1
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Alexander T, Badoglio M, Labopin M, Daikeler T, Farge D, Kazmi M, Rovira M, Roldan E, Snowden J, Raffaella G. Monitoring and management of CMV and EBV after autologous haematopoietic stem cell transplantation for autoimmune diseases: a survey of the EBMT Autoimmune Diseases Working party (ADWP). Bone Marrow Transplant 2024:10.1038/s41409-024-02461-6. [PMID: 39511387 DOI: 10.1038/s41409-024-02461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Manuela Badoglio
- EBMT Paris study office, Department of Hematology, Saint Antoine Hospital, INSERM UMR 938, Sorbonne University, Paris, France
| | - Myriam Labopin
- EBMT Paris study office, Department of Hematology, Saint Antoine Hospital, INSERM UMR 938, Sorbonne University, Paris, France
| | - Thomas Daikeler
- Department of Rheumatology University Hospital Basel, Basel, Switzerland
| | - Dominique Farge
- AP-HP, hôpital St-Louis, centre de référence des maladies auto-immunes systémiques rares d'Île-de-France MATHEC (FAI2R), Unité de Médecine Interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire (UF 04), Paris, France
- Université de Paris, IRSL, Recherche clinique appliquée à l'hématologie, URP-3518, Paris, France
| | - Majid Kazmi
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, UK
| | - John Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, UK
| | - Greco Raffaella
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Ismail A, Nitti R, Sharrack B, Badoglio M, Ambron P, Labopin M, Alexander T, Snowden JA, Greco R. ATG and other serotherapy in conditioning regimens for autologous HSCT in autoimmune diseases: a survey on behalf of the EBMT Autoimmune Diseases Working Party (ADWP). Bone Marrow Transplant 2024; 59:1614-1617. [PMID: 39143182 PMCID: PMC11530368 DOI: 10.1038/s41409-024-02383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Azza Ismail
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Rosamaria Nitti
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Basil Sharrack
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Manuela Badoglio
- EBMT Paris study office; Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
| | - Pascale Ambron
- EBMT Paris study office; Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
| | - Myriam Labopin
- EBMT Paris study office; Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Xu Y, Wang X, Hu Z, Huang R, Yang G, Wang R, Yang S, Guo L, Song Q, Wei J, Zhang X. Advances in hematopoietic stem cell transplantation for autoimmune diseases. Heliyon 2024; 10:e39302. [PMID: 39492896 PMCID: PMC11530805 DOI: 10.1016/j.heliyon.2024.e39302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases (ADs) are a collection of immunological disorders in which the immune system responds to self-antigens by producing autoantibodies or self-sensitized cells. Current treatments are unable to cure ADs, and achieving long-term drug-free remission remains a challenging task. Hematopoietic stem cell transplantation (HSCT) stands out from other therapies by specifically targeting ADs that target various cell subpopulations, demonstrating notable therapeutic benefits and resulting in sustained drug-free remission. Since different ADs have distinct mechanisms of action, the comprehensive understanding of how HSCT works in treating ADs is crucial. This review provides a detailed overview of the latest research and clinical applications of HSCT in treating ADs, offering new insights for clinicians aiming to optimize its use for ADs management.
Collapse
Affiliation(s)
- Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Liyan Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
5
|
Lwin SM, Azrielant S, He J, Griffiths CEM. Curing Psoriasis. J Invest Dermatol 2024:S0022-202X(24)02161-4. [PMID: 39436345 DOI: 10.1016/j.jid.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
As medicine advances, cures are being found for diseases that were previously considered incurable, as is the case for some types of cancer. Traditionally, the term cure is reserved for resolution of disease, both at a clinical and a molecular level, which continues after cessation of treatment. Biologic therapies have revolutionized the definition of remission in severe psoriasis, with some patients achieving long-lasting disease suppression, but the disease nearly always relapses on withdrawal of the drug. Our improved understanding of the pathomechanisms of psoriasis, coupled with anecdotal reports of long-term clearance of the disease after cell-based therapies, leads us to the hypothesis that psoriasis is curable. We propose that cure of psoriasis can be achieved by restoring immune homeostasis through a combinatorial, personalized medicine approach encompassing early intervention to include biologics, advanced therapeutics, and lifestyle modification.
Collapse
Affiliation(s)
- Su M Lwin
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Shir Azrielant
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Juan He
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; School of Medicine, Nankai University, Tianjin, China
| | - Christopher E M Griffiths
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Centre for Dermatology Research, The University of Manchester, Manchester, United Kingdom; Department of Dermatology, King's College Hospital NHS Foundation Trust, King's College London, London, United Kingdom.
