1
|
Sharma N, Loscocco GG, Gangat N, Guglielmelli P, Pardanani A, Vannucchi AM, Alkhateeb HB, Tefferi A, Ho VT. When and how to transplant in myelofibrosis - recent trends. Leuk Lymphoma 2024:1-19. [PMID: 39540360 DOI: 10.1080/10428194.2024.2422835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (AHSCT) is currently the only treatment modality that is capable of curing myelofibrosis (MF). Although outcomes of AHSCT have improved vastly in recent years owing to advancements in HLA typing, conditioning regimens, and supportive care, it remains a procedure with a considerable risk in MF patients due to conditioning regimen related toxicity, higher rates of graft failure, infections, and graft versus host disease (GVHD). Recent progress in the treatment and prevention of GVHD with post-transplant cyclophosphamide has also rendered transplantation from alternative donors feasible and safer, thus improving access to patients without HLA-identical donors. Accordingly, all patients with intermediate or high-risk MF today should be referred for potential transplant evaluation to consider the pros and cons of an early versus a delayed transplant strategy. Individual risk assessment in MF is best facilitated by contemporary prognostic models that incorporate both clinical and genetic risk factors. The current review highlights new information regarding risk stratification in MF, anchored by practical algorithms that facilitate patient selection for specific treatment actions, including AHSCT.
Collapse
Affiliation(s)
- Naman Sharma
- Department of Hematology and Oncology, University of Massachusetts-Baystate Medical Center, Springfield, MA, USA
| | - Giuseppe G Loscocco
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | | | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | | | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | | | | | - Vincent T Ho
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Jaime-Pérez JC, Valdespino-Valdes J, Gómez-De León A, Barragán-Longoria RV, Dominguez-Villanueva A, Cantú-Rodríguez OG, Gutiérrez-Aguirre CH, Gómez-Almaguer D. A comparison of haploidentical versus HLA-identical sibling outpatient hematopoietic cell transplantation using reduced intensity conditioning in patients with acute leukemia. Front Immunol 2024; 15:1400610. [PMID: 39430740 PMCID: PMC11486716 DOI: 10.3389/fimmu.2024.1400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Background Hematopoietic cell transplantation (HCT) increases survival for acute leukemia. Outpatient allogeneic HCT reduces costs and increases transplant rates in developing countries. We report outcomes of outpatient HLA-identical and haploidentical HCT in acute leukemia. Methods This single-center retrospective cohort study analyzed 121 adult patients with acute myeloblastic (AML) and acute lymphoblastic leukemia (ALL) receiving an outpatient allogeneic HCT with peripheral blood allografts after reduced-intensity conditioning (RIC) from 2012-2022. Results There were 81 (67%) haploidentical and 40 (33%) HLA-identical transplants. Complete chimerism (CC) at day +100 was not different in HLA-identical compared to haploidentical HCT (32.5% and 38.2%, P=0.054). Post-HCT complications, including neutropenic fever (59.3% vs. 40%), acute graft-versus-host-disease (aGVHD) (46.9% vs. 25%), cytokine release syndrome (CRS) (18.5% vs. 2.5%), and hospitalization (71.6% vs 42.5%) were significantly more frequent in haploidentical HCT. Two-year overall survival (OS) was 60.6% vs. 46.9%, (P=0.464) for HLA-identical and haplo-HCT, respectively. There was no difference in the 2-year disease-free-survival (DFS) (33.3% vs. 35%, P=0.924) between transplant types. In multivariate analysis, positive measurable residual disease (MRD) at 30 days (HR 8.8, P=0.018) and 100 days (HR 28.5, P=0.022) was associated with lower OS, but not with non-relapse mortality (NRM) (P=0.252 and P=0.123, univariate). In univariate analysis, both 30-day and 100-day MRD were associated with lower DFS rates (P=0.026 and P=0.006), but only day 30 MRD was significant in multivariate analysis (P=0.050). In the case of relapse, only MRD at day 100 was associated with increased risk in the univariate and multivariate analyses (HR 4.48, P=0.003 and HR 4.67, P=0.008). Chronic graft-versus-host-disease (cGVHD) was protective for NRM (HR 0.38, P=0.015). There was no difference in cumulative incidence of relapse (CIR) between transplant types (P=0.126). Forty-four (36.4%) patients died, with no difference between HCT type (P=0.307). Septic shock was the most frequent cause of death with 17 cases, with no difference between transplant types. Conclusions Outpatient peripheral blood allogenic HCT after RIC is a valid and effective alternative for adult patients suffering acute myeloblastic or lymphoblastic leukemia in low-income populations.
