1
|
Shi T, Wu Q, Ruan Z, Luo Z, Wang W, Guo Z, Ma Y, Wang X, Chu G, Lin H, Ge M, Chen Y. Resensitizing β-Lactams by Reprogramming Purine Metabolism in Small Colony Variant for Osteomyelitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410781. [PMID: 39656854 DOI: 10.1002/advs.202410781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Small colony variant (SCV) is strongly linked to antibiotic resistance and the persistence of osteomyelitis. However, the intrinsic phenotypic instability of SCV has hindered a thorough investigation of its pathogenic mechanisms. In this study, phenotypically stable SCV strains are successfully recovered from clinical specimens, characterized by elevated drug resistance and reduced immunogenicity. Multi-omics analysis revealed that the acquired high drug resistance is associated with altered flux in the purine metabolism pathway, attributable to mutations in the hypoxanthine phosphoribosyltransferase (hpt) gene. Furthermore, this study innovatively discovered that lonidamine, an inhibitor of cellular energy metabolism, can effectively mitigate SCV resistance to β-lactam antibiotics, thereby facilitating its eradication. The underlying mechanism involves the reprogramming of purine metabolism. Therefore, a co-delivery system for lonidamine and oxacillin is constructed with amino-modified dendritic mesoporous silica as a carrier, which showed high efficacy and safety in combating SCV both in vitro and in vivo experiments. Overall, this study elucidated the pathogenic mechanisms of a class of clinically isolated SCV isolates with hpt mutations and provided a paradigm for treating SCV-associated osteomyelitis by reprogramming purine metabolism.
Collapse
Affiliation(s)
- Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qiong Wu
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yihong Ma
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xin Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
2
|
Botros M, de Mesy Bentley KL, Schloemann DT, Saito M, Constantine R, Ricciardi BF, Muthukrishnan G. Cutibacterium acnes invades submicron osteocyte lacuno-canalicular networks following implant-associated osteomyelitis. J Orthop Res 2024; 42:2593-2603. [PMID: 39044717 DOI: 10.1002/jor.25929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Cutibacterium acnes, part of normal skin flora, is increasingly recognized as an opportunistic pathogen capable of causing chronic prosthetic joint infections (PJI) associated with total hip and knee arthroplasty. However, there is a paucity of literature examining the pathogenesis of C. acnes during PJI. To study this, we developed an implant-associated osteomyelitis murine model in which 8-10-week-old C57BL6 mice were subjected to transtibial implantation of titanium or stainless-steel L-shaped pins contaminated with C. acnes. Postsurgery, mice were killed on Days 14 and 28 for terminal assessments of (1) bacterial load in bone, implant, and internal organs (heart, spleen, kidney, and liver), (2) bone osteolysis (micro-CT), (3) abscess formation (histology), and (4) systematic electron microscopy (EM). In vitro scanning EM (SEM) confirmed that C. acnes can form biofilms on stainless-steel and titanium implants. In mice, C. acnes could persist for 28 days in the tibia. Also, we observed C. acnes dissemination to internal organs. C. acnes chronic osteomyelitis revealed markedly reduced bone osteolysis and abscess formation compared to Staphylococcus aureus infections. Importantly, transmission EM (TEM) investigation revealed the presence of C. acnes within canaliculi, demonstrating that C. acnes can invade the osteocyte lacuno-canalicular networks (OLCN) within bone. Our preliminary pilot study, for the first time, revealed that the OLCN in bone can be a reservoir for C. acnes and potentially provides a novel mechanism of why C. acnes chronic implant-associated bone infections are difficult to treat.
