1
|
Long Z, Zeng L, Yang K, Chen J, Luo Y, Dai CC, He Q, Deng Y, Ge A, Zhu X, Hao W, Sun L. A systematic review and meta-analysis of the efficacy and safety of iguratimod in the treatment of inflammatory arthritis and degenerative arthritis. Front Pharmacol 2024; 15:1440584. [PMID: 39449973 PMCID: PMC11499590 DOI: 10.3389/fphar.2024.1440584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objective To assess the efficacy and safety of iguratimod (IGU) in the treatment of inflammatory arthritis and degenerative arthritis. Methods Initially, randomized controlled trials (RCTs) on using IGU in treating inflammatory arthritis and degenerative arthritis were systematically gathered from various databases up to February 2024. Subsequently, two researchers independently screened the literature, extracted data, assessed the risk of bias in included studies, and conducted a meta-analysis using RevMan 5.4 software. Results Fifty-four RCTs involving three inflammatory arthritis were included, including ankylosing spondylitis (AS), osteoarthritis (OA), and rheumatoid arthritis (RA). For AS, the meta-analysis results showed that IGU may decrease BASDAI (SMD -1.68 [-2.32, -1.03], P < 0.00001) and BASFI (WMD -1.29 [-1.47, -1.11], P < 0.00001); IGU may also decrease inflammatory factor [ESR: (WMD -10.33 [-14.96, -5.70], P < 0.0001); CRP: (WMD -10.11 [-14.55, -5.66], P < 0.00001); TNF-α: (WMD -6.22 [-7.97, -4.47], P < 0.00001)]. For OA, the meta-analysis results showed that IGU may decrease VAS (WMD -2.20 [-2.38, -2.01], P < 0.00001) and WOMAC (WMD -7.27 [-12.31, -2.24], P = 0.005); IGU may also decrease IL-6 (WMD -8.72 [-10.00, -7.45], P < 0.00001). For RA, the meta-analysis results showed that IGU may improve RA remission rate [ACR20: (RR 1.18 [1.02, 1.35], P = 0.02); ACR50: (RR 1.32 [1.05, 1.64], P = 0.02); ACR70: (RR 1.44 [1.02, 2.04], P = 0.04)] and decrease DAS28 (WMD -0.92 [-1.20, -0.63], P < 0.00001); IGU may also decrease inflammatory factors [CRP: (SMD -1.36 [-1.75, -0.96], P < 0.00001); ESR: (WMD -9.09 [-11.80, -6.38], P < 0.00001); RF: (SMD -1.21 [-1.69, -0.73], P < 0.00001)]. Regarding safety, adding IGU will not increase the incidence of adverse events. Conclusion IGU might emerge as a promising and secure therapeutic modality for addressing AS, OA, and RA. Systematic Review Registration Identifier PROSPERO: CRD42021289249.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD, United States
- Fischell Department of Bioengineering, A.James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Anqi Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | | | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| |
Collapse
|
2
|
Li Z, Zhang Q, Gao Y, Wan F, Wang Y, Hou B, Cui W, Wang Y, Feng W, Hou Y. Luobitong Potentiates MTX's Anti-Rheumatoid Arthritis Activity via Targeting Multiple Inflammatory Pathways. J Inflamm Res 2024; 17:4389-4403. [PMID: 38994468 PMCID: PMC11236762 DOI: 10.2147/jir.s461093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Background The LuoBiTong (LBT) capsule, a novel traditional Chinese medicine formulation, is currently in Phase III clinical trials. Preliminary preclinical and Phase II clinical studies suggest its efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying mechanisms of its action remain to be elucidated.This research aims to explore the effects and mechanisms of LBT in conjunction with a maintenance dose of methotrexate (M-MTX) on RA. Methods A Collagen-Induced Arthritis (CIA) mouse model was used to evaluate the anti-RA effects of LBT combined with M-MTX. Assessments included foot swelling, arthritis scoring, serum inflammatory factor analysis, and histopathological examination of the foot. These effects were compared with those of high-dose MTX (H-MTX). Network pharmacology was employed to construct a compound-target network for RA, based on drug composition, to predict its potential mechanism of action. Flow cytometry, Western Blot, and immunohistochemical analyses in animal models identified multiple inflammatory pathways targeted by LBT to augment the anti-RA effects of MTX. Results The study revealed that LBT combined with M-MTX significantly alleviated CIA-induced arthritis without adverse effects. The combination of LBT and M-MTX showed similar or superior efficacy in regulating macrophage polarization, NF-κB, MAPK signaling pathways, and in the suppression of TH-17 expression in proinflammatory cells. These findings suggest that LBT may exert a multi-pathway therapeutic effect in RA treatment. The predicted pharmacological targets and mechanisms align well with this hypothesis. Conclusion LBT, when combined with MTX, enhances the anti-RA effect by targeting multiple inflammatory pathways, demonstrating significant therapeutic potential.