Collapse
Affiliation(s)
- José Carlos Jaime-Pérez
- Hematology Department, Internal Medicine Division, Dr. José E. González University Hospital, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Oh ST, Verstovsek S, Gupta V, Platzbecker U, Devos T, Kiladjian J, McLornan DP, Perkins A, Fox ML, McMullin MF, Mead AJ, Egyed M, Mayer J, Sacha T, Kawashima J, Huang M, Strouse B, Mesa R. Changes in bone marrow fibrosis during momelotinib or ruxolitinib therapy do not correlate with efficacy outcomes in patients with myelofibrosis. EJHAEM 2024; 5:105-116. [PMID: 38406514 PMCID: PMC10887367 DOI: 10.1002/jha2.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
Bone marrow fibrosis (BMF) is a pathological feature of myelofibrosis, with higher grades associated with poor prognosis. Limited data exist on the association between outcomes and BMF changes. We present BMF data from Janus kinase (JAK) inhibitor-naive patients from SIMPLIFY-1 (NCT01969838), a double-blind, randomized, phase 3 study of momelotinib vs ruxolitinib. Baseline and week 24 bone marrow biopsies were graded from 0 to 3 as per World Health Organization criteria. Other assessments included Total Symptom Score, spleen volume, transfusion independence status, and hemoglobin levels. Paired samples were available from 144 and 160 patients randomized to momelotinib and ruxolitinib. With momelotinib and ruxolitinib, transfusion independence was achieved by 87% and 44% of patients with BMF improvement of ≥1 grade and 76% and 56% of those with stable/worsening BMF; there was no association between BMF changes and transfusion independence for either arm (momelotinib, p = .350; ruxolitinib, p = .096). Regardless of BMF changes, hemoglobin levels also generally increased on momelotinib but decreased on ruxolitinib. In addition, no associations between BMF changes and spleen (momelotinib, p = .126; ruxolitinib, p = .407)/symptom (momelotinib, p = .617; ruxolitinib, p = .833) outcomes were noted, and no improvement in overall survival was observed with ≥1-grade BMF improvement (momelotinib, p = .395; ruxolitinib, p = .407). These data suggest that the anemia benefit of momelotinib is not linked to BMF changes, and question the use of BMF assessment as a surrogate marker for clinical benefit with JAK inhibitors.
Collapse
Affiliation(s)
- Stephen T. Oh
- Division of HematologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Srdan Verstovsek
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vikas Gupta
- Department of Medicine, Princess Margaret Cancer CentreUniversity of TorontoTorontoCanada
| | - Uwe Platzbecker
- Clinic of Hematology, Cellular Therapy, and HemostaseologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Timothy Devos
- Microbiology, and Immunology, Laboratory of Molecular Immunology (Rega Institute)Department of Hematology, University Hospitals Leuven and Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU LeuvenLeuvenBelgium
| | - Jean‐Jacques Kiladjian
- Université Paris Cité, AP‐HP, Hôpital Saint‐Louis, Centre d’Investigations CliniquesParisFrance
| | - Donal P. McLornan
- Department of HaematologyGuy's and St Thomas’ NHS Foundation Trust and University College HospitalLondonUK
| | - Andrew Perkins
- Australian Centre for Blood DiseasesMonash UniversityMelbourneAustralia
| | - Maria Laura Fox
- Department of HaematologyVall d'Hebron University HospitalBarcelonaSpain
| | | | - Adam J. Mead
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineNIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Miklos Egyed
- Department of HematologySomogy County Kaposi Mór General HospitalKaposvárHungary
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and OncologyMasaryk University and University Hospital BrnoBrnoCzech Republic
| | - Tomasz Sacha
- Department of HematologyJagiellonian University HospitalKrakówPoland
| | - Jun Kawashima
- Sierra Oncology, a GSK companySan MateoCaliforniaUSA
| | - Mei Huang
- Sierra Oncology, a GSK companySan MateoCaliforniaUSA
| | - Bryan Strouse
- Sierra Oncology, a GSK companySan MateoCaliforniaUSA
| | - Ruben Mesa
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
4
|
Kröger N, Bacigalupo A, Barbui T, Ditschkowski M, Gagelmann N, Griesshammer M, Gupta V, Hamad N, Harrison C, Hernandez-Boluda JC, Koschmieder S, Jain T, Mascarenhas J, Mesa R, Popat UR, Passamonti F, Polverelli N, Rambaldi A, Robin M, Salit RB, Schroeder T, Scott BL, Tamari R, Tefferi A, Vannucchi AM, McLornan DP, Barosi G. Indication and management of allogeneic haematopoietic stem-cell transplantation in myelofibrosis: updated recommendations by the EBMT/ELN International Working Group. Lancet Haematol 2024; 11:e62-e74. [PMID: 38061384 DOI: 10.1016/s2352-3026(23)00305-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 12/24/2023]
Abstract