| |
Collapse
|
6
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
7
|
Wang X, Wu X, Tan B, Zhu L, Zhang Y, Lin L, Xiao Y, Sun A, Wan X, Liu S, Liu Y, Ta N, Zhang H, Song J, Li T, Zhou L, Yin J, Ye L, Lu H, Hong J, Cheng H, Wang P, Li W, Chen J, Zhang J, Luo J, Huang M, Guo L, Pan X, Jin Y, Ye W, Dai L, Zhu J, Sun L, Zheng B, Li D, He Y, Liu M, Wu H, Du B, Xu H. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 2024; 187:4890-4904.e9. [PMID: 39013470 DOI: 10.1016/j.cell.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China; National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China; National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Binghe Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine Inc., Shanghai 201109, China
| | - Liang Zhu
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yi Zhang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China; National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Yi Xiao
- Department of Radiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - An Sun
- Department of Radiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xinyi Wan
- Department of Radiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shiyuan Liu
- Department of Radiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yanfang Liu
- National Key Laboratory for Immunity and Inflammation, Shanghai, China; Department of Pathology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - Hang Zhang
- Department of Ultrasound, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jialin Song
- Department of Ultrasound, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jian Yin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lingying Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hongjuan Lu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jinwei Hong
- Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Cheng
- Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Ping Wang
- Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiqing Li
- Department of Pathology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jianfeng Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Zhang
- Department of Rheumatology and Clinical Immunology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miaozhen Huang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lehang Guo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xiaoming Pan
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yi Jin
- Department of Dermatology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai Key Laboratory of Medical Mycology, Shanghai 200082, China
| | - Wenjing Ye
- Department of Rheumatology and Immunology, Shanghai Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jian Zhu
- Department of Rheumatology and Immunology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Biao Zheng
- BRL Medicine Inc., Shanghai 201109, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine Inc., Shanghai 201109, China
| | - Yanran He
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine Inc., Shanghai 201109, China.
| | - Huaxiang Wu
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine Inc., Shanghai 201109, China.
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China; National Key Laboratory for Immunity and Inflammation, Shanghai, China; School of Medicine, Tsinghua University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Brittain G, Roldan E, Alexander T, Saccardi R, Snowden JA, Sharrack B, Greco R. The Role of Chimeric Antigen Receptor T-Cell Therapy in Immune-Mediated Neurological Diseases. Ann Neurol 2024; 96:441-452. [PMID: 39015040 DOI: 10.1002/ana.27029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Despite the use of 'high efficacy' disease-modifying therapies, disease activity and clinical progression of different immune-mediated neurological diseases continue for some patients, resulting in accumulating disability, deteriorating social and mental health, and high economic cost to patients and society. Although autologous hematopoietic stem cell transplant is an effective treatment modality, it is an intensive chemotherapy-based therapy with a range of short- and long-term side-effects. Chimeric antigen receptor T-cell therapy (CAR-T) has revolutionized the treatment of B-cell and other hematological malignancies, conferring long-term remission for otherwise refractory diseases. However, the toxicity of this treatment, particularly cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and the complexity of production necessitate the need for a high level of specialization at treating centers. Early-phase trials of CAR-T therapies in immune-mediated B cell driven conditions, such as systemic lupus erythematosus, neuromyelitis optica spectrum disorder and myasthenia gravis, have shown dramatic clinical response with few adverse events. Based on the common physiopathology, CAR-T therapy in other immune-mediated neurological disease, including multiple sclerosis, chronic inflammatory polyradiculopathy, autoimmune encephalitis, and stiff person syndrome, might be an effective option for patients, avoiding the need for long-term immunosuppressant medications. It may prove to be a more selective immunoablative approach than autologous hematopoietic stem cell transplant, with potentially increased efficacy and lower adverse events. In this review, we present the state of the art and future directions of the use of CAR-T in such conditions. ANN NEUROL 2024;96:441-452.
Collapse
Affiliation(s)
- Gavin Brittain
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology-Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)-a Leibniz Institute, Autoimmunology Group, Berlin, Germany
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
9
|
Alexander T, Tassy N, Domenech A, Kramer E, Jessop H, Kenyon M, Sharrack B, Saccardi R, Bolanos N, Snowden JA, Greco R. Patient-reported outcomes in HSCT for autoimmune diseases: Considerations on behalf of the EBMT ADWP, PAC, and Nurses Group. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100283. [PMID: 38952895 PMCID: PMC11215328 DOI: 10.1016/j.jacig.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/03/2024]
Abstract
Background Over the last 3 decades, hematopoietic stem cell transplantation (HSCT) has been successfully used to treat severe and refractory autoimmune diseases (AIDs). A multidisciplinary appraisal of potential benefits and risks by disease and transplant specialists is essential to determine individual suitability for HSCT. Objective Our aim was to observe that patient-reported outcomes (PROs) and health-related quality of life instruments can capture the unique patient perspective on disease burden and impact of treatment. Methods Herein, we describe the basis and complexity of end points measuring patient-reported perceptions of efficacy and tolerability used in clinical practice and trials for patients with AIDs undergoing autologous HSCT. Results PRO measures and patient-reported experience measures are key tools to evaluate the impact and extent of disease burden for patients affected by AIDs. For formal scientific assessment, it is essential that validated general instruments are used, whereas adaptations have resulted in disease-specific instruments that may help guide tailored interventions. An additional approach relates to qualitative evaluations, from carefully structured qualitative research to informal narratives, as patient stories. The patients' subjectively reported responses to HSCT may be influenced by their preprocedure expectations and investment in the HSCT journey. Conclusions The complexity of AIDs advocates for individualized and multidisciplinary approach to positively affect the patient journey. PROs and health-related quality of life need to be collected using validated instruments in clinical practice and trials to enable robustness of data and to ensure the impact of the intervention is comprehensively assessed, addressing the main questions and needs of the involved stakeholders.
