1
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hjazi A, Maroto CG, Rodriguez-Gutierrez ME, Appiah M, Ignat A, Mobayen G, Page T, McKinnon TAJ. The proteasome inhibitor carfilzomib exerts anti-inflammatory and antithrombotic effects on the endothelium. J Thromb Haemost 2024; 22:1867-1879. [PMID: 38608731 DOI: 10.1016/j.jtha.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Carfilzomib (CFZ) is a second-generation proteasome inhibitor used to treat multiple myeloma. Potent inhibition of the proteasome results in chronic proteotoxic endoplasmic reticulum (ER) stress, leading to apoptosis. While CFZ has improved survival rates in multiple myeloma, it is associated with an increased risk of cardiovascular adverse effects. While this has been putatively linked to cardiotoxicity, CFZ could potentially also exhibit adverse effects on the endothelium. OBJECTIVES To investigate the effects of CFZ on the endothelium. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with CFZ, and expression of relevant markers of ER stress, inflammation, and thrombosis was measured and functionally assessed. RESULTS CFZ failed to induce ER stress in HUVECs but induced the expression of Kruppel-like factor 4, endothelial nitric oxide synthase, tissue plasminogen activator, and thrombomodulin and reduced tumor necrosis factor alpha (TNFα)-mediated intercellular adhesion molecule 1 and tissue factor expression, suggesting a potential protective effect on the endothelium. Consistent with these observations, CFZ reduced leukocyte adhesion under shear stress and reduced factor Xa generation and fibrin clot formation on the endothelium following TNFα treatment and inhibited von Willebrand factor (VWF) and angiopoietin-2 exocytosis from Weibel-Palade bodies. Subsequently, CFZ inhibited the formation of VWF-platelet strings, and moreover, media derived from myeloma cell lines induced VWF release, a process also inhibited by CFZ. CONCLUSION These data demonstrate that CFZ is unable to induce ER stress in confluent resting endothelial cells and can conversely attenuate the prothrombotic effects of TNFα on the endothelium. This study suggests that CFZ does not negatively alter HUVECs, and proteasome inhibition of the endothelium may offer a potential way to prevent thrombosis.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Celia Gonzalez Maroto
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Maria Elena Rodriguez-Gutierrez
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Michael Appiah
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Ana Ignat
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Golzar Mobayen
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Theresa Page
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Thomas A J McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
3
|
Palomo M, Moreno-Castaño AB, Salas MQ, Escribano-Serrat S, Rovira M, Guillen-Olmos E, Fernandez S, Ventosa-Capell H, Youssef L, Crispi F, Nomdedeu M, Martinez-Sanchez J, De Moner B, Diaz-Ricart M. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front Med (Lausanne) 2023; 10:1285898. [PMID: 38034541 PMCID: PMC10682735 DOI: 10.3389/fmed.2023.1285898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The endothelium is a biologically active interface with multiple functions, some of them common throughout the vascular tree, and others that depend on its anatomical location. Endothelial cells are continually exposed to cellular and humoral factors, and to all those elements (biological, chemical, or hemodynamic) that circulate in blood at a certain time. It can adapt to different stimuli but this capability may be lost if the stimuli are strong enough and/or persistent in time. If the endothelium loses its adaptability it may become dysfunctional, becoming a potential real danger to the host. Endothelial dysfunction is present in multiple clinical conditions, such as chronic kidney disease, obesity, major depression, pregnancy-related complications, septic syndromes, COVID-19, and thrombotic microangiopathies, among other pathologies, but also in association with cell therapies, such as hematopoietic stem cell transplantation and treatment with chimeric antigen receptor T cells. In these diverse conditions, evidence suggests that the presence and severity of endothelial dysfunction correlate with the severity of the associated disease. More importantly, endothelial dysfunction has a strong diagnostic and prognostic value for the development of critical complications that, although may differ according to the underlying disease, have a vascular background in common. Our multidisciplinary team of women has devoted many years to exploring the role of the endothelium in association with the mentioned diseases and conditions. Our research group has characterized some of the mechanisms and also proposed biomarkers of endothelial damage. A better knowledge would provide therapeutic strategies either to prevent or to treat endothelial dysfunction.