New options for medical therapy and risk scoring systems containing molecular data are leading to increased complexity in the management of patients with myelofibrosis. To inform patients' optimal care, we updated the 2015 guidelines on indications for and management of allogeneic haematopoietic stem-cell transplantation (HSCT) with the support of the European Society for Blood and Marrow Transplantation (EBMT) and European LeukemiaNet (ELN). New recommendations were produced using a consensus-building methodology after a comprehensive review of articles released from January, 2015 to December, 2022. Seven domains and 18 key questions were selected through a series of questionnaires using a Delphi process. Key recommendations in this update include: patients with primary myelofibrosis and an intermediate-2 or high-risk Dynamic International Prognostic Scoring System score, or a high-risk Mutation-Enhanced International Prognostic Score Systems (MIPSS70 or MIPSS70-plus) score, or a low-risk or intermediate-risk Myelofibrosis Transplant Scoring System score should be considered candidates for allogeneic HSCT. All patients who are candidates for allogeneic HSCT with splenomegaly greater than 5 cm below the left costal margin or splenomegaly-related symptoms should receive a spleen-directed treatment, ideally with a JAK-inhibitor; HLA-matched sibling donors remain the preferred donor source to date. Reduced intensity conditioning and myeloablative conditioning are both valid options for patients with myelofibrosis. Regular post-transplantation driver mutation monitoring is recommended to detect and treat early relapse with donor lymphocyte infusion. In a disease where evidence-based guidance is scarce, these recommendations might help clinicians and patients in shared decision making.
Collapse
Affiliation(s)
- Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Andrea Bacigalupo
- Department of Hematology, Fondazione Policlinico Universitario Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziano Barbui
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Markus Ditschkowski
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, Essen, Germany
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Griesshammer
- University Clinic for Hematology, Oncology, Haemostaseology and Palliative Care, Johannes Wesling Medical Center Minden, University of Bochum, Bochum, Germany
| | - Vikas Gupta
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Nada Hamad
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Haematology, St Vincent's Hospital, Sydney, NSW, Australia; School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | | | | | - Steffen Koschmieder
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tania Jain
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruben Mesa
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Uday R Popat
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesco Passamonti
- Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Polverelli
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marie Robin
- Department of Hematology, University Hospital of Saint Louis, Paris, France
| | | | - Thomas Schroeder
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, Essen, Germany
| | | | - Roni Tamari
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alessandro M Vannucchi
- Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Azienda Ospedaliera-Universitaria Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donal P McLornan
- Department of Haematology and Stem Cell Transplantation, University College London Hospitals NHS Trust, London, UK
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico S Matteo, Pavia, Italy
| |
Collapse
|
5
|
Kröger N, Wolschke C, Gagelmann N. How I treat transplant-eligible patients with myelofibrosis. Blood 2023; 142:1683-1696. [PMID: 37647853 DOI: 10.1182/blood.2023021218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Despite the approval of Janus kinase inhibitors and novel agents for patients with myelofibrosis (MF), disease-modifying responses remain limited, and hematopoietic stem cell transplantation (HSCT) remains the only potentially curative treatment option. The number of HSCTs for MF continues to increase worldwide, but its inherent therapy-related morbidity and mortality limit its use for many patients. Furthermore, patients with MF often present at an older age, with cytopenia, splenomegaly, and severe bone marrow fibrosis, posing challenges in managing them throughout the HSCT procedure. Although implementation of molecular analyses enabled improved understanding of disease mechanisms and subsequently sparked development of novel drugs with promising activity, prospective trials in the HSCT setting are often lacking, making an evidence-based decision process particularly difficult. To illustrate how we approach patients with MF with respect to HSCT, we present 3 different clinical scenarios to capture relevant aspects that influence our decision making regarding indication for, or against, HSCT. We describe how we perform HSCT according to different risk categories and, furthermore, discuss our up-to-date approach to reduce transplant-related complications. Last, we show how to harness graft-versus-MF effects, particularly in the posttransplant period to achieve the best possible outcomes for patients.