Collapse
Affiliation(s)
- Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Department of Rheumatology and Clinical Immunology, Berlin Institute of Health, Berlin, Germany
| | - Noëlle Tassy
- EBMT Patient Advocacy Committee (PAC), EBMT Executive Office, Barcelona, Spain
- Philosophy Department, University of Rouen, Rouen, France
| | - Ariadna Domenech
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Ellen Kramer
- EBMT Patient Advocacy Committee (PAC), EBMT Executive Office, Barcelona, Spain
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helen Jessop
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Michelle Kenyon
- Department of Haematology, King’s College Hospital, London, United Kingdom
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, United Kingdom
| | - Riccardo Saccardi
- Cellular Therapies and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Natacha Bolanos
- EBMT Patient Advocacy Committee (PAC), EBMT Executive Office, Barcelona, Spain
- Lymphoma Coalition, Mississauga, Ontario, Canada
| | - John A. Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Zhu S, Zhang X, Xu K, Liang J, Wang W, Zeng L, Xu K. Loss of NLRP6 expression increases the severity of intestinal injury after syngeneic hematopoietic stem cell transplantation. Ann Hematol 2024; 103:3145-3154. [PMID: 38607553 DOI: 10.1007/s00277-024-05745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
NLRP6 plays a crucial role in maintaining intestinal homeostasis by regulating the interaction between the intestinal mucosa and the microbiota. However, the impact of NLRP6 deficiency on intestinal damage following hematopoietic stem cell transplantation (HSCT) remains poorly understood. In this study, we established a syngeneic HSCT mouse model using C57BL/6 mice as donors and NLRP6-/- or C57BL/6 mice as recipients. Our findings revealed that NLRP6 deficiency had minimal influence on peripheral blood cell counts and splenic immune cell proportions in transplanted mice. However, it exacerbated pathological changes in the small intestine on day 14 post-transplantation, accompanied by increased proportions of macrophages, dendritic cells, and neutrophils. Furthermore, the NLRP6 deficiency resulted in elevated expression of MPO and CD11b, while reducing the levels mature caspase-1 and mature IL-1β in the intestine. Moreover, the NLRP6 deficiency disturbed the expression of apoptosis-related molecules and decreased the tight junction protein occludin. Notably, recipient mice with NLRP6 deficiency exhibited lower mRNA expression levels of antimicrobial genes, such as Reg3γ and Pla2g2a. The short-term increase in inflammatory cell infiltration caused by NLRP6 deficiency was associated with intestinal damage, increased apoptosis, reduced expression of antimicrobial peptides, and impaired intestinal repair. Taken together, our findings demonstrate that the loss of NLRP6 exacerbates post-transplantation intestinal damage in recipient mice.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xue Zhang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kairen Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jing Liang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
| | - Weiwei Wang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| |
Collapse
|
11
|
Guisado D, Talware S, Wang X, Davis A, Fozilov E, Etra A, Colombel JF, Schaniel C, Tastad C, Levine JE, Ferrara JLM, Chuang LS, Sabic K, Singh S, Marcellino BK, Hoffman R, Cho J, Cohen LJ. The reparative immunologic consequences of stem cell transplantation as a cellular therapy for refractory Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596699. [PMID: 38895305 PMCID: PMC11185544 DOI: 10.1101/2024.05.30.596699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Treatment strategies for Crohn's disease (CD) suppress diverse inflammatory pathways but many patients remain refractory to treatment. Autologous hematopoietic stem cell transplantation (SCT) has emerged as a therapy for medically refractory CD. SCT was developed to rescue cancer patients from myelosuppressive chemotherapy but its use for CD and other immune diseases necessitates reimagining SCT as a cellular therapy that restores appropriately responsive immune cell populations from hematopoietic progenitors in the stem cell autograft (i.e. immune "reset"). Here we present a paradigm to understand SCT as a cellular therapy for immune diseases and reveal how SCT re-establishes cellular immunity utilizing high-dimensional cellular phenotyping and functional studies of the stem cell grafts. Methods Immunophenotyping using CyTOF, single cell RNA sequencing (scRNA-seq) and T cell receptor (TCR) sequencing was performed on peripheral blood and intestinal tissue samples from refractory CD patients who underwent SCT. The stem cell graft from these patients was analyzed using flow cytometry and functionally interrogated using a murine model for engraftment. Results Our study revealed a remodeling of intestinal macrophages capable of supporting mucosal healing that was independently validated using multimodal studies of immune reconstitution events including CyTOF and scRNA-seq. Functional interrogation of hematopoietic stem cells (HSCs) using a xenograft model demonstrated that HSCs shape the timing of immune reconstitution, the selected reconstitution of specific cell lineages and potentially the clinical efficacy of SCT. Conclusions These studies indicate that SCT serves as a myeloid-directed cellular therapy re-establishing homeostatic intestinal macrophages that support intestinal healing and suggest refractory CD evolves from impairment of restorative functions in myeloid cells. Furthermore, we report heterogeneity among HSCs from CD patients which may drive SCT outcomes and suggests an unrecognized impact of CD pathophysiology on HSC in the marrow niche.