Collapse
Affiliation(s)
- Ziyu Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Qiuyan Zhang
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Yuhe Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Fang Wan
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bin Hou
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Wenwen Cui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral VesselCollateral Disease), Shijiazhuang, People’s Republic of China
| | - Yanan Wang
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Wei Feng
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Yunlong Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral VesselCollateral Disease), Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Li XX, Maitiyaer M, Tan Q, Huang WH, Liu Y, Liu ZP, Wen YQ, Zheng Y, Chen X, Chen RL, Tao Y, Yu SL. Emerging biologic frontiers for Sjogren's syndrome: Unveiling novel approaches with emphasis on extra glandular pathology. Front Pharmacol 2024; 15:1377055. [PMID: 38828450 PMCID: PMC11140030 DOI: 10.3389/fphar.2024.1377055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Primary Sjögren's Syndrome (pSS) is a complex autoimmune disorder characterized by exocrine gland dysfunction, leading to dry eyes and mouth. Despite growing interest in biologic therapies for pSS, FDA approval has proven challenging due to trial complications. This review addresses the absence of a molecular-target-based approach to biologic therapy development and highlights novel research on drug targets and clinical trials. A literature search identified potential pSS treatment targets and recent advances in molecular understanding. Overlooking extraglandular symptoms like fatigue and depression is a notable gap in trials. Emerging biologic agents targeting cytokines, signal pathways, and immune responses have proven efficacy. These novel therapies could complement existing methods for symptom alleviation. Improved grading systems accounting for extraglandular symptoms are needed. The future of pSS treatment may involve gene, stem-cell, and tissue-engineering therapies. This narrative review offers insights into advancing pSS management through innovative biologic interventions.
Collapse
Affiliation(s)
- Xiao Xiao Li
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Maierhaba Maitiyaer
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qing Tan
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wen Hui Huang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu Liu
- Department of Clinical Medicine, The First Clinical Medical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhi Ping Liu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Qiang Wen
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xing Chen
- Department of Geriatrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rui Lin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yi Tao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shui Lian Yu
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zeng L, He Q, Deng Y, Li Y, Chen J, Yang K, Luo Y, Ge A, Zhu X, Long Z, Sun L. Efficacy and safety of iguratimod in the treatment of rheumatic and autoimmune diseases: a meta-analysis and systematic review of 84 randomized controlled trials. Front Pharmacol 2023; 14:1189142. [PMID: 38143490 PMCID: PMC10740187 DOI: 10.3389/fphar.2023.1189142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/21/2023] [Indexed: 12/26/2023] Open
Abstract
Objective: To evaluate efficacy and safety of iguratimod (IGU) in the treatment of rheumatic and autoimmune diseases. Methods: Databases such as Pubmed, Embase, Sinomed were searched (as of July 2022) to collect randomized controlled trials (RCTs) of IGU in the treatment of rheumatic and autoimmune diseases. Two researchers independently screened the literature, extracted data, assessed the risk of bias of the included literature, and performed meta-analysis using RevMan 5.4 software. Results: A total of 84 RCTs and 4 types of rheumatic and autoimmune diseases [rheumatoid arthritis (RA), ankylosing spondylitis (AS), primary Sjögren's syndrome (PSS) and Autoimmune disease with interstitial pneumonia]. Forty-three RCTs reported RA and showed that IGU + MTX therapy can improve ACR20 (RR 1.45 [1.14, 1.84], p = 0.003), ACR50 (RR 1.80 [1.43, 2.26], p < 0.0000), ACR70 (RR 1.84 [1.27, 2.67], p = 0.001), DAS28 (WMD -1.11 [-1.69, -0.52], p = 0.0002), reduce ESR (WMD -11.05 [-14.58, -7.51], p < 0.00001), CRP (SMD -1.52 [-2.02, -1.02], p < 0.00001), RF (SMD -1.65 [-2.48, -0.82], p < 0.0001), and have a lower incidence of adverse events (RR 0.84 [0.78, 0.91], p < 0.00001) than the control group. Nine RCTs reported AS and showed that IGU can decrease the BASDAI score (SMD -1.62 [-2.20, -1.05], p < 0.00001), BASFI score (WMD -1.07 [-1.39, -0.75], p < 0.00001), VAS (WMD -2.01 [-2.83, -1.19], p < 0.00001), inflammation levels (decreasing ESR, CRP and TNF-α). Thirty-two RCTs reported PSS and showed that