1
|
Alsultan A, Farge D, Kili S, Forte M, Weiss DJ, Grignon F, Boelens JJ. International Society for Cell and Gene Therapy Clinical Translation Committee recommendations on mesenchymal stromal cells in graft-versus-host disease: easy manufacturing is faced with standardizing and commercialization challenges. Cytotherapy 2024; 26:1132-1140. [PMID: 38804990 DOI: 10.1016/j.jcyt.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Mesenchymal stromal cells (MSCs) have been used in multiple clinical trials for steroid-refractory moderate-severe (grade II-IV) acute graft-versus-host disease (aGVHD) across the world over the last two decades. Despite very promising results in a variety of trials, it failed to get widespread approval by regulatory agencies such as the U.S. Food and Drug Administration and the European Medicines Agency. What lessons can we learn from this for future studies on MSCs and other cell therapy products? Broad heterogeneity among published trials using MSCs in aGVHD was likely the core problem. We propose a standardized approach in regards to donor-related factors, MSCs-related characteristics, as well as clinical trial design, to limit heterogeneity in trials for aGVHD and to fulfill the requirements of regulatory agencies. This approach may be expanded beyond MSCs to other Cell and Gene therapy products and trials in other diseases.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dominique Farge
- Internal Medicine Unit (UF 04): CRMR MATHEC, Autoimmune diseases and Cellular Therapy, St-Louis Hospital, Center of reference for rare systemic autoimmune diseases of Ile-de-France (FAI2R), AP-HP, Hôpital St-Louis, Paris University, IRSL, Paris, France; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sven Kili
- Sven Kili Consulting Ltd., Shrewsbury, UK; Saisei Ventures, Boston, Massachusetts, USA; CCRM, Toronto, Canada
| | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Felix Grignon
- International Society for Cell & Gene Therapy, Vancouver, Canada
| | - Jaap Jan Boelens
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
2
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Yetkin-Arik B, Jansen SA, Varderidou-Minasian S, Westendorp B, Skarp KP, Altelaar M, Lindemans CA, Lorenowicz MJ. Mesenchymal stromal/stem cells promote intestinal epithelium regeneration after chemotherapy-induced damage. Stem Cell Res Ther 2024; 15:125. [PMID: 38679715 PMCID: PMC11057078 DOI: 10.1186/s13287-024-03738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.
Collapse
Affiliation(s)
- B Yetkin-Arik
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/E, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - S A Jansen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S Varderidou-Minasian
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - B Westendorp
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - K-P Skarp
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute For Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - C A Lindemans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
4
|
Huang R, Chen T, Wang S, Wang J, Su Y, Liu J, Zhang Y, Ma X, Wen Q, Kong P, Zhang C, Gao L, Zhong JF, Gao L, Zhang X. Mesenchymal Stem Cells for Prophylaxis of Chronic Graft-vs-Host Disease After Haploidentical Hematopoietic Stem Cell Transplant: An Open-Label Randomized Clinical Trial. JAMA Oncol 2024; 10:220-226. [PMID: 38153755 PMCID: PMC10870190 DOI: 10.1001/jamaoncol.2023.5757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/08/2023] [Indexed: 12/29/2023]
Abstract
Importance Chronic graft-vs-host disease (GVHD) limits the long-term benefit of haploidentical hematopoietic stem cell transplant (HSCT). This clinical trial evaluated repeated infusions of umbilical cord mesenchymal stem cells (MSCs) during the early stage (45 days and 100 days) after haplo-HSCT to prevent chronic GVHD. Objective To determine whether repeated infusions of MSCs during the early stage after haplo-HSCT decreases the incidence of severe chronic GVHD. Design, Setting, and Participants This open-label, multicenter, parallel randomized clinical trial was conducted from April 2016 to January 2022. Eligibility criteria included a diagnosis of acute leukemia and having a haploidentical, suitable related donor for HSCT. The median (range) follow-up time was 39.0 (1.5-67.0) months. Interventions The enrolled patients with a haploidentical relative for HSCT received the modified busulfan/cyclophosphamide + antithymocyte globulin modified regimen and standard GVHD prophylaxis. Patients were randomly chosen to receive MSCs (the MSC group) (1 × 106 cells/kg, every 2 weeks, starting from 45 days after transplant, 4 times total) or regular prophylaxis (control group). Main Outcome and Measure The cumulative incidence of severe chronic GVHD. Results Of 158 patients, 58 (36.7%) were female individuals; the median (range) age for the MSC and control groups was 28 (18-60) years and 28 (18-56) years, respectively. A total of 158 patients were screened, and 148 patients were randomly assigned to the MSC group (n = 74) or control group (n = 74) 1 day before MSCs infusion. The estimated 2-year cumulative incidence of severe chronic GVHD was 5.4% (95% CI, 1.8%-14.0%) in the MSC group and 17.4% (95% CI, 10.1%-28.5%) in the control group (hazard ratio [HR], 0.29; 95% CI, 0.10-0.88; P = .03). There was no difference between the MSC and control groups in the cumulative incidence of leukemia relapse (HR, 1.17; 95% CI, 0.55-2.47; P = .68). The cumulative incidence of stage II to IV acute GVHD in the MSC group was significantly lower than that in the control group (HR, 0.25; 95% CI, 0.09-0.67; P = .01). The MSC group had better GVHD-free and relapse-free survival rates than the control group (HR, 0.62; 95% CI, 0.39-0.98; P = .04). Conclusions and Relevance The results of this randomized clinical trial show that early repeated infusions of MSCs decreased the incidence and severity of chronic GVHD, and the incidence and severity of acute GVHD manifested as a better GVHD-free and relapse-free survival rate for patients after haplo-HSCT. Trial Registration Chinese Clinical Trial Registry: ChiCTR-IIR-16007806.