Collapse
Affiliation(s)
- Marta Palomo
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Hematology External Quality Assessment Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Elena Guillen-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic de Barcelona, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Lina Youssef
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Miao F, Ren G, Guo J, Zhao L, Xu W, Huang X. Characteristics of Engraftment Syndrome following Autologous Stem Cell Transplantation in Light Chain Amyloidosis with Renal Involvement. Transplant Cell Ther 2023; 29:110.e1-110.e8. [PMID: 36323398 DOI: 10.1016/j.jtct.2022.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022]
Abstract
Engraftment syndrome (ES) is a clinical complication that occurs during the neutrophil recovery phase following hematopoietic stem cell transplantation. The clinical features of ES in light chain (AL) amyloidosis remains to be thoroughly investigated. This study was conducted to better understand the characteristics of ES following autologous stem cell transplantation (ASCT) in AL amyloidosis with renal involvement. We conducted this single-center retrospective study in 302 patients with AL amyloidosis who underwent ASCT between July 2010 and December 2021. Sixty-seven of the 302 patients (22.2%) developed ES, with a median time to the occurrence of ES after stem cell reinfusion of 11 days (range, 7 to 17 days). Among the outcome measures in this study, estimated glomerular filtration rate (eGFR) at baseline and C-reactive protein (CRP) level on the day of granulocyte engraftment were statistically different between the ES patients and non-ES patients. We observed no significant difference between the 2 groups in transplantation-related adverse events (grade ≥ 2), hematologic and organ responses, overall survival, and progression-free survival. Furthermore, CRP level at granulocyte engraftment (odds ratio [OR], 1.012; 95% confidence interval [CI], 1.004 to 1.020; P = .002) and the absence of induction chemotherapy before ASCT (OR, 1.977; 95% CI, 1.047 to 3.731; P = .036) were identified as risk factors for the development of ES, whereas a higher eGFR at baseline (OR, .981; 95% CI, .969 to .993; P = .002) was identified as a protective factor against ES. Our data show a 22.2% incidence of ES in AL amyloidosis patients with renal involvement after ASCT and identify associated risk and protective factors, which can improve the understanding of this clinical complication.
Collapse
Affiliation(s)
- Fujia Miao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guisheng Ren
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinzhou Guo
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xianghua Huang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Mafosfamide, a cyclophosphamide analog, causes a proinflammatory response and increased permeability on endothelial cells in vitro. Bone Marrow Transplant 2023; 58:407-413. [PMID: 36639572 DOI: 10.1038/s41409-023-01912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Post-transplantation cyclophosphamide (PTCy) has decreased GVHD incidence. Endothelial damage in allo-HCT is caused by multiple factors, including conditioning treatments and some immunosupressants, and underlies HCT-complications as GVHD. Nevertheless, the specific impact of PTCy on the endothelium remains unclear. We evaluated the effect of mafosfamide (MAF), an active Cy analog, on endothelial cells (ECs) vs. cyclosporine A (CSA), with known damaging endothelial effect. ECs were exposed to MAF and CSA to explore changes in endothelial damage markers: (i) surface VCAM-1, (ii) leukocyte adhesion on ECs, (iii) VE-cadherin expression, (iv) production of VWF, and (v) activation of intracellular signaling proteins (p38MAPK, Akt). Results obtained (expressed in folds vs. controls) indicate that both compounds increased VCAM-1 expression (3.1 ± 0.3 and 2.8 ± 0.6, respectively, p < 0.01), with higher leukocyte adhesion (5.5 ± 0.6, p < 0.05, and 2.8 ± 0.4, respectively). VE-cadherin decreased with MAF (0.8 ± 0.1, p < 0.01), whereas no effect was observed with CSA. Production of VWF augmented with CSA (1.4 ± 0.1, p < 0.01), but diminished with MAF (0.9 ± 0.1, p < 0.05). p38MAPK activation occurred with both compounds, being more intense and faster with CSA. Both drugs activated Akt, with superior MAF effect at longer exposure. Therefore, the cyclophosphamide analog MAF is not exempt from a proinflammatory effect on the endothelium, though without modifying the subendothelial characteristics.