Collapse
Affiliation(s)
- Mina Botros
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Derek T Schloemann
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert Constantine
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Chen L, Shao Z, Zhang Z, Teng W, Mou H, Jin X, Wei S, Wang Z, Eloy Y, Zhang W, Zhou H, Yao M, Zhao S, Chai X, Wang F, Xu K, Xu J, Ye Z. An On-Demand Collaborative Innate-Adaptive Immune Response to Infection Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304774. [PMID: 37523329 DOI: 10.1002/adma.202304774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| |
Collapse
|
4
|
Wang Q, Chen F, Peng Y, Yi X, He Y, Shi Y. Research Progress of Interleukin-27 in Inflammatory Bowel Disease. Inflamm Bowel Dis 2024; 30:303-310. [PMID: 37540894 DOI: 10.1093/ibd/izad153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/06/2023]
Abstract
Inflammatory bowel disease (IBD) can be identified as an inflammatory disorder in the intestine, being characterized by maladjusted immune responses and chronic inflammation of the intestinal tract. However, as the etiology and pathogenesis are still unclear, more effective therapeutic approaches are needed. Recent studies have discovered a new cytokine, interleukin-27 (IL-27), which belongs to the superfamily of IL-6 and IL-12, demonstrating multiple functions in many infectious diseases, autoimmune diseases, and cancers. Interleukin-27 is mainly produced by antigen presentation cells (APCs) such as dendritic cells and mononuclear macrophages, playing a dual regulatory role in immunological response. Therefore, this updated review aims to summarize the new progress of the regulatory role of IL-27 in IBD and focus more on the interaction between IL-27 and immune cells, hoping to provide more evidence for the potential IBD treatment mediated by IL-27.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Feifan Chen
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yingqiu Peng
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xuanyu Yi
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yu He
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
5
|
Hofstee MI, Siverino C, Saito M, Meghwani H, Tapia-Dean J, Arveladze S, Hildebrand M, Rangel-Moreno J, Riool M, Zeiter S, Zaat SAJ, Moriarty TF, Muthukrishnan G. Staphylococcus aureus Panton-Valentine Leukocidin worsens acute implant-associated osteomyelitis in humanized BRGSF mice. JBMR Plus 2024; 8:ziad005. [PMID: 38505530 PMCID: PMC10945728 DOI: 10.1093/jbmrpl/ziad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Staphylococcus aureus is the most common pathogen that causes implant-associated osteomyelitis, a clinically incurable disease. Immune evasion of S. aureus relies on various mechanisms to survive within the bone niche, including the secretion of leukotoxins such as Panton-Valentine leukocidin (PVL). PVL is a pore-forming toxin exhibiting selective human tropism for C5a receptors (C5aR1 and C5aR2) and CD45 on neutrophils, monocytes, and macrophages. PVL is an important virulence determinant in lung, skin and soft tissue infections. The involvement of PVL in S. aureus pathogenesis during bone infections has not been studied extensively yet. To investigate this, humanized BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (huBRGSF) mice were subjected to transtibial implant-associated osteomyelitis with community-acquired methicillin-resistant S. aureus (CA-MRSA) USA300 wild type strain (WT), an isogenic mutant lacking lukF/S-PV (Δpvl), or complemented mutant (Δpvl+pvl). Three days post-surgery, Δpvl-infected huBRGSF mice had a less severe infection compared to WT-infected animals as characterized by 1) improved clinical outcomes, 2) lower ex vivo bacterial bone burden, 3) absence of staphylococcal abscess communities (SACs) in their bone marrow, and 4) compromised MRSA dissemination to internal organs (liver, kidney, spleen, heart). Interestingly, Δpvl-infected huBRGSF mice had fewer human myeloid cells, neutrophils, and HLA-DR+ monocytes in the bone niche compared to WT-infected animals. Expectedly, a smaller fraction of human myeloid cells were apoptotic in the Δpvl-infected huBRGSF animals. Taken together, our study highlights the pivotal role of PVL during acute implant-associated osteomyelitis in humanized mice.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, 7270 Davos, Switzerland
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14618, United States
| | - Himanshu Meghwani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14618, United States
| | | | | | | | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14620, United States
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14618, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
6
|