Collapse
Affiliation(s)
- Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ting Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Sanbin Wang
- Department of Hematology, 920th Hospital of Joint Logistics Support Force, Yunnan, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Yi Su
- Department of Hematology, the General Hospital of Western Theater Command, Sichuan, China
| | - Jing Liu
- Department of Hematology, the Third Xiangya Hospital of Central South University, Hunan, China
| | - Yanqi Zhang
- Department of Health Statistics, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Peiyan Kong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jiang F. Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
5
|
Lenz LS, Wink MR. The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence. Hum Cell 2023; 36:1593-1603. [PMID: 37341871 DOI: 10.1007/s13577-023-00925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Mesenchymal stromal cells (MSC) are promising options to cellular therapy to several clinical disorders, mainly because of its ability to immunomodulate and differentiate into different cell types. Even though MSC can be isolated from different sources, a major challenge to understanding the biological effects is that the primary cells undergo replicative senescence after a limited number of cell divisions in culture, requiring time-consuming and technically challenging approaches to get a sufficient cell number for clinical applications. Therefore, a new isolation, characterization, and expansion is necessary every time, which increases the variability and is time-consuming. Immortalization is a strategy that can overcome these challenges. Therefore, here, we review the different methodologies available to cellular immortalization, and discuss the literature regarding MSC immortalization and the broader biological consequences that extend beyond the mere increase in proliferation potential.
Collapse
Affiliation(s)
- Luana Suéling Lenz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
6
|
Garcia-Rosa M, Abraham A, Bertaina A, Bhoopalan SV, Bonfim C, Cohen S, DeZern A, Louis C, Oved J, Pavel-Dinu M, Purtill D, Ruggeri A, Russell A, Sharma A, Wynn R, Boelens JJ, Prockop S. International society for cell & gene therapy stem cell engineering committee: Cellular therapies for the treatment of graft-versus-host-disease after hematopoietic stem cell transplant. Cytotherapy 2023; 25:578-589. [PMID: 36941149 DOI: 10.1016/j.jcyt.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND AIMS Allogeneic hematopoietic stem cell transplant is a curative approach for many malignant and non-malignant hematologic conditions. Despite advances in its prevention and treatment, the morbidity and mortality related to graft-versus-host disease (GVHD) remains. The mechanisms by which currently used pharmacologic agents impair the activation and proliferation of potentially alloreactive T cells reveal pathways essential for the detrimental activities of these cell populations. Importantly, these same pathways can be important in mediating the graft-versus-leukemia effect in recipients transplanted for malignant disease. This knowledge informs potential roles for cellular therapies such as mesenchymal stromal cells and regulatory T cells in preventing or treating GVHD. This article reviews the current state of adoptive cellular therapies focused on GVHD treatment. METHODS We conducted a search for scientific literature in PubMed® and ongoing clinical trials in clinicaltrial.gov with the keywords "Graft-versus-Host Disease (GVHD)," "Cellular Therapies," "Regulatory T cells (Tregs)," "Mesenchymal Stromal (Stem) Cells (MSCs)," "Natural Killer (NK) Cells," "Myeloid-derived suppressor cells (MDSCs)," and "Regulatory B-Cells (B-regs)." All the published and available clinical studies were included. RESULTS Although most of the existing clinical data focus on cellular therapies for GVHD prevention, there are observational and interventional clinical studies that explore the potential for cellular therapies to be safe modalities for GVHD treatment while maintaining the graft-versus-leukemia effect in the context of malignant diseases. However, there are multiple challenges that limit the broader use of these approaches in the clinical scenario. CONCLUSIONS There are many ongoing clinical trials to date with the promise to expand our actual knowledge on the role of cellular therapies for GVHD treatment in an attempt to improve GVHD-related outcomes in the near future.