IGU can reduce the ESSPRI score (IGU + other therapy group: WMD -1.71 [-2.44, -0.98], p < 0.00001; IGU only group: WMD -2.10 [-2.40, -1.81], p < 0.00001) and ESSDAI score (IGU + other therapy group: WMD -1.62 [-2.30, -0.94], p < 0.00001; IGU only group: WMD -1.51 [-1.65, -1.37], p < 0.00001), inhibit the inflammation factors (reduce ESR, CRP and RF) and increase Schirmer's test score (IGU + other therapy group: WMD 2.18 [1.76, 2.59], p < 0.00001; IGU only group: WMD 1.55 [0.35, 2.75], p = 0.01); The incidence of adverse events in IGU group was also lower than that in control group (IGU only group: RR 0.66 [0.48, 0.98], p = 0.01). Three RCTs reported Autoimmune disease with interstitial pneumonia and showed that IGU may improve lung function. Conclusion: Based on current evidence, IGU may be a safe and effective therapy for RA, AS, PSS and autoimmune diseases with interstitial pneumonia. Systematic Review Registration: (CRD42021289489).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Junpeng Chen
- Hunan University of Science and Technology, Xiangtan, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
5
|
Tao C, Li F, Ma Z, Li X, Zhang Y, Le Y, Wang J, Zhao J, Liu C, Zhang J. Highly Efficient Oral Iguratimod/Polyvinyl Alcohol Nanodrugs Fabricated by High-Gravity Nanoprecipitation Technique for Treatment of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304150. [PMID: 37964398 DOI: 10.1002/smll.202304150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/22/2023] [Indexed: 11/16/2023]
Abstract
Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Cheng Tao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feifei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xiaoming Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yali Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuan Le
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiexin Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Wang Q, Yi J, Liu H, Luo M, Yin G, Huang Z. Iguratimod promotes functional recovery after SCI by repairing endothelial cell tight junctions. Exp Neurol 2023; 368:114503. [PMID: 37572946 DOI: 10.1016/j.expneurol.2023.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Destruction of the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is an important factor promoting the progression of the injury. This study addressed how to repair the BSCB in order to promote the repair of injured spinal cords. Iguratimod (IGU), an anti-rheumatic drug, has been approved for clinical use. A spinal cord injury mouse model and TNF-α-stimulated bEnd.3 cells were used to investigate the effect and mechanism of IGU on injured BSCB. An intracerebroventricular osmotic pump was used to administer drugs to the SCI mouse model. The results showed that the SCI mice in the treatment group had better recovery of neurological function than the control group. Examination of the tissue revealed better repair of the BSCB in injured spinal cords after medication. According to the results from the cell model, IGU promoted the expression of tight junction proteins and reduced cell permeability. Further research found that IGU repaired the barrier function by regulating glycolysis levels in the injured endothelial cells. In studying the mechanism, IGU was found to regulate HIF-1α expression through the NF-κB pathway, thereby regulating the expression of the glycolytic enzymes related to endothelial injury. In summary, IGU promoted functional recovery in vivo by repairing the BSCB. In vitro, IGU regulated the level of glycolysis in the damaged endothelium through the NF-κB pathway, thereby repairing the tight junctions between the endothelium. Therefore, IGU may become a potential drug for treating spinal cord injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiang Yi
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng 224008, Jiangsu, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mingran Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Zhenfei Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Sun W, Ma J, Chen M, Zhang W, Xu C, Nan Y, Wu W, Mao X, Cheng X, Cai H, Zhang J, Xu H, Wang Y. 4-Iodo-6-phenylpyrimidine (4-IPP) suppresses fibroblast-like synoviocyte- mediated inflammation and joint destruction associated with rheumatoid arthritis. Int Immunopharmacol 2023; 115:109714. [PMID: 36657337 DOI: 10.1016/j.intimp.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic immune-mediated inflammatory disease that significantly impacts patients' quality of life. Fibroblast-like synovial cells (FLSs) within the synovial intima exhibit "tumor-like" properties such as increased proliferation, migration, and invasion. Activation of FLSs and secretion of pro-inflammation factors result in pannus formation and cartilage destruction. As an inhibitor of the cytokine, macrophage migration inhibitory factor (MIF), 4-Iodo-6-phenylpyrimidine (4-IPP) has been shown to reduce cell proliferation, migration, invasion, and the secretion of pro-inflammatory mediators in a variety of diseases. However, the usefulness of 4-IPP for RA treatment has not been assessed and was the purpose of this study. In vitro, 4-IPP was demonstrated to inhibit proliferation, migration, and invasion of RA FLSs, as well as the expression of pro-inflammatory cytokines. 