.2019.03004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neoantigens derive from non-synonymous somatic mutations in malignant cells. Recognition of neoantigens presented via human leukocyte antigen (HLA) molecules on the tumor cell surface by T cells holds promise to enable highly specific and effective anti-cancer immune responses and thus neoantigens provide an exceptionally attractive target for immunotherapy. While genome sequencing approaches already enable the reliable identification of somatic mutations in tumor samples, the identification of mutation-derived, naturally HLA-presented neoepitopes as targets for immunotherapy remains challenging, particularly in low mutational burden cancer entities, including hematological malignancies. Several approaches have been utilized to identify neoepitopes from primary tumor samples. Besides whole genome sequencing with subsequent in silico prediction of potential mutation-derived HLA ligands, mass spectrometry (MS) allows for the only unbiased identification of naturally presented mutation-derived HLA ligands. The feasibility of characterizing and targeting these novel antigens has recently been demonstrated in acute myeloid leukemia (AML). Several immunogenic, HLA-presented peptides derived from mutated Nucleophosmin 1 (NPM1) were identified, allowing for the generation of T-cell receptor-transduced NPM1mut-specific T cells with anti-leukemic activity in a xenograft mouse model. Neoantigen-specific T-cell responses have also been identified for peptides derived from mutated isocitrate dehydrogenase (IDHmut), and specific T-cell responses could be induced by IDHmut peptide vaccination. In this review, we give a comprehensive overview on known neoantigens in hematological malignancies, present possible prediction and discovery tools and discuss their role as targets for immunotherapy approaches.
Collapse
Affiliation(s)
- Malte Roerden
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Holmström MO, Novotny GW, Petersen J, Aaboe-Jørgensen M, Hasselbalch HC, Andersen MH, Nielsen SL, Fassi DE, Schöllkopf C. Progression of JAK2-mutant polycythemia vera to CALR-mutant myelofibrosis severely impacts on disease phenotype and response to therapy. Leuk Lymphoma 2019; 60:3296-3299. [DOI: 10.1080/10428194.2019.1633634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Guy W. Novotny
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Jesper Petersen
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Mia Aaboe-Jørgensen
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads H. Andersen
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniel El Fassi
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Holmström MO, Hasselbalch HC, Andersen MH. Neo-antigen specific memory T-cell responses in healthy individuals. Oncoimmunology 2019; 8:1599640. [PMID: 31143522 DOI: 10.1080/2162402x.2019.1599640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
The driver mutations in exon 9 of the calreticulin protein have only been identified in patients with myeloid cancers. We recently demonstrated that healthy individuals display strong and frequent T-cell responses towards this mutation. This memory T-cell response is likely evidence of the elimination of mutated cells in healthy individuals.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.,National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|