Collapse
|
12
|
Gandossi C, Jessop H, Hahn A, Heininger L, Henes J, Radaelli AM, Carmagnola A, Morello E, Renica C, Bertulli A, Lazzari L, Kenyon M, Alexander T, Domenech A, Greco R. Nutritional aspects in autoimmune diseases undergoing hematopoietic stem cell transplantation: overview and recommendations on behalf of the EBMT ADWP and Nurses Group. Front Nutr 2024; 11:1394518. [PMID: 38784130 PMCID: PMC11111942 DOI: 10.3389/fnut.2024.1394518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Autoimmune diseases (ADs) represent a heterogeneous group of conditions affecting 5-10% of the global population. In recent decades, hematopoietic stem cell transplant (HSCT), mainly autologous, has been successfully adopted to treat patients affected by severe/refractory ADs. In this context malnutrition has a detrimental impact on relapse, mortality, infection rate, engraftment, long-term survival, and prolongation of hospitalization. However, in this population, the management of nutrition should be improved since nutritional assessment is partially performed in routine clinical practice. A panel of nurses and physicians from the European Society for Blood and Marrow Transplantation (EBMT) reviewed all available evidence based on current literature and expert practices from centers with extensive experience in HSCT for ADs, on the nutritional management of ADs patients during HSCT procedure. In this context, adequate nutritional status predicts a better response to treatment and improves quality of life. Herein, a systematic and comprehensive monitoring of nutritional status before, during and after HSCT, with adequate nutritional support in the case of ADs patients, in addition to assessing the dietary requirements associated with HSCT has been covered. Moreover, given the singularity of each AD, the underlying disease should be considered for an appropriate approach. The management and evaluation of nutritional status must be carried out by a multidisciplinary team to assess the needs, monitor the effectiveness of each intervention, and prevent complications, especially in complex situations as patients affected by ADs.
Collapse
Affiliation(s)
- Chiara Gandossi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Helen Jessop
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Anne Hahn
- Department of Internal Medicine II (Hematology, Oncology, Clinical Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | - Lisa Heininger
- Department of Internal Medicine II (Hematology, Oncology, Clinical Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | - Jörg Henes
- Department of Internal Medicine II (Hematology, Oncology, Clinical Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | - Alexia Marina Radaelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Carmagnola
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Enrico Morello
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit" ASST-Spedali Civili" Hospital of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Chiara Renica
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit" ASST-Spedali Civili" Hospital of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alice Bertulli
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit" ASST-Spedali Civili" Hospital of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorenzo Lazzari
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Michelle Kenyon
- Department of Haematology, King's College Hospital, London, United Kingdom
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ariadna Domenech
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Gurnari C, Koster L, Baaij L, Heiblig M, Yakoub-Agha I, Collin M, Passweg J, Bulabois CE, Khan A, Loschi M, Carnevale-Schianca F, Crisà E, Caravelli D, Kuball J, Saraceni F, Olivieri A, Rambaldi A, Kulasekararaj AG, Hayden PJ, Badoglio M, Onida F, Scheid C, Franceschini F, Mekinian A, Savic S, Voso MT, Drozd-Sokolowska J, Snowden JA, Raj K, Alexander T, Robin M, Greco R, McLornan DP. Allogeneic hematopoietic cell transplantation for VEXAS syndrome: results of a multicenter study of the EBMT. Blood Adv 2024; 8:1444-1448. [PMID: 38330178 PMCID: PMC10955646 DOI: 10.1182/bloodadvances.2023012478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Affiliation(s)
- Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | | | | | - Mael Heiblig
- Department of Hematology, Centre Hospitalier Lyon Sud, Lyon, France
| | | | | | | | | | - Anjum Khan
- Yorkshire Blood & Marrow Transplant Program, Leeds, United Kingdom
| | | | | | - Elena Crisà
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Jürgen Kuball
- Department of Haematology, University Medical Centre, Utrecht, The Netherlands
| | | | | | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Patrick J. Hayden
- Department of Haematology, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | | | - Francesco Onida
- ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia and Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Arsène Mekinian
- Sorbonne Université, Assistance Publique–Hôpitaux de Paris, Hôpital Saint Antoine, Service de médecine interne et Inflammation-Immunopathology-Biotherapy Department, Paris, France
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals, NHS Trust, Leeds, United Kingdom
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Kavita Raj
- University College London Hospitals NHS Trust, London, United Kingdom
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | | | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Donal P. McLornan
- University College London Hospitals NHS Trust, London, United Kingdom
| |
Collapse
|
14
|
Lee KE, Tu VY, Faye AS. Optimal Management of Refractory Crohn's Disease: Current Landscape and Future Direction. Clin Exp Gastroenterol 2024; 17:75-86. [PMID: 38558912 PMCID: PMC10981422 DOI: 10.2147/ceg.s359376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Refractory Crohn's disease, defined as ongoing inflammation despite the trial of multiple advanced therapies, impacts a number of individuals with Crohn's disease, and leads to significant burden in quality of life and cost. Interventions such as early implementation of advanced therapies, optimization of current therapies prior to switching to an alternative, as well as understanding the overlapping pathophysiology between immune-mediated disorders, however, can help shift the current landscape and reduce the number of patients with refractory disease. As such, in this review we summarize the key takeaways of the latest research in the management of moderate-to-severe Crohn's disease, focusing on maximization of our currently available medications, while also exploring topics such as combination advanced therapies. We also describe evidence for emerging and alternative therapeutic modalities, including fecal microbiota transplant, exclusive enteral feeding, hyperbaric oxygen, stem cell therapy, bone marrow transplant, and posaconazole, with a focus on both the potential impact and specific indications for each.