4-IPP was also shown to inhibit MIF-induced phosphorylation of ERK, JNK, and p38, as well as reduce expression of COX2 and PGE2. In order to efficiently deliver 4-IPP to anatomical RA sites, we developed lactic-co-glycolic acid (PLGA) nanospheres, which not only protected 4-IPP from degradation but also controlled the release of 4-IPP. 4-IPP/PLGA nanospheres had potent anti-inflammatory activity and a high degree of biosafety. Results showed that local 4-IPP concentration was increased by nanosphere delivery, effectively reducing the inflammatory microenvironment as well as synovial inflammation, joint swelling, and cartilage destruction in a collagen-induced rheumatoid arthritis (CIA) rat model. Therefore, 4-IPP nanospheres are a sustained-release delivery system that may be an effective therapeutic strategy for RA treatment.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jinquan Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chunxiang Xu
- Department of Nursing, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xingxing Mao
- Department of Orthopaedics, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, China
| | - Xi Cheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
9
|
Zhang T, Shu Q, Zhu H, Wang M, Yang N, Zhang H, Ge W. Serum proteomics analysis of biomarkers for evaluating clinical response to MTX/IGU therapy in early rheumatoid arthritis. Mol Immunol 2023; 153:119-125. [PMID: 36462402 DOI: 10.1016/j.molimm.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Methotrexate (MTX) and iguratimod (IGU) are conventional synthetic disease modifying antirheumatic drugs widely used in the treatment of Rheumatoid arthritis (RA) in China. Although MTX combined with IGU can significantly inhibit the progression of RA, some patients do not respond to the treatment. The purpose of this study is to explore the difference of serum protein expression between RA patients with good and poor response to the combined therapy by label-free quantitative proteomic approach. From the proteomics data, a total of 782 proteins in the serum of RA patients were detected, and of which 9 were upregulated and 18 were downregulated in the good response group compared to poor response group. Among them, four significantly differentially expressed proteins (RELN, LDHA, MRC1 and TKT) were further validated by multiple reaction monitoring (MRM)-based quantification approach, and three of them (RELN, LDHA and MRC1) were confirmed to be correlated with the response to MTX/IGU therapy. Logistic regression and ROC analysis indicated that the combination of RELN, LDHA and MRC1 had good performance in evaluating the response. This result proved the different serum proteins signature fingerprint between response group and non-response group; and highlighted the potential of the label-free and mass spectrometry-based quantitative proteomic approach in screening biomarkers for evaluating clinical response to MTX/IGU therapy in RA.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qin Shu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huayong Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
10
|
Bohdziewicz A, Pawlik KK, Maciejewska M, Sikora M, Alda-Malicka R, Czuwara J, Rudnicka L. Future Treatment Options in Systemic Sclerosis-Potential Targets and Ongoing Clinical Trials. J Clin Med 2022; 11:1310. [PMID: 35268401 PMCID: PMC8911443 DOI: 10.3390/jcm11051310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Systemic sclerosis is an autoimmune connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs. The pathogenesis of systemic sclerosis is very complex. Mediators produced by immune cells are involved in the inflammatory processes occurring in the tissues. The currently available therapeutic options are often insufficient to halt disease progress. This article presents an overview of potential therapeutic targets and the pipeline of possible future therapeutic options. It is based on research of clinical trials involving novel, unestablished methods of treatment. Increasing knowledge of the processes and mediators involved in systemic scleroderma has led to the initiation of drug trials with therapeutic targets of CD28-CD80/86, CD19, CCL24, CD20, CD30, tumor necrosis factor (TNF), transforming growth factor β (TGF-β), B-cell activating factor (BAFF), lysophosphatidic acid receptor 1 (LPA1 receptor), soluble guanylate cyclase (sGC), Janus kinases (JAK), interleukin 6 (IL-6), endothelin receptor, and autotaxin. Data from clinical trials on these drugs indicate a significant potential for several new therapeutic options for systemic sclerosis in the upcoming future.