Du NN, Feng JM, Shao SJ, Wan H, Wu XQ. Construction of a Multi-Indicator Model for Abscess Prediction in Granulomatous Lobular Mastitis Using Inflammatory Indicators. J Inflamm Res 2024; 17:553-564. [PMID: 38323114 PMCID: PMC10844011 DOI: 10.2147/jir.s443765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Background Granulomatous lobular mastitis (GLM) is a chronic inflammatory breast disease, and abscess formation is a common complication of GLM. The process of abscess formation is accompanied by changes in multiple inflammatory markers. The present study aimed to construct a diagnosis model for the early of GLM abscess formation based on multiple inflammatory parameters. Methods Based on the presence or absence of abscess formation on breast magnetic resonance imaging (MRI), 126 patients with GLM were categorised into an abscess group (85 patients) and a non-abscess group (41 patients). Demographic characteristics and the related laboratory results for the 9 inflammatory markers were collected. Logistics univariate analysis and collinearity test were used for selecting independent variables. A regression model to predict abscess formation was constructed using Logistics multivariate analysis. Results The univariate and multivariate analysis showed that the N, ESR, IL-4, IL-10 and INF-α were independent diagnostic factors of abscess formation in GLM (P<0. 05). The nomogram was drawn on the basis of the logistics regression model. The area under the curve (AUC) of the model was 0.890, which was significantly better than that of a single indicator and the sensitivity and specificity of the model were high (81.2% and 85.40%, respectively). These results predicted by the model were highly consistent with the actual diagnostic results. The results of this calibration curve indicated that the model had a good value and stability in predicting abscess formation in GLM. The decision curve analysis (DCA) demonstrated a satisfactory positive net benefit of the model. Conclusion A predictive model for abscess formation in GLM based on inflammatory markers was constructed in our study, which may provide a new strategy for early diagnosis and treatment of the abscess stage of GLM.
Collapse
Affiliation(s)
- Nan-Nan Du
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Jia-Mei Feng
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Shi-Jun Shao
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Hua Wan
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Xue-Qing Wu
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| |
Collapse
|
7
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Zhang Y, Gao S, Yao S, Weng D, Wang Y, Huang Q, Zhang X, Wang H, Xu W. IL-27 mediates immune response of pneumococcal vaccine SPY1 through Th17 and memory CD4 +T cells. iScience 2023; 26:107464. [PMID: 37588169 PMCID: PMC10425906 DOI: 10.1016/j.isci.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.
Collapse
Affiliation(s)
- Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Granata V, Possetti V, Parente R, Bottazzi B, Inforzato A, Sobacchi C. The osteoblast secretome in Staphylococcus aureus osteomyelitis. Front Immunol 2022; 13:1048505. [PMID: 36483565 PMCID: PMC9723341 DOI: 10.3389/fimmu.2022.1048505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone predominantly caused by the opportunistic bacterium Staphylococcus aureus (S. aureus). Typically established upon hematogenous spread of the pathogen to the musculoskeletal system or contamination of the bone after fracture or surgery, osteomyelitis has a complex pathogenesis with a critical involvement of both osteal and immune components. Colonization of the bone by S. aureus is traditionally proposed to induce functional inhibition and/or apoptosis of osteoblasts, alteration of the RANKL/OPG ratio in the bone microenvironment and activation of osteoclasts; all together, these events locally subvert tissue homeostasis causing pathological bone loss. However, this paradigm has been challenged in recent years, in fact osteoblasts are emerging as active players in the induction and orientation of the immune reaction that mounts in the bone during an infection. The interaction with immune cells has been mostly ascribed to osteoblast-derived soluble mediators that add on and synergize with those contributed by professional immune cells. In this respect, several preclinical and clinical observations indicate that osteomyelitis is accompanied by alterations in the local and (sometimes) systemic levels of both pro-inflammatory (e.g., IL-6, IL-1α, TNF-α, IL-1β) and anti-inflammatory (e.g., TGF-β1) cytokines. Here we revisit the role of osteoblasts in bacterial OM, with a focus on their secretome and its crosstalk with cellular and molecular components of the bone microenvironment and immune system.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | | | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy,*Correspondence: Cristina Sobacchi,
| |
Collapse
|