Collapse
Affiliation(s)
- Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Jungius S, Adam FC, Grosheintz K, Medinger M, Buser A, Passweg JR, Halter JP, Meyer SC. Characterization of engraftment dynamics in myelofibrosis after allogeneic hematopoietic cell transplantation including novel conditioning schemes. Front Oncol 2023; 13:1205387. [PMID: 37637037 PMCID: PMC10449533 DOI: 10.3389/fonc.2023.1205387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Myelofibrosis (MF) is a rare hematopoietic stem cell disorder progressing to bone marrow (BM) failure or blast phase. Allogeneic hematopoietic cell transplantation (HCT) represents a potentially curative therapy for a limited subset of patients with advanced MF, who are eligible, but engraftment in MF vs. AML is delayed which promotes complications. As determinants of engraftment in MF are incompletely characterized, we studied engraftment dynamics at our center. Methods A longitudinal cohort of 71 allogeneic HCT performed 2000-2019 with >50% after 2015 was evaluated. Results Median time to neutrophil engraftment ≥0.5x109/l was +20 days post-transplant and associated with BM fibrosis, splenomegaly and infused CD34+ cell number. Engraftment dynamics were similar in primary vs. secondary MF and were independent of MF driver mutations in JAK2, CALR and MPL. Neutrophil engraftment occurred later upon haploidentical HCT with thiotepa-busulfan-fludarabine conditioning, post-transplant cyclophosphamide and G-CSF (TBF-PTCy/G-CSF) administered to 9.9% and 15.6% of patients in 2000-2019 and after 2015, respectively. Engraftment of platelets was similarly delayed, while reconstitution of reticulocytes was not affected. Conclusions Since MF is a rare hematologic malignancy, this data from a large number of HCT for MF is essential to substantiate that later neutrophil and platelet engraftment in MF relates both to host and treatment-related factors. Observations from this longitudinal cohort support that novel conditioning schemes administered also to rare entities such as MF, require detailed evaluation in larger, multi-center cohorts to assess also indicators of long-term graft function and overall outcome in patients with this infrequent hematopoietic neoplasm undergoing allogeneic transplantation.