Collapse
Affiliation(s)
- Kate E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Violet Y Tu
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adam S Faye
- Department of Gastroenterology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Greco R, Alexander T, Del Papa N, Müller F, Saccardi R, Sanchez-Guijo F, Schett G, Sharrack B, Snowden JA, Tarte K, Onida F, Sánchez-Ortega I, Burman J, Castilla Llorente C, Cervera R, Ciceri F, Doria A, Henes J, Lindsay J, Mackensen A, Muraro PA, Ricart E, Rovira M, Zuckerman T, Yakoub-Agha I, Farge D. Innovative cellular therapies for autoimmune diseases: expert-based position statement and clinical practice recommendations from the EBMT practice harmonization and guidelines committee. EClinicalMedicine 2024; 69:102476. [PMID: 38361991 PMCID: PMC10867419 DOI: 10.1016/j.eclinm.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Autoimmune diseases (ADs) are characterized by loss of immune tolerance, high chronicity, with substantial morbidity and mortality, despite conventional immunosuppression (IS) or targeted disease modifying therapies (DMTs), which usually require repeated administration. Recently, novel cellular therapies (CT), including mesenchymal stromal cells (MSC), Chimeric Antigen Receptors T cells (CART) and regulatory T cells (Tregs), have been successfully adopted in ADs. An international expert panel of the European Society for Blood and Marrow Transplantation and the International Society for the Cell and Gene Therapy, reviewed all available evidence, based on the current literature and expert practices, on use of MSC, CART and Tregs, in AD patients with rheumatological, neurological, and gastroenterological indications. Expert-based consensus and recommendations for best practice and quality of patient care were developed to support clinicians, scientists, and their multidisciplinary teams, as well as patients and care providers and will be regularly updated.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
- Co-Chair of the Practice Harmonization and Guidelines Committee of EBMT and Chair of the ADWP of the EBMT, Barcelona, Spain
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Nicoletta Del Papa
- Scleroderma Clinic, Rheumatology Department, ASST G. Pini-CTO, Università degli Studi di Milano, Milano, Italy
| | - Fabian Müller
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital of Erlangen, Erlangen, Germany
- Bayrisches Zentrum für Krebsforschung (BZKF) Erlangen, Germany
| | - Riccardo Saccardi
- Cellular Therapies and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Fermin Sanchez-Guijo
- Department of Hematology, IBSAL-University Hospital of Salamanca and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen- Nürnberg, Erlangen, Germany
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, England, United Kingdom
| | - John A. Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Karin Tarte
- SITI Lab, CHU Rennes, EFS Bretagne, University Rennes, Rennes, France
| | - Francesco Onida
- Hematology & ASCT Unit, ASST Fatebenefratelli-Sacco, University of Milan, Italy
- Co-Chair of the Practice Harmonization and Guidelines Committee of EBMT, Spain
| | - Isabel Sánchez-Ortega
- Secretary of the Practice Harmonization and Guidelines Committee of EBMT, Barcelona, Spain
- EBMT Medical Officer, Executive Office, Barcelona, Spain
| | - Joachim Burman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases (UEC, CSUR) of the Catalan and Spanish Health Systems/Member of ERN-ReCONNET, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine (DiMED), University of Padua, Padua, Italy
| | - Jörg Henes
- Center for Interdisciplinary Rheumatology, Immunology and Autoimmune diseases and Department of Internal Medicine II (Haematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany
| | - James Lindsay
- Department of Gastroenterology, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Oncology, University Hospital of Erlangen, Erlangen, Germany
- Bayrisches Zentrum für Krebsforschung (BZKF) Erlangen, Germany
| | - Paolo A. Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Elena Ricart
- Gastroenterology Department. Hospital Clínic Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Montserrat Rovira
- BMT Unit, Haematology Department, Institute of Haematology and Oncology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Foundation, Spain
| | - Tsila Zuckerman
- Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ibrahim Yakoub-Agha
- CHU de Lille, University Lille, INSERM U1286, Infinite, 59000, Lille, France
- Chair of the Practice Harmonization and Guidelines Committee of EBMT, Spain
| | - Dominique Farge
- Internal Medicine Unit (04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, St-Louis Hospital Paris-Cite University, France
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
17
|
Greco R, Badoglio M, Labopin M, Kaur M, Pasquini MC. The EBMT-ADWP and the CIBMTR. HANDBOOK OF CLINICAL NEUROLOGY 2024; 202:295-305. [PMID: 39111915 DOI: 10.1016/b978-0-323-90242-7.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) has evolved over the last 25 years as a specific treatment of patients with severe neurologic autoimmune diseases (ADs), through eradication of the pathologic, immunologic memory, and profound immune "resetting." HSCT for ADs is recently facing a unique developmental phase across transplant centers. Data from patients undergoing HSCT and cellular therapies have been captured through the established major transplant registries, such as the European Society for Blood and Marrow Transplantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR). The EBMT Autoimmune Diseases Working Party (ADWP) is central to bringing together HSCT and disease-specialist communities. The AD section of the EBMT registry is the largest database of its kind worldwide, reporting more than 3700 transplants. Multiple sclerosis (MS) covers approximately 50% of transplants in AD, HSCT being an integral and standard-of-care part of the treatment algorithm. In the Americas, at least a subset of HSCT is reported to the CIBMTR, as reporting is voluntary. A total of 1400 recipients of autologous HSCT were reported and 1030 were performed for the treatment of neurologic conditions. MS accounts for 96% of all diagnoses among neurologic indications for HSCT. Although the activity of HSCT for MS is low in the United States in relation to its prevalence, the number of transplants has increased in recent years. In contrast, Mexico has reported a sharp increase in the number of these transplants. This chapter provides an overview of the EBMT and CIBMTR registries, then offers the current status and publication outputs in relation to neurologic AD.