Collapse
Affiliation(s)
- Moises Garcia-Rosa
- Pediatric Hematology-Oncology Fellow, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA.
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Universite de Montreal and Maisonneuve Rosemont Hospital, Montreal, Quebec, Canada
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, John Hopkins Medicine Baltimore, Maryland, USA
| | | | - Joseph Oved
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Redwood City, California, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| |
Collapse
|
7
|
Infusion of Some but Not All Types of Human Perinatal Stromal Cells Prevent Organ Fibrosis in a Humanized Graft versus Host Disease Murine Model. Biomedicines 2023; 11:biomedicines11020415. [PMID: 36830951 PMCID: PMC9953740 DOI: 10.3390/biomedicines11020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Allogeneic transplant rejection represents a medical complication that leads to high morbidity and mortality rates. There are no treatments to effectively prevent fibrosis; however, there is great interest in evaluating the use of perinatal mesenchymal stromal cells (MSCs) and other MSCs to prevent fibrosis associated with chronic rejection. In this study, we isolated human perinatal stromal cells (PSCs) from amnion (AM-PSC), placental villi (PV-PSC), and umbilical cord (UC-PSC) tissues, demonstrating the phenotypic characteristics of MSCs as well as a >70% expression of the immunomodulatory markers CD273 and CD210. The administration of a single dose (250,000 cells) of each type of PSC in a humanized graft versus host disease (hGvHD) NSG® murine model delayed the progression of the disease as displayed by weight loss and GvHD scores ranging at various levels without affecting the hCD3+ population. However, only PV-PSCs demonstrated an increased survival rate of 50% at the end of the study. Furthermore, a histopathological evaluation showed that only PV-PSC cells could reduce human CD45+ cell infiltration and the fibrosis of the lungs and liver. These findings indicate that not all PSCs have similar therapeutic potential, and that PV-PSC as a cell therapeutic may have an advantage for targeting fibrosis related to allograft rejection.
Collapse
|
8
|
Li Y, Hao J, Hu Z, Yang YG, Zhou Q, Sun L, Wu J. Current status of clinical trials assessing mesenchymal stem cell therapy for graft versus host disease: a systematic review. Stem Cell Res Ther 2022; 13:93. [PMID: 35246235 PMCID: PMC8895864 DOI: 10.1186/s13287-022-02751-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is a common fatal complication of hematopoietic stem cell transplantation (HSCT), where steroids are used as a treatment option. However, there are currently no second-line treatments for patients that develop steroid-resistance (SR). Mesenchymal stem cells (MSCs) have immunomodulatory functions and can exert immunosuppressive effects on the inflammatory microenvironment. A large number of in vitro experiments have confirmed that MSCs can significantly inhibit the proliferation or activation of innate and adaptive immune cells. In a mouse model of GVHD, MSCs improved weight loss and increased survival rate. Therefore, there is great promise for the clinical translation of MSCs for the prevention or treatment of GVHD, and several clinical trials have already been conducted to date. Main body In this study, we searched multiple databases and found 79 clinical trials involving the use of MSCs to prevent or treat GVHD and summarized the characteristics of these clinical trials, including study design, phase, status, and locations. We analyzed the results of these clinical trials, including the response and survival rates, to enable researchers to obtain a comprehensive understanding of the field’s progress, challenges, limitations, and future development trends. Additionally, factors that might result in inconsistencies in clinical trial results were discussed. Conclusion In this study, we attempted to analyze the clinical trials for MSCs in GVHD, identify the most suitable group of patients for MSC therapy, and provide a new perspective for the design of such trials in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02751-0.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.,Department of Gastroenterology, The First Hospital, Jilin University, Changchun, 130021, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.,International Center of Future Science, Jilin University, Changchun, 130021, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China. .,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Murata M, Terakura S, Wake A, Miyao K, Ikegame K, Uchida N, Kataoka K, Miyamoto T, Onizuka M, Eto T, Doki N, Ota S, Sato M, Hashii Y, Ichinohe T, Fukuda T, Atsuta Y, Okamoto S, Teshima T. Off-the-shelf bone marrow-derived mesenchymal stem cell treatment for acute graft-versus-host disease: real-world evidence. Bone Marrow Transplant 2021; 56:2355-2366. [PMID: 33976381 DOI: 10.1038/s41409-021-01304-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 11/08/2022]