Collapse
Affiliation(s)
- Sarah Jungius
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Franziska C. Adam
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Michael Medinger
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Andreas Buser
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jakob R. Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jörg P. Halter
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Müskens KF, Lindemans CA, Dandis R, Nierkens S, Belderbos ME. Definitions, incidence and outcome of poor graft function after hematopoietic cell transplantation: A systematic review and meta-analysis. Blood Rev 2023; 60:101076. [PMID: 36990959 DOI: 10.1016/j.blre.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Poor graft function (PGF) after allogeneic hematopoietic stem cell transplantation (HCT) is a serious complication with high morbidity and mortality. The reported incidence of PGF, its risk factors and outcome vary substantially between studies. This variability may be explained by heterogeneity in patient cohorts and HCT strategies, differences in the underlying causes of cytopenia, as well as by differences in PGF definition. In this systematic review and meta-analysis, we provide an overview of the various PGF definitions used and determined the impact of this variability on the reported incidence and outcome. We searched MEDLINE, EMBASE and Web of Science up to July 2022, for any study on PGF in HCT recipients. We performed random-effect meta-analyses for incidence and outcome and subgroup analyses based on different PGF criteria. Among 69 included studies (14.265 HCT recipients), we found 63 different PGF definitions, using various combinations of 11 common criteria. The median incidence of PGF was 7% (IQR: 5-11%, 22 cohorts). The pooled survival of PGF patients was 53% (95% CI: 45-61%, 23 cohorts). The most commonly reported risk factors associated with PGF were history of cytomegalovirus infection and prior graft-versus-host disease. Incidence was lower in studies with strict cytopenic cutoffs, while survival was lower for primary compared to secondary PGF. This work indicates that a standardized, quantitative definition of PGF is needed to facilitate clinical guideline development and to advance scientific progress.
Collapse
Affiliation(s)
- Konradin F Müskens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Rana Dandis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Center for Translational Immunology, Utrecht University, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Mirjam E Belderbos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
8
|
Perram J, Ross DM, McLornan D, Gowin K, Kröger N, Gupta V, Lewis C, Gagelmann N, Hamad N. Innovative strategies to improve hematopoietic stem cell transplant outcomes in myelofibrosis. Am J Hematol 2022; 97:1464-1477. [PMID: 35802782 PMCID: PMC9796730 DOI: 10.1002/ajh.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by inflammation, marrow fibrosis, and an inherent risk of blastic transformation. Hematopoietic allogeneic stem cell transplant is the only potentially curative therapy for this disease, however, survival gains observed for other transplant indications over the past two decades have not been realized for MF. The role of transplantation may also evolve with the use of novel targeted agents. The chronic inflammatory state associated with MF necessitates pretransplantation assessment of end-organ function. Applying the transplant methodology employed for other myeloid disorders to patients with MF fails to acknowledge differences in the underlying disease pathophysiology. Limited understanding of the causes of poor transplant outcomes in this cohort has prevented refinement of transplant eligibility criteria in MF. There is increasing evidence of heterogeneity in molecular disease grade, beyond the clinical manifestations which have traditionally guided transplant timing. Exploring the physiological consequences of disease chronicity unique to MF, acknowledging the heterogeneity in disease grade, and using advanced prognostic models, molecular diagnostics and other organ function diagnostic tools, we present an innovative review of strategies with the potential to improve transplant outcomes in this disease. Larger, prospective studies which consider the impact of molecular-based disease grade are needed for MF transplantation.
Collapse
Affiliation(s)
- Jacinta Perram
- Department of Bone Marrow Transplantation and HaematologySt Vincent's HospitalDarlinghurstNew South WalesAustralia,School of Clinical Medicine, UNSW Medicine & HealthKensingtonNew South WalesAustralia
| | - David M. Ross
- Department of Haematology and Bone Marrow TransplantationRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia,Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Donal McLornan
- Department of Haematology and Stem Cell TransplantationUniversity College London Hospitals NHSLondonUK
| | - Krisstina Gowin
- Department of Hematology and OncologyBone Marrow Transplant and Cellular Therapy, University of ArizonaTucsonArizonaUSA
| | - Nicolas Kröger
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Vikas Gupta
- Medical Oncology and HaematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Clinton Lewis
- Department of HaematologyAuckland City HospitalAucklandNew Zealand
| | - Nico Gagelmann
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nada Hamad
- Department of Bone Marrow Transplantation and HaematologySt Vincent's HospitalDarlinghurstNew South WalesAustralia,School of Clinical Medicine, UNSW Medicine & HealthKensingtonNew South WalesAustralia,School of MedicineUniversity of Notre Dame AustraliaFremantleWestern AustraliaAustralia
| |