Collapse
Affiliation(s)
- Raffaella Greco
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milan, Italy; Universitá Vita-Salute San Raffaele, Milan, Italy.
| | - Manuela Badoglio
- Department of Haematology, Saint Antoine Hospital, INSERM UMR 938, Université Pierre et Marie Curie, Paris, France
| | - Myriam Labopin
- Department of Haematology, Saint Antoine Hospital, INSERM UMR 938, Université Pierre et Marie Curie, Paris, France
| | - Manmeet Kaur
- CIBMTR, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marcelo C Pasquini
- Department of Medicine, CIBMTR and the Division of Hematology Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Enriquez J, McDaniel Mims B, Stroever S, dos Santos AP, Jones-Hall Y, Furr KL, Grisham MB. Influence of Housing Temperature and Genetic Diversity on Allogeneic T Cell-Induced Tissue Damage in Mice. PATHOPHYSIOLOGY 2023; 30:522-547. [PMID: 37987308 PMCID: PMC10661280 DOI: 10.3390/pathophysiology30040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/22/2023] Open
Abstract
The objective of this study was to determine how housing temperature and genetic diversity affect the onset and severity of allogeneic T cell-induced tissue damage in mice subjected to reduced intensity conditioning (RIC). We found that adoptive transfer of allogeneic CD4+ T cells from inbred donors into sub-lethally irradiated inbred recipients (I→I) housed at standard housing temperatures (ST; 22-24 °C) induced extensive BM and spleen damage in the absence of injury to any other tissue. Although engraftment of T cells in RIC-treated mice housed at their thermo-neutral temperature (TNT; 30-32 °C) also developed similar BM and spleen damage, their survival was markedly and significantly increased when compared to their ST counterparts. In contrast, the adoptive transfer of allogeneic T cells into RIC-treated outbred CD1 recipients failed to induce disease in any tissue at ST or TNT. The lack of tissue damage was not due to defects in donor T cell trafficking to BM or spleen but was associated with the presence of large numbers of B cells and myeloid cells within these tissues that are known to contain immunosuppressive regulatory B cells and myeloid-derived suppressor cells. These data demonstrate, for the first time, that housing temperature affects the survival of RIC-treated I→I mice and that RIC-conditioned outbred mice are resistant to allogeneic T cell-induced BM and spleen damage.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Brianyell McDaniel Mims
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Stroever
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
19
|
Zhang Y, Yang Y, Gao X, Gao W, Zhang L. Research progress on mesenchymal stem cells and their exosomes in systemic sclerosis. Front Pharmacol 2023; 14:1263839. [PMID: 37693906 PMCID: PMC10485262 DOI: 10.3389/fphar.2023.1263839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease with an unknown etiology. Clinically, it is characterized by localized or diffuse skin thickening and fibrosis. The pathogenesis of SSc includes microvascular injury, autoimmune-mediated inflammation, and fibroblast activation. These processes interact and contribute to the diverse clinicopathology and presentation of SSc. Given the limited effectiveness and substantial side effects of traditional treatments, the treatment strategy for SSc has several disadvantages. Mesenchymal stem cells (MSCs) are expected to serve as effective treatment options owing to their significant immunomodulatory, antifibrotic, and pro-angiogenic effects. Exosomes, secreted by MSCs via paracrine signaling, mirror the effect of MSCs as well as offer the benefit of targeted delivery, minimal immunogenicity, robust reparability, good safety and stability, and easy storage and transport. This enables them to circumvent the limitations of the MSCs. When using exosomes, it is crucial to consider preparation methods, quality standards, and suitable drug delivery systems, among other technical issues. Therefore, this review aims to summarize the latest research progress on MSCs and exosomes in SSc, offering novel ideas for treating SSc.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
20
|
Abstract
Autologous hematopoietic stem cell transplantation is effective, but mechanisms are elusive.