Collapse
|
6
|
Lu Y, Chen X, Liu X, Shi Y, Wei Z, Feng L, Jiang Q, Ye W, Sasaki T, Fukunaga K, Ji Y, Han F, Lu YM. Endothelial TFEB signaling-mediated autophagic disturbance initiates microglial activation and cognitive dysfunction. Autophagy 2023:1-18. [PMID: 36588318 DOI: 10.1080/15548627.2022.2162244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cognitive impairment caused by systemic chemotherapy is a critical question that perplexes the effective implementation of clinical treatment, but related molecular events are poorly understood. Herein, we show that bortezomib exposure leads to microglia activation and cognitive impairment, this occurs along with decreased nuclear translocation of TFEB (transcription factor EB), which is linked to macroautophagy/autophagy disorder, STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL23A (interleukin 23 subunit alpha) expression. Pharmacological enhancement of TFEB nuclear translocation by digoxin restores lysosomal function and reduces STAT3-dependent endothelial IL23A secretion. As a consequence, we found that brain endothelial-specific ablation of Il23a ameliorated both microglia activation and cognitive dysfunction. Thus, the endothelial TFEB-STAT3-IL23A axis in the brain represents a critical cellular event for initiating bortezomib-mediated aberrant microglial activation and synapse engulfment. Our results suggest the reversal of TFEB nuclear translocation may provide a novel therapeutic approach to prevent symptoms of cognitive dysfunction during clinical use of bortezomib.Abbreviations: AAV: adeno-associated virus; BBB: blood-brain barrier; BTZ: bortezomib; DG: digoxin; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; HBMECs: human brain microvascular endothelial cells; HP: hippocampus; IL23A: interleukin 23 subunit alpha; MBVECs: mouse brain vascular endothelial cells; mPFC: medial prefrontal cortex; NORT: novel object recognition test; OLT: object location test; PLX5622: 6-fluoro-N-([5-fluoro-2-methoxypyridin-3-yl]methyl)-5-(5-methyl-1H-pyrrolo[2,3-b]pyridin-3- yl)methyl; PPP3/calcineurin: protein phosphatase 3; SBEs: STAT3 binding elements; shRNA: small hairpin RNA; SLC17A7/VGLUT1: solute carrier family 17 member 7; SLC32A1/VGAT: solute carrier family 32 member 1; STAT3: signal transducer and activator of transcription 3, TFEB: transcription factor EB; Ub: ubiquitin.
Collapse
Affiliation(s)
- Yaping Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuxiu Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Shi
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaocong Wei
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lili Feng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifeng Ye
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yong Ji
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.,Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Comerford C, Glavey S, Quinn J, O’Sullivan JM. The role of VWF/FVIII in thrombosis and cancer progression in multiple myeloma and other hematological malignancies. J Thromb Haemost 2022; 20:1766-1777. [PMID: 35644028 PMCID: PMC9546473 DOI: 10.1111/jth.15773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Cancer associated thrombosis (CAT) is associated with significant morbidity and mortality, highlighting an unmet clinical need to improve understanding of the pathophysiology of CAT. Multiple myeloma (MM) is associated with one of the highest rates of thrombosis despite widespread use of thromboprophylactic agents. The pathophysiology of thrombosis in MM is multifactorial and patients with MM appear to display a hypercoagulable phenotype with potential contributory factors including raised von Willebrand factor (VWF) levels, activated protein C resistance, impaired fibrinolysis, and abnormal thrombin generation. In addition, the toxic effect of anti-myeloma therapies on the endothelium and contribution to thrombosis has been widely described. Elevated VWF/factor VIII (FVIII) plasma levels have been reported in heterogeneous cohorts of patients with MM and other hematological malignancies. In specific studies, high plasma VWF levels have been shown to associate with VTE risk and reduced overall survival. While the mechanisms underpinning this remain unclear, dysregulation of the VWF and A Disintegrin And Metalloprotease Thrombospondin type 1, motif 13 (ADAMTS-13) axis is evident in certain solid organ malignancies and correlates with advanced disease and thrombosis. Furthermore, thrombotic microangiopathic conditions arising from deficiencies in ADAMTS-13 and thus an accumulation of prothrombotic VWF multimers have been reported in patients with MM, particularly in association with specific myeloma therapies. This review will discuss current evidence on the pathophysiological mechanisms underpinning thrombosis in MM and in particular summarize the role of VWF/FVIII in hematological malignancies with a focus on thrombotic risk and emerging evidence for contribution to disease progression.