Collapse
|
9
|
Jain T, Tsai HL, DeZern AE, Gondek LP, Elmariah H, Bolaños-Meade J, Luznik L, Fuchs E, Ambinder R, Gladstone DE, Imus P, Webster J, Prince G, Ghiaur G, Smith BD, Ali SA, Ambinder A, Dalton WB, Gocke CB, Huff CA, Gojo I, Swinnen L, Wagner-Johnston N, Borrello I, Varadhan R, Levis M, Jones RJ. Post-Transplantation Cyclophosphamide-Based Graft- versus-Host Disease Prophylaxis with Nonmyeloablative Conditioning for Blood or Marrow Transplantation for Myelofibrosis. Transplant Cell Ther 2022; 28:259.e1-259.e11. [PMID: 35158092 PMCID: PMC9081210 DOI: 10.1016/j.jtct.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
We describe outcomes after post-transplantation cyclophosphamide and nonmyeloablative conditioning-based allogeneic blood or marrow transplantation for myelofibrosis using matched or mismatched related or unrelated donors. The conditioning regimen consisted of fludarabine, cyclophosphamide, and total body irradiation. Forty-two patients were included, with a median age of 63 years, of whom 19% had Dynamic International Prognostic Scoring System (DIPSS)-plus intermediate-1 risk, 60% had intermediate-2 risk, and 21% had high-risk disease, and 60% had at least 1 high-risk somatic mutation. More than 90% of patients engrafted neutrophils, at a median of 19.5 days, and 7% experienced graft failure. At 1 year and 3 years, respectively, overall survival was 65% and 60%, relapse-free survival was 65% and 31%, relapse was 5% and 40%, and nonrelapse mortality was 30% and 30%. Acute graft-versus-host disease grade 3-4 was seen in 17% of patients at 1 year, and chronic graft-versus-host disease requiring systemic therapy in occurred in 12% patients. Spleen size ≥17 cm or prior splenectomy was associated with inferior relapse-free survival (hazard ratio [HR], 3.50; 95% confidence interval [CI], 1.18 to 10.37; P = .02) and higher relapse rate (subdistribution HR [SDHR] not calculable; P = .01). Age >60 years (SDHR, 0.26; 95% CI, 0.08 to 0.80, P = .02) and receipt of peripheral blood grafts (SDHR, 0.34; 95% CI, 0.11 to 0.99; P = .05) were associated with a lower risk of relapse. In our limited sample, the presence of a high-risk mutation was not statistically significantly associated with an inferior outcome, although ASXL1 was suggestive of inferior survival (SDHR, 2.36; 95% CI, 0.85 to 6.6; P = .09). Overall, this approach shows outcomes comparable those of to previously reported approaches and underscores the importance of spleen size in the evaluation of transplantation candidates.
Collapse
Affiliation(s)
- Tania Jain
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Hua-Ling Tsai
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Amy E DeZern
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lukasz P Gondek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hany Elmariah
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Javier Bolaños-Meade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leonido Luznik
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ephraim Fuchs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas E Gladstone
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Philip Imus
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Webster
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabrielle Prince
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabriel Ghiaur
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - B Douglas Smith
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Syed Abbas Ali
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Dalton
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christian B Gocke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carol Ann Huff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ivana Gojo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lode Swinnen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nina Wagner-Johnston
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ivan Borrello
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Jones
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Allogeneic blood or marrow transplantation with haploidentical donor and post-transplantation cyclophosphamide in patients with myelofibrosis: a multicenter study. Leukemia 2021; 36:856-864. [PMID: 34663912 PMCID: PMC10084790 DOI: 10.1038/s41375-021-01449-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
We report the results from a multicenter retrospective study of 69 adult patients who underwent haploidentical blood or marrow transplantation (haplo-BMT) with post-transplantation cyclophosphamide (PTCy) for chronic phase myelofibrosis. The median age at BMT was 63 years (range, 41-74). Conditioning regimens were reduced intensity in 54% and nonmyeloablative in 39%. Peripheral blood grafts were used in 86%. The median follow-up was 23.1 months (range, 1.6-75.7). At 3 years, the overall survival, relapse-free survival (RFS), and graft-versus-host-disease (GVHD)-free-RFS were 72% (95% CI 59-81), 44% (95% CI 29-59), and 30% (95% CI 17-43). Cumulative incidences of non-relapse mortality and relapse were 23% (95% CI 14-34) and 31% (95% CI 17-47) at 3 years. Spleen size ≥22 cm or prior splenectomy (HR 6.37, 95% CI 2.02-20.1, P = 0.002), and bone marrow grafts (HR 4.92, 95% CI 1.68-14.4, P = 0.004) were associated with increased incidence of relapse. Cumulative incidence of acute GVHD grade 3-4 was 10% at 3 months and extensive chronic GVHD was 8%. Neutrophil engraftment was reported in 94% patients, at a median of 20 days (range, 14-70). In conclusion, haplo-BMT with PTCy is feasible in patients with myelofibrosis. Splenomegaly ≥22 cm and bone marrow grafts were associated with a higher incidence of relapse in this study.