Collapse
Affiliation(s)
- Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
- Neurology, Imperial College London NHS Trust, London, UK
| |
Collapse
|
21
|
Keppeke GD, Diogenes L, Gomes K, Andrade LEC. "Untargeting" autoantibodies using genome editing, a proof-of-concept study. Clin Immunol 2023; 251:109343. [PMID: 37094742 DOI: 10.1016/j.clim.2023.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Autoantibodies (AAbs) are useful biomarkers and many have direct pathogenic role. Current standard therapies for elimination of specific B/plasma-cell clones are not fully efficient. We apply CRISPR/Cas9 genome-editing to knockout V(D)J rearrangements that produce pathogenic AAbs in vitro. HEK293T cell-lines were established stably expressing a humanized anti-dsDNA Ab (clone 3H9) and a human-derived anti-nAChR-α1 Ab (clone B12L). For each clone, five CRISPR/Cas9 heavy-chain's CDR2/3-targeting guided-RNAs (T-gRNAs) were designed. Non-Target-gRNA (NT-gRNA) was control. After editing, levels of secreted Abs were evaluated, as well as 3H9 anti-dsDNA and B12L anti-AChR reactivities. T-gRNAs editing decreased expression of heavy-chain genes to ~50-60%, compared to >90% in NT-gRNA, although secreted Abs levels and reactivity to their respective antigens in T-gRNAs decreased ~90% and ~ 95% compared with NT-gRNA for 3H9 and B12L, respectively. Sequencing indicated indels at Cas9 cut-site, which could lead to codon jam, and consequently, knockout. Additionally, remaining secreted 3H9-Abs presented variable dsDNA reactivity among the five T-gRNA, suggesting the exact Cas9 cut-site and indels further interfere with antibody-antigen interaction. CRISPR/Cas9 genome-editing was very effective to knockout the Heavy-Chain-IgG genes, considerably affecting AAbs secretion and binding capacity, fostering application of this concept to in vivo models as a potential novel therapeutic approach for AAb-mediated diseases.
Collapse
Affiliation(s)
| | - Larissa Diogenes
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil
| | - Kethellen Gomes
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil
| | - Luis Eduardo Coelho Andrade
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, Brazil; Immunology Division, Fleury Laboratory, Sao Paulo, Brazil
| |
Collapse
|
22
|
Brittain G, Coles AJ, Giovannoni G, Muraro PA, Palace J, Petrie J, Roldan E, Scolding NJ, Snowden JA, Sharrack B. Autologous haematopoietic stem cell transplantation for immune-mediated neurological diseases: what, how, who and why? Pract Neurol 2023; 23:139-145. [PMID: 36162855 DOI: 10.1136/pn-2022-003531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
Abstract
In carefully selected patients, autologous haematopoietic stem cell transplantation (HSCT) is a safe, highly effective and cost-saving treatment modality for treatment-resistant, and potentially treatment-naïve, immune-mediated neurological disorders. Although the evidence base has been growing in the last decade, limited understanding has led to confusion, mistrust and increasing use of health tourism. In this article, we discuss what autologous HSCT is, which immune-mediated conditions can be treated with it, how to select patients, what are the expected outcomes and potential adverse effects, and how cost-effective this treatment is.
Collapse
Affiliation(s)
- Gavin Brittain
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - G Giovannoni
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | | | | | - Jennifer Petrie
- Clinical Trials Research Unit, The University of Sheffield, Sheffield, UK
| | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - N J Scolding
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
- Department of Neurology, Gloucestershire Royal Hospital, Gloucester, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Wolff JH, Mikkelsen JG. Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Front Genome Ed 2023; 5:1148650. [PMID: 36969373 PMCID: PMC10036844 DOI: 10.3389/fgeed.2023.1148650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Prime editing of human hematopoietic stem cells has the potential to become a safe and efficient way of treating diseases of the blood directly in patients. By allowing site-targeted gene intervention without homology-directed repair donor templates and DNA double-stranded breaks, the invention of prime editing fuels the exploration of alternatives to conventional recombination-based ex vivo genome editing of hematopoietic stem cells. Prime editing is as close as we get today to a true genome editing drug that does not require a separate DNA donor. However, to adapt the technology to perform in vivo gene correction, key challenges remain to be solved, such as identifying effective prime editing guide RNAs for clinical targets as well as developing efficient vehicles to deliver prime editors to stem cells in vivo. In this review, we summarize the current progress in delivery of prime editors both in vitro and in vivo and discuss future challenges that need to be adressed to allow in vivo prime editing as a cure for blood disorders.