Collapse
Affiliation(s)
- Claire Comerford
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
- Department of HaematologyBeaumont HospitalDublinIreland
| | - Siobhan Glavey
- Department of HaematologyBeaumont HospitalDublinIreland
- School of PathologyRoyal College of Surgeons in IrelandDublinIreland
| | - John Quinn
- Department of HaematologyBeaumont HospitalDublinIreland
- School of MedicineRoyal College of Surgeons in IrelandDublinIreland
| | - Jamie M. O’Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
8
|
An endothelial proinflammatory phenotype precedes the development of the engraftment syndrome after autologous Hct. Bone Marrow Transplant 2022; 57:721-728. [DOI: 10.1038/s41409-022-01610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
|
9
|
Terpos E, Ntanasis-Stathopoulos I, Papassotiriou GP, Kastritis E, Margeli A, Kanellias N, Eleutherakis-Papaiakovou E, Migkou M, Fotiou D, Roussou M, Gavriatopoulou M, Malandrakis P, Psimenou E, Papassotiriou I, Dimopoulos MA. Circulating Soluble Urokinase-Type Plasminogen Activator Receptor Levels Reflect Renal Function in Newly Diagnosed Patients with Multiple Myeloma Treated with Bortezomib-Based Induction. J Clin Med 2020; 9:jcm9103201. [PMID: 33022958 PMCID: PMC7600599 DOI: 10.3390/jcm9103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Soluble urokinase-type plasminogen activator receptor (suPAR) has been implicated in the pathogenesis of kidney disease in different disease settings. The aim of this study was to investigate a possible link between suPAR circulating levels and renal impairment (RI) in newly diagnosed patients with symptomatic multiple myeloma (NDMM) before and after frontline therapy with bortezomib-based regimens. (2) Methods: We studied 47 NDMM patients (57% males, median age 69.5 years) before the administration of anti-myeloma treatment and at best response to bortezomib-based therapy. suPAR was measured in the serum of all patients and of 24 healthy matched controls, using an immuno-enzymatic assay (ViroGates, Denmark). (3) Results: suPAR levels were elevated in NDMM patients at diagnosis compared to healthy individuals (p < 0.001). suPAR levels strongly correlated with disease stage (p-ANOVA < 0.001). suPAR levels both at diagnosis and at best response negatively correlated with estimated glomerular filtration rate (eGFR) values (p < 0.001). Interestingly, no significance changes in suPAR levels were observed at best response compared to baseline values (p = 0.31) among 18 responding patients with baseline eGFR < 50 mL/min/1.73 m2. (4) Conclusions: SuPAR levels reflect renal function in NDMM patients treated with bortezomib-based induction. Responders may have elevated circulating suPAR levels, possibly reflecting persistent kidney damage, despite their renal response.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
- Correspondence: ; Tel.: +30-213-2162846; Fax: +30-213-2162511
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Gerasimos-Petros Papassotiriou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Alexandra Margeli
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (A.M.); (I.P.)
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Maria Roussou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Erasmia Psimenou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (A.M.); (I.P.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (G.-P.P.); (E.K.); (N.K.); (E.E.-P.); (M.M.); (D.F.); (M.R.); (M.G.); (P.M.); (E.P.); (M.A.D.)
| |
Collapse
|