Collapse
|
11
|
McLornan DP, Hernandez-Boluda JC, Czerw T, Cross N, Joachim Deeg H, Ditschkowski M, Moonim MT, Polverelli N, Robin M, Aljurf M, Conneally E, Hayden P, Yakoub-Agha I. Allogeneic haematopoietic cell transplantation for myelofibrosis: proposed definitions and management strategies for graft failure, poor graft function and relapse: best practice recommendations of the EBMT Chronic Malignancies Working Party. Leukemia 2021; 35:2445-2459. [PMID: 34040148 DOI: 10.1038/s41375-021-01294-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 01/31/2023]
Abstract
Allogeneic haematopoietic cell transplantation (allo-HCT) remains the only curative approach in myelofibrosis (MF). Despite advances over recent decades, relapse and non-relapse mortality rates remain significant. Relapse rates vary between 15 and 25% across retrospective studies and management strategies vary widely, ranging from palliation to adoptive immunotherapy and, in some cases, a second allo-HCT. Moreover, in allo-HCT, there is a higher incidence of poor graft function and graft failure due to splenomegaly and a hostile "pro-inflammatory" marrow niche. The Practice Harmonisation and Guidelines subcommittee of the Chronic Malignancies Working Party (CMWP) of EBMT convened an international panel consisting of transplant haematologists, histopathologists and molecular biologists to propose practical, clinically relevant definitions of graft failure, poor graft function and relapse as well as management strategies following allo-HCT. A systematic approach to molecular monitoring, histopathological assessment and chimerism testing is proposed. These proposed recommendations aim to increase the accuracy and uniformity of reporting and to thereby facilitate the development of more consistent approaches to these challenging issues. In addition, we propose management strategies for these complications.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust and University College Hospitals, London, UK.
| | | | - Tomasz Czerw
- Maria Sklodowska-Curie Institute, Gliwice, Poland
| | - Nicholas Cross
- National Genetics Reference Laboratory (Wessex), Salisbury District Hospital, Salisbury, UK
| | - H Joachim Deeg
- Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, WA, USA
| | - Marcus Ditschkowski
- Department for Bone Marrow Transplantation, University of Essen, Essen, Germany
| | - Mufaddal T Moonim
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, UK
| | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences-University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Marie Robin
- Hopital Saint-Louis, APHP, Université de Paris, Paris, France
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Patrick Hayden
- Haematology Department, St. James Hospital, Dublin, Ireland
| | | |
Collapse
|
12
|
Mughal TI, Pemmaraju N, Psaila B, Radich J, Bose P, Lion T, Kiladjian JJ, Rampal R, Jain T, Verstovsek S, Yacoub A, Cortes JE, Mesa R, Saglio G, van Etten RA. Illuminating novel biological aspects and potential new therapeutic approaches for chronic myeloproliferative malignancies. Hematol Oncol 2020; 38:654-664. [PMID: 32592408 PMCID: PMC8895354 DOI: 10.1002/hon.2771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 01/18/2023]
Abstract
This review reflects the presentations and discussion at the 14th post-American Society of Hematology (ASH) International Workshop on Chronic Myeloproliferative Malignancies, which took place on the December 10 and 11, 2019, immediately after the 61st ASH Annual Meeting in Orlando, Florida. Rather than present a resume of the proceedings, we address some of the topical translational science research and clinically relevant topics in detail. We consider how recent studies using single-cell genomics and other molecular methods reveal novel aspects of hematopoiesis which in turn raise the possibility of new therapeutic approaches for patients with myeloproliferative neoplasms (MPNs). We discuss how alternative therapies could benefit patients with chronic myeloid leukemia who develop BCR-ABL1 mutant subclones following ABL1-tyrosine kinase inhibitor therapy. In MPNs, we focus on efforts beyond JAK-STAT and the merits of integrating activin receptor ligand traps, interferon-α, and allografting in the current treatment algorithm for patients with myelofibrosis.