Collapse
|
24
|
Greco R, Snowden JA, Knelange NS, Tridello G, Cacciatore C, Xhaard A, Ciceri F, Collin M, Ferra C, De Becker A, Averbuch D, Alexander T, Ljungman P, De la Camara R. Outcome of SARS-CoV2 infection in hematopoietic stem cell transplant recipients for autoimmune diseases. J Autoimmun 2023; 136:103024. [PMID: 37001437 PMCID: PMC9977622 DOI: 10.1016/j.jaut.2023.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hematopoietic stem cell transplant (HSCT) recipients may be at high risk of mortality from coronavirus disease 2019 (COVID-19). However, specific data on COVID-19 after treatment with HSCT in patients affected by autoimmune diseases (ADs) are still lacking. In this multicenter observational study of the European Society for Blood and Marrow Transplantation (EBMT), clinical data on COVID-19 in 11 patients affected by severe ADs treated with HSCT (n = 3 allogeneic transplant; n = 8 autologous transplant) are reported. All patients were symptomatic during the initial phase of the SARS-CoV-2 infection. At screening, 5 patients reported upper respiratory symptoms, 3 patients had cough without oxygen requirement, and 6 patients exhibited extra-pulmonary symptoms. Four cases developed a lower respiratory tract disease (LRTD). Hospitalization was required in 6 cases, without necessity of intensive care unit (ICU) admission and/or ventilation/supplemental oxygen. Different interventions were adopted: remdesivir (n = 1), nirmatrelvir/ritonavir (n = 1), sotrovimab (n = 1), immunoglobulins (n = 1). At last follow-up, all patients solved the infection and are alive. The current analysis describing the mild-moderate course of COVID-19 in transplant recipients affected by ADs, similar to the course observed in ADs under standard treatments, provides useful information to support the delivery of HSCT programs in this field. Vaccination and new treatments available for SARS-CoV-2 infection may be useful to further minimize the infectious risks.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy,Corresponding author
| | - John A. Snowden
- Department of Haematology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, United Kingdom
| | | | - Gloria Tridello
- Paediatric Haematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Carlotta Cacciatore
- Unité de Médecine Interne (UF04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-immunes Systémiques Rares D’Ile-de-France, AP-HP, Hôpital St-Louis, F-75010, Paris, France
| | - Alienor Xhaard
- Hôpital Saint-Louis, Department of Hematology - BMT, Paris, France
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthew Collin
- Northern Centre for Bone Marrow Transplantation, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Christelle Ferra
- ICO-Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | | | - Dina Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden,Division of Hematology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
26
|
Leung CK. An overview of cord blood stem cell transplantation in Hong Kong. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Haematopoietic stem cell graft derived from cord blood is standard therapy for several haematological malignancies and other diseases. The study reports cases of public and private (family) cord blood biobanking services and the related hematopoietic stem cell transplantation ever performed in Hong Kong. The published original research papers and review articles from inception to Nov 2022 have been searched for on Pubmed, Microsoft Academic Search, and Google Scholar to identify reports on existing or terminated cord blood biobanking and transplantation service in Hong Kong. Moreover, all data publicly available on the official websites of the local cord blood banks and local mainstream media has been analysed. The public Hong Kong Red Cross Blood Transfusion Service delivers the highest quantity of haematopoietic stem cell transplants. Among the private sector, HealthBaby releases the most cord blood units for clinical use in diseases in both autologous and allogeneic administration, followed by Cordlife HK. Both public and private (family) cord blood biobanks have been and continue to contribute to the Hong Kong cord blood donor registry. However, the growth of the cord blood inventory is detrimental to donor-recipient matching for lifesaving therapy.
Collapse
|
27
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
28
|
Gurnari C, McLornan DP. Update on VEXAS and role of allogeneic bone marrow transplant: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant 2022; 57:1642-1648. [PMID: 35941354 DOI: 10.1038/s41409-022-01774-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
VEXAS (acronym for Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) is a fascinating new entity encompassing a variety of clinical manifestations, spanning from auto-inflammatory symptoms to hematologic disorders, including myelodysplastic syndromes and plasma cell dyscrasias. Genetically defined by somatic mutations of the X-linked gene UBA1 in hematopoietic stem and progenitor cells, VEXAS typically manifests in males during the fifth/sixth decade of life. Since its discovery, several groups have documented pleomorphic clinical phenotypes, in addition to a plethora of therapeutic options (e.g., JAK inhibitors, hypomethylating agents, and allogeneic stem cell transplant, allo-HCT) in retrospective case series. However, no treatment guidelines have been validated to date, VEXAS patients are typically steroid-dependent and may manifest life-threatening inflammatory symptoms refractory to multiple lines of therapy. To date, the only curative option appears to be allo-HCT in suitable individuals. Nonetheless, this procedure carries an inherent risk of morbidity and mortality that must be judiciously evaluated against a phenotypically diverse disorder where the optimal therapeutic algorithm remains ill-defined. Herein, we provide an overview of the current VEXAS data/ therapeutic evidence and discuss the curative potential of allo-HCT whilst highlighting the efforts required for generation of robust data able to inform therapeutic decisions.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, USA.,Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Donal P McLornan
- Department of Stem Cell Transplantation and Haematology, University College London Hospitals, London, UK.
| |
Collapse
|
29
|
Sharrack B, Petrie J, Coles A, Snowden JA. Is stem cell transplantation safe and effective in multiple sclerosis? BMJ 2022; 377:e061514. [PMID: 35680142 DOI: 10.1136/bmj-2020-061514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Basil Sharrack
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Jennifer Petrie
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Alasdair Coles
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - John A Snowden
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|