Collapse
Affiliation(s)
- Anna Bohdziewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Katarzyna Karina Pawlik
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Rosanna Alda-Malicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| |
Collapse
|
11
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Zhang M, Lei YS, Meng XW, Liu HY, Li LG, Zhang J, Zhang JX, Tao WH, Peng K, Lin J, Ji FH. Iguratimod Alleviates Myocardial Ischemia/Reperfusion Injury Through Inhibiting Inflammatory Response Induced by Cardiac Fibroblast Pyroptosis via COX2/NLRP3 Signaling Pathway. Front Cell Dev Biol 2021; 9:746317. [PMID: 34760889 PMCID: PMC8573346 DOI: 10.3389/fcell.2021.746317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background: NLRP3 inflammasome contributes a lot to sterile inflammatory response and pyroptosis in ischemia/reperfusion (I/R) injury. Cardiac fibroblasts (CFs) are regarded as semi-professional inflammatory cells and they exert an immunomodulatory role in heart. Iguratimod provides a protective role in several human diseases through exerting a powerful anti-inflammatory effect. However, it is still unclear whether iguratimod could alleviate myocardial I/R injury and whether inflammation triggered by NLRP3-related pyroptosis of CFs is involved in this process. Methods: Transcriptomics analysis for GSE160516 dataset was conducted to explore the biological function of differentially expressed genes during myocardial I/R. In vivo, mice underwent ligation of left anterior descending coronary artery for 30 min followed by 24 h reperfusion. In vitro, primary CFs were subjected to hypoxia for 1 h followed by reoxygenation for 3 h (H/R). Iguratimod was used prior to I/R or H/R. Myocardial infarct area, serum level of cardiac troponin I (cTnI), pathology of myocardial tissue, cell viability, lactate dehydrogenase (LDH) release, and the expression levels of mRNA and protein for pyroptosis-related molecules were measured. Immunofluorescence was applied to determine the cellular localization of NLRP3 protein in cardiac tissue. Results: During myocardial I/R, inflammatory response was found to be the most significantly enriched biological process, and nucleotide-binding oligomerization domain (NOD)-like receptor signaling was a crucial pathway in mediating cardiac inflammation. In our experiments, pretreatment with iguratimod significantly ameliorated I/R-induced myocardial injury and H/R-induced pyroptosis of CFs, as evidenced by reduced myocardial infarct area, serum cTnI level, and LDH release in supernatants, as well as improved pathology of cardiac tissue and cell viability. Immunofluorescence analysis showed that NLRP3 was mainly localized in CFs. Moreover, iguratimod inhibited the expression of pro-inflammatory cytokines and pyroptosis-related molecules, including NLRP3, cleaved caspase-1, and GSDMD-N. Conclusion: Our results suggested that inflammatory response mediated by NOD-like receptor signaling is of vital importance in myocardial I/R injury. Iguratimod protected cardiomyocytes through reducing the cascade of inflammation in heart by inhibiting cardiac fibroblast pyroptosis via the COX2/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Mian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Yi-Shan Lei
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Lin-Gui Li
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Jun Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Jia-Xin Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Wen-Hui Tao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Jun Lin
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Wan D, Sun T, Qi L, Huang D. WITHDRAWN: Precise engineering of Iguratimod and Rapamycin drugs loaded polymeric nanomaterials for the treatment of glioma cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Shao S, Qu Z, Liang Y, Xu Y, Zhou D, Li D, Zhang Y, Yin S. Iguratimod decreases bleomycin-induced pulmonary fibrosis in association with inhibition of TNF-α in mice. Int Immunopharmacol 2021; 99:107936. [PMID: 34284287 DOI: 10.1016/j.intimp.2021.107936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Severe interstitial lung disease secondary to connective tissue diseases, characterized by pulmonary inflammation and fibrosis, often have very poor prognosis due to lack of effective treatments. Iguratimod (IGU) shows encouraging efficacy in treating connective tissue diseases, however, the underlying mechanism is still to be elucidated. In this study, we investigated the impact of IGU on bleomycin-induced interstitial lung disease and the related tumor necrosis factor-α (TNF-α) signaling pathway in mice and in the alveolar epithelial cell A549. We found IGU decreased pulmonary inflammation and fibrosis and expression of fibrosis-related genes such as Collagen I, α-smooth muscle actin (α-SMA) and matrix metalloproteinase-2 (MMP-2) induced by bleomycin. IGU inhibited epithelial-mesenchymal transition as evidenced by decreased E-cadherin expression but increased vimentin expression. IGU reduced TNF-α production in the pulmonary fibrosis murine model and in the in vitro cultured A549 cells. Furthermore, IGU ameliorated TNF-α-induced severe pulmonary fibrosis and inhibited TNF-α-induced activation of NF-κB. In addition, IGU decreased IL-6 production and phosphorylation of STAT3. In conclusion, the IGU-mediated anti-fibrogenesis effect was associated with the inhibition of TNF-α and NF-κB.