Collapse
MESH Headings
- Anemia/diagnosis
- Anemia/etiology
- Anemia/therapy
- Biomarkers
- Biomarkers, Tumor
- Combined Modality Therapy/adverse effects
- Combined Modality Therapy/methods
- Disease Management
- Disease Susceptibility
- Drug Development
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/complications
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Myeloproliferative Disorders/complications
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/therapy
- Prognosis
- Single-Cell Analysis/methods
- Translational Research, Biomedical
- Treatment Outcome
Collapse
Affiliation(s)
| | | | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jerald Radich
- Frederick Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Thomas Lion
- Childrens Cancer Research Institute, Vienna, Austria
| | | | - Raajit Rampal
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tania Jain
- Sidney Kimmel Cancer Center, John Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Abdulraheem Yacoub
- Division of Hematologic Malignancies, University of Kansas, Kansas City, Kansas, USA
| | - Jorge E. Cortes
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, Texas, USA
| | | | | |
Collapse
|
13
|
Mountjoy L, Palmer J, Kunze KL, Khera N, Sproat LZ, Leis JF, Noel P, Slack JL, Jain T. Does early chimerism testing predict outcomes after allogeneic hematopoietic stem cell transplantation? Leuk Lymphoma 2020; 62:252-254. [PMID: 33012186 DOI: 10.1080/10428194.2020.1827249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luke Mountjoy
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jeanne Palmer
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Katie L Kunze
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Phoenix, AZ, USA
| | - Nandita Khera
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Lisa Z Sproat
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jose F Leis
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Pierre Noel
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - James L Slack
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Tania Jain
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
14
|
Srour SA, Popat UR. Impact of Mixed Chimerism on Myelofibrosis Outcomes after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:e301-e302. [PMID: 32949752 DOI: 10.1016/j.bbmt.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Samer A Srour
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Uday R Popat
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Atagunduz IK, Christopeit M, Ayuk F, Zeck G, Wolschke C, Kröger N. Incidence and Outcome of Late Relapse after Allogeneic Stem Cell Transplantation for Myelofibrosis. Biol Blood Marrow Transplant 2020; 26:2279-2284. [PMID: 32949753 DOI: 10.1016/j.bbmt.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
In this cross-sectional study, we retrospectively evaluated the files of 227 patients with myelofibrosis who underwent transplantation between 1994 and 2015 for relapse later than 5 years after allogeneic stem cell transplantation (SCT). A total of 94 patients who were alive and in remission at 5 years were identified with follow-up of at least 5 years (median, 9.15 years) after SCT. Thirteen patients (14%) experienced late molecular (n = 6) or hematologic (n = 7) relapse at a median of 7.1 years while 81 patients did not experience relapse. Relapse patients received either donor lymphocyte infusion (DLI) (n = 7) and/or second transplantation (n = 4). Of those, 72.7% achieved again full donor cell chimerism and molecular remission, and after a median follow-up of 45 months, the 3-year overall survival rates for patients with or without relapse were 90.9% (95% confidence interval [CI], 77% to 100%) and 98.8% (95% CI, 96% to 100%), respectively (P = .13). We conclude that late relapse occurs in about 14% of the patients and the majority can be successfully salvaged with DLI and/or second allograft. All patients with molecular relapse are alive and support the long-time molecular monitoring in myelofibrosis patients after allogeneic SCT.
Collapse
Affiliation(s)
- Isik Kaygusuz Atagunduz
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | | | - Francis Ayuk
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gaby Zeck
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicolaus Kröger
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|