Abstract
Temcell is a cryopreserved, human bone marrow-derived mesenchymal stem cell (MSC) product approved for the treatment of patients of all ages with acute graft-versus-host disease (GVHD). Initial experience with Temcell in a real-world setting from a cellular therapy registry in Japan is presented. A total of 381 consecutive patients were enrolled since its approval in 2016. The median cell number infused was 2.00 × 106/kg. The most common number of infusions was 8 in 100 patients. Of the 306 evaluable patients, the overall response rate (ORR) on day 28 after the start of MSC therapy was 56%. Of the 151 evaluable patients who received it as second-line therapy following first-line steroid therapy for classic acute GVHD, the ORR was 61%. Liver involvement of GVHD and ≥14 days from first-line steroid therapy to second-line MSC therapy was associated with a lower ORR. Day 28 ORR, patient age, GVHD grade, GVHD organ involvement, and a number of GVHD therapies before MSC therapy were associated with nonrelapse mortality. Overall survival at 6 months in 381 patients was 40%. This study suggests that Temcell is one of the treatment options for steroid-refractory acute GVHD until a new treatment with survival benefit is developed.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Miyamoto
- Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Maho Sato
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy/Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medical Science, Sapporo, Japan
| |
Collapse
|
10
|
Murata M, Teshima T. Treatment of Steroid-Refractory Acute Graft- Versus-Host Disease Using Commercial Mesenchymal Stem Cell Products. Front Immunol 2021; 12:724380. [PMID: 34489977 PMCID: PMC8417106 DOI: 10.3389/fimmu.2021.724380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) is a life-threatening complication that can develop after allogeneic hematopoietic stem cell transplantation. In particular, the prognosis of patients with steroid-refractory acute GVHD is extremely poor. Ryoncil™ (remestemcel-L), a human bone marrow-derived mesenchymal stem cell (MSC) product, failed to show superiority over placebo in patients with steroid-refractory acute GVHD, but it was approved for use in pediatric patients in Canada and New Zealand based on the results of a subgroup analysis. Temcell®, an equivalent manufactured MSC product to remestemcel-L, was approved in Japan based on small single-arm studies by using a regulation for regenerative medicine in 2016. The efficacy of Temcell was evaluated in 381 consecutive patients treated with Temcell during the initial 3 years after its approval. Interestingly, its real-world efficacy was found to be equivalent to that observed in a prospective study of remestemcel-L with strict eligibility criteria. In this article, the potential of MSC therapy in the treatment of acute GVHD is discussed. A meticulous comparison of studies of remestemcel-L and Temcell, remestemcel-L/Temcell and ruxolitinib, and remestemcel-L/Temcell and thymoglobulin showed that the precise position of remestemcel-L/Temcell therapy in the treatment of acute GVHD remains to be determined.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Opportunities and challenges associated with the evaluation of chimeric antigen receptor T cells in real-life. Curr Opin Oncol 2020; 32:427-433. [PMID: 32665456 DOI: 10.1097/cco.0000000000000665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW With the approval of the first chimeric antigen receptor (CAR)-T cell products on the market, the European Medicines Agency (EMA) required market authorization holders (MAHs) to monitor the long-term efficacy and safety of CAR-T cells for 15 years after administration. In 2019, the cellular therapy module of the European Society for Blood and Marrow Transplantation (EBMT) registry received a positive qualification opinion from the EMA indicating that the registry fulfills the essential needs to capture such data. We investigated its broader implication. RECENT FINDINGS Since 2020, the cellular therapy module of the EBMT registry captures data to support postauthorization studies for MAHs and EMA. The process toward a positive qualification opinion has attracted interest from many other stakeholders, such as scientists and Health Technology Assessment bodies, and was the spin-off for a stimulating development which defined the need for a registry to comply with regulatory requirements, and also inspired ways to deal with CAR-T cell programs in terms of center qualifications and educational standards for professionals. SUMMARY The positive qualified opinion of the EBMT registry by EMA to monitor long-term efficacy and safety of commercial CAR-T cells created opportunities and challenges and was serving as linking-pin to launch a novel CAR-T cell community.
Collapse
|