Collapse
Affiliation(s)
- Siqi Shao
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; The First Clinical Medicine School, Xuzhou Medical University, Xuzhou 221002, China
| | - Ziye Qu
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; The First Clinical Medicine School, Xuzhou Medical University, Xuzhou 221002, China
| | - Yiwen Liang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Yan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Dongmei Zhou
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; The First Clinical Medicine School, Xuzhou Medical University, Xuzhou 221002, China
| | - Danhua Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Zhang
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Songlou Yin
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; The First Clinical Medicine School, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
15
|
Li Y, Li K, Zhao Z, Wang Y, Jin J, Guo J, Zhang J, Zhang J, Zhu J, Huang F. Randomised, Double-Blind, Placebo-Controlled Study of Iguratimod in the Treatment of Active Spondyloarthritis. Front Med (Lausanne) 2021; 8:678864. [PMID: 34150809 PMCID: PMC8208078 DOI: 10.3389/fmed.2021.678864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: The effect of Iguratimod in the treatment of rheumatoid arthritis was confirmed in past studies. In terms of the mechanism of the effect and clinical application experience, Iguratimod has a potential value in the treatment of spondyloarthritis (SpA). This study evaluated the efficacy and safety of Iguratimod on active SpA. Methods: Subjects with active SpA were enrolled and randomly divided into two groups at a ratio of 1:2 (placebo vs. Iguratimod). On the basis of non-steroidal anti-inflammatory drugs, combined treatment with Iguratimod or placebo, followed by follow-up every 4 weeks for 24 weeks. The primary efficacy endpoint was to evaluate the alleviation rate of ASAS20; the important improvement of ASDAS and the efficacy of spinal mobility, physical function and quality of life at the 24th week. Results: A total of 48 cases in the Iguratimod group and 25 cases in the placebo group were included in the final analysis. On the 24th week, the percentage of responders to ASAS20 (80 vs. 44%) and ASAS40 (56 vs. 20%) treated with Iguratimod were significantly higher than that in the placebo group (P < 0.05). Twelve cases had gastrointestinal discomfort, of which eight were in the Iguratimod group (16.7%, one case withdrew from the study due to diarrhoea) and four were in the placebo group (16.0%). No significant difference was found between the two groups (P < 0.05). Three cases of elevated transaminase were observed in the Iguratimod group and none in the placebo group, with no significant difference (P < 0.05). Conclusion: Iguratimod could significantly reduce the symptoms and signs of patients with active SpA. It could improve the physical function and quality of life of these patients and the overall safety and tolerance are good.
Collapse
Affiliation(s)
- Yan Li
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kunpeng Li
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Zheng Zhao
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yanyan Wang
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jingyu Jin
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Junhua Guo
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jie Zhang
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jianglin Zhang
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jian Zhu
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, First Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
16
|
Hirata C, Kenzaka T, Akita H. Methotrexate-associated lymphoproliferative disorder with an osteolytic vertebral lesion in an elderly patient with rheumatoid arthritis: A case report. J Clin Pharm Ther 2021; 46:1178-1181. [PMID: 33768586 PMCID: PMC8360114 DOI: 10.1111/jcpt.13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Methotrexate-associated lymphoproliferative disorder (MTX-LPD) is a rare complication that develops in patients treated with methotrexate (MTX). CASE SUMMARY A 76-year-old male patient had been taking MTX for his rheumatoid arthritis. Computed tomography (CT) revealed masses in the liver, right adrenal gland and T6-T7 vertebra, including an osteolytic lesion. FDG-PET scan showed increased uptake in each lesion. MTX was discontinued, and CT showed complete remission of the tumours after three months. The disease course confirmed MTX-LPD diagnosis. WHAT IS NEW AND CONCLUSION Bone lesions in LPDs mimic those of metastatic cancer. MTX-LPD should be considered in patients on MTX presenting with mass lesions.
Collapse
Affiliation(s)
- Chihiro Hirata
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tamba, Japan
| | - Tsuneaki Kenzaka
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tamba, Japan.,Division of Community Medicine and Career Development, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hozuka Akita
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tamba, Japan
| |
Collapse
|
17
|
Mu R, Li C, Li X, Ke Y, Zhao L, Chen L, Wu R, Wu Z, Zuo X, Xie Y, Chen J, Wei W, Liu Y, Li Z, Dai L, Sun L, Liu X, Li Z. Effectiveness and safety of iguratimod treatment in patients with active rheumatoid arthritis in Chinese: A nationwide, prospective real-world study. LANCET REGIONAL HEALTH-WESTERN PACIFIC 2021; 10:100128. [PMID: 34327344 PMCID: PMC8315426 DOI: 10.1016/j.lanwpc.2021.100128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 02/08/2023]
Abstract
Background There is heterogeneity in the clinical manifestations and responses to drugs in RA patients due to variety of factors such as genes and environment. Despite advances in the treatment of rheumatoid arthritis (RA), approximately 40% of RA patients still do not achieve primary clinical outcomes in randomized trials, and its low remission rate and high economic consumption remain unresolved, especially in developing countries. Iguratimod (IGU) is a new disease-modifying anti-rheumatic drug (DMARD) with a low price that has demonstrated good efficacy and safety in clinical trials and was approved for active RA in China and Japan. As the most populous country in the Western Pacific region, it is warranted to conduct a study with a large scale of patients in a real-life setting. Our study confirms the new option for RA patients, which is potentially benificial for public health in developing countries. Methods This was a nationwide, prospective real-world study of IGU. Eligible subjects were active adult RA patients who aged 18 to 85 with or without multiple comorbidities such as hypertension and diabetes with DMARDs at a stable dosage for at least 12 weeks, or without ongoing DMARDs. A two-stage design was used for this study. In the first stage (the first 12 weeks), IGU 25 mg bid was added as monotherapy or to the background therapy, and in the second stage (the latter 12 weeks), adjustment of RA medicines other than IGU was allowed according to the participants’ disease activity. The primary endpoints were American College of Rheumatology 20% response (ACR20) 24 weeks and adverse events during 24 weeks. The secondary endpoints were ACR50 and ACR70 over 24 weeks, the changes of DAS28 and Health Assessment Questionnaire (HAQ) at week 12 and week 24 from baseline. The trial was registered with ClinicalTrials.gov, number NCT01554917. Findings Between March 2012 and January 2015, 1759 participants were enrolled, of whom 81•5% (1433/1759) completed the study. Notably, 1597 patients in the full analysis set were assessed for the effectiveness and 1751 patients were in the safety analysis set; 71•9% (1148/1597) of the patients achieved the primary endpoint of ACR20 response at week 24, and 51•7% (906/1751) patients had at least 1 adverse event (AE). The incidence of the clinical significant AE (grade≥3) of special interest was 3•4% (54 patients for grade 3 and 6 patients for grade 4), and 0•7% (13/1751) of patients developed SAEs associated with IGU. The most common clinical significant AEs were infection in 0•6% (10/1751) of the patients, abdominal discomfort in 0•5% (9/1751) of the patients including 0•2% (3/1751) gastric ulcer, fracture in 0•4% (7/1751), and increased alanine aminotransferase (ALT) in 0•2% (3/1751) of the patients. The secondary endpoint of ACR50 and ACR70 response rates at week 24 were 47•4% (757/1597) and 24•0% (384/1597). DAS28 was 4•11±1•27 and 3•75±1•32 at week 12 and 24, which was significantly decreased -1•40±1•10 and -1•75±1•26 compared with baseline (P<0•001) respectively. Changes in HAQ at week 12 and 24 from baseline were -7•4 ± 9•18 and -8•5 ± 9•97, respectively (all P<0•001). Stratified analysis results showed that the patients with shorter disease duration, male gender had better response to IGU. There was no significant difference in ACR20/50/70 responses between elderly patients(≥65 years) and younger patients(<65 years), IGU monotherapy or combined with other DMARDs. However, more fractures (1•1% vs 0•5%; P = 0•64) and infections (8•7% vs 7•9%; P = 0•69) were observed in elderly patients in our study. Interpretation Our results confirmed the effectiveness and safety of IGU as a new DMARD for active patients with RA as monotherapy or combination therapy. Funding This study was supported by “the 11th Five-Year-Plan for Science and Technology Support Program (2012ZX09104-103-01)”.
Collapse
Affiliation(s)
- Rong Mu
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, China.,Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49 North Garden Road, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Hefei, China
| | - Yao Ke
- Department of Rheumatology and Immunology, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Ling Zhao
- Department of Rheumatological Immunology, First Hospital, Jilin University, 71 Xinmin Street, Changchun, China
| | - Lin Chen
- Department of Rheumatology and Immunology, Jilin Provincial People's Hospital, 1183 Industrial and Agricultural Road, Changchun, China
| | - Rui Wu
- Department of Rheumatology and Immunology, First Affiliated Hospital, Nanchang University, No.17 Yongwai main street, Nanchang, China
| | - Zhenbiao Wu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No.127 Changle west road, Xi'an, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Yanli Xie
- Department of Rheumatology and Immunology, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jinwei Chen
- Department of Rheumatology and Immunology, Second Xiangya Hospital, Central South University, No.139 Ren Min Middle Road, Changsha, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, No.37 Guoxue Lane, Chengdu, China
| | - Zhijun Li
- Department of Rheumatology and Immunology, First Affiliated Hospital, Bengbu Medical College, 287 Changhuai Road, Bengbu, China
| | - Lie Dai
- Department of Rheumatology and Immunology, Sun Yat-Sen Memorial Hospital, 107 Yan Jiang West Road, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, China
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49 North Garden Road, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, China
| |
Collapse
|
18
|
Li CH, Ma ZZ, Jian LL, Wang XY, Sun L, Liu XY, Yao ZQ, Zhao JX. Iguratimod inhibits osteoclastogenesis by modulating the RANKL and TNF-α signaling pathways. Int Immunopharmacol 2021; 90:107219. [PMID: 33307512 DOI: 10.1016/j.intimp.2020.107219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Iguratimod, a small molecular drug, has been proven to have effective bone protection for treatment of patients with bone loss-related diseases, such as rheumatoid arthritis (RA). However, the exact bone protective mechanism of iguratimod remains to be determined. The purpose of this study was to better explore the underlying mechanism of bone protection of iguratimod. METHODS Bone marrow monocytes from C57/BL6 mice were stimulated with either RANKL or TNF-α plus M-CSF. The effects of iguratimod on morphology and function of osteoclasts were confirmed by TRAP staining and bone resorption assay, respectively. The expression of osteoclast related genes was detected by RT-PCR and the activation of signal pathway was detected by Western blotting. We used rodent models of osteoporosis (ovariectomy) and of arthritis (modified TNF-α-induced osteoclastogenesis) to evaluate the osteoprotective effect of iguratimod in vivo. RESULTS Iguratimod potently inhibited osteoclast formation in a dose-dependent manner at the early stage of RANKL-induced osteoclastogenesis, whereas iguratimod had no effect on M-CSF-induced proliferation and RANK expression in bone marrow monocytes. Bone resorption was significantly reduced by both early and late addition of iguratimod. Administration of iguratimod prevented bone loss in ovariectomized mice. The blockage of osteoclastogenesis elicited by iguratimod results from abrogation of the p38、ERK and NF-κB pathways induced by RANKL. Importantly, Iguratimod also dampened TNF-α-induced osteoclastogenesis in vitro and attenuated osteoclasts generation in vivo through disrupting NF-κB late nuclear translocation without interfering with IκBα degradation. CONCLUSIONS Iguratimod not only suppresses osteoclastogenesis by interfering with RANKL and TNF-α signals, but also inhibits the bone resorption of mature osteoclasts. These results provided promising evidence for the therapeutic application of iguratimod as a unique treatment option against RA and especially in prevention of bone loss.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cells, Cultured
- Chromones/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Humans
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/drug effects
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy
- RANK Ligand/pharmacology
- Rats, Wistar
- Signal Transduction
- Sulfonamides/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Chang-Hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhen-Zhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lei-Lei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xin-Yu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xiang-Yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhong-Qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Jin-Xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
19
|
Murugesh N, Karvembu R, Vedachalam S. A Convenient Synthesis of Iguratimod‐Amine Precursor via NHC‐Catalyzed Aldehyde‐Nitrile Cross Coupling Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202003553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nithya Murugesh
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Seenuvasan Vedachalam
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
20
|
Xie S, Li S, Tian J, Li F. Iguratimod as a New Drug for Rheumatoid Arthritis: Current Landscape. Front Pharmacol 2020; 11:73. [PMID: 32174824 PMCID: PMC7054862 DOI: 10.3389/fphar.2020.00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Iguratimod (IGU) is a novel synthetic small molecule disease modified anti-rheumatic drug approved only in Japan and China up to date. IGU plays an important immunomodulatory role in the synovial tissue of rheumatoid arthritis by inhibiting the production of immunoglobulins and cytokines and regulating T lymphocyte subsets. IGU also regulates bone metabolism by stimulating bone formation while inhibiting osteoclast differentiation, migration, and bone resorption. In clinical trials, IGU was shown to be superior to placebo and not inferior to salazosulfapyridine. Combined therapy of IGU with other disease-modifying anti-rheumatic drugs showed significant improvements for disease activity. IGU has good efficacy and tolerance as an additional treatment for rheumatoid arthritis patients with inadequate response to methotrexate and biological disease-modifying anti-rheumatic drugs. In this review, we summarize current landscape on the mechanism of action of IGU and its clinical effectiveness and safety. It is expected that further translational studies on IGU will pave the road for wider application of IGU in the treatment of autoimmune diseases other than rheumatoid arthritis.
Collapse
Affiliation(s)
- Sisi Xie
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Shu Li
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Jing Tian
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Fen Li
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Jimi E, Takakura N, Hiura F, Nakamura I, Hirata-Tsuchiya S. The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"? Cells 2019; 8:cells8121636. [PMID: 31847314 PMCID: PMC6952937 DOI: 10.3390/cells8121636] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various genes involved in inflammation and the immune response. The activation of NF-κB occurs via two pathways: inflammatory cytokines, such as TNF-α and IL-1β, activate the "classical pathway", and cytokines involved in lymph node formation, such as CD40L, activate the "alternative pathway". NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation. These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant negative form of IκB kinase (IKK)-β specifically in osteoblasts exhibited increased bone mass, but there was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone formation. Taken together, the inhibition of NF-κB leads to "killing two birds with one stone": it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB in physiological bone metabolism, pathologic bone destruction, and bone regeneration.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
- Correspondence: ; Tel.: 81-92-642-6332
| | - Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Ichiro Nakamura
- Faculty of Health and Medical Science, Teikyo Heisei University, 2-51-4 Higashi-Ikebukuro, Toshima, Tokyo 170-8445, Japan;
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|