1
|
Zhu J, Zhang Y. Dexmedetomidine inhibits the migration, invasion, and glycolysis of glioblastoma cells by lactylation of c-myc. Neurol Res 2024; 46:1105-1112. [PMID: 39193894 DOI: 10.1080/01616412.2024.2395069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a brain tumor with poor prognosis. Dexmedetomidine (Dex) regulates the biological behaviors of tumor cells to accelerate or decelerate cancer progression. OBJECTIVE We investigated the effects of Dex on the migration, invasion, and glycolysis in GBM. METHODS The concentration of Dex was determined using the cell counting kit-8 assay. The impacts of Dex on biological behaviors of GBM cells were assessed using Transwell assay, XF96 extracellular flux analysis, and western blot. The expression of c-Myc was examined using reverse transcription-quantitative polymerase chain reaction. The lactylation or stability of c-Myc was measured by western blot after immunoprecipitation or cycloheximide treatment. RESULTS We found that Dex (200 nM) inhibited GBM cell viability, migration, invasion, and glycolysis. C-Myc was highly expressed in GBM cells and was decreased by Dex treatment. Moreover, Dex suppressed lactylated c-Myc levels via suppressing glycolysis, thereby reducing the protein stability of c-Myc. Sodium lactate treatment abrogated the effects of Dex on the biological behaviors of GBM cells. CONCLUSION Dex suppressed the migration, invasion, and glycolysis of GBM cells via inhibiting lactylation of c-Myc and suppressing the c-Myc stability, suggesting that Dex may be a novel therapeutic drug for GBM treatment.
Collapse
Affiliation(s)
- Jianglian Zhu
- Neurological Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Yubei District, Chongqing, China
| | - Yundong Zhang
- Neurological Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Yubei District, Chongqing, China
| |
Collapse
|
2
|
Chen C, Li P, Fan G, Yang E, Jing S, Shi Y, Gong Y, Zhang L, Wang Z. Role of TRIP13 in human cancer development. Mol Biol Rep 2024; 51:1088. [PMID: 39436503 DOI: 10.1007/s11033-024-10012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
As an AAA + ATPase, thyroid hormone receptor interacting protein 13 (TRIP13) primarily functions in DNA double-strand break repair, chromosome recombination, and cell cycle checkpoint regulation; aberrant expression of TRIP13 can result in chromosomal instability (CIN). According to recent research, TRIP13 is aberrantly expressed in a variety of cancers, and a patient's poor prognosis and tumor stage are strongly correlated with high expression of TRIP13. Tumor cell and subcutaneous xenograft growth can be markedly inhibited by TRIP13 knockdown or TRIP13 inhibitor administration. In the initiation and advancement of human malignancies, TRIP13 seems to function as an oncogene. Based on available data, TRIP13 may function as a biological target and biomarker for cancer. The creation of inhibitors that specifically target TRIP13 may present novel approaches to treating cancer.
Collapse
Affiliation(s)
- Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China.
| |
Collapse
|
3
|
Chen J, Liu Y, Wu X, Zhang Y, Huang W, Han W, Chen G, Xu Q, Chen H, Wu Q, Wang J, Huang J. Identification of a novel splicing variant of thyroid hormone receptor interaction protein 13 (TRIP13) in female infertility characterized by oocyte maturation arrest. J Assist Reprod Genet 2024; 41:2777-2785. [PMID: 39297991 PMCID: PMC11535116 DOI: 10.1007/s10815-024-03219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
PURPOSE As a cause of primary female infertility, oocyte maturation arrest (OMA) is characterized by failure to obtain mature oocytes due to abnormal meiosis. We aimed to identify pathogenic variants in two sisters with OMA phenotype from a non-consanguineous family. METHODS Whole-exome sequencing and Sanger sequencing were conducted to identify and validate the disease-causing gene variant. Additionally, we performed a minigene assay, quantitative reverse transcription PCR, and Western blotting to assess the effects of the variant. RESULTS We identified a novel homozygous splicing variant (c.1021-11T>C) in TRIP13, which followed a recessive inheritance pattern. Minigene assay showed that the variant could disrupt the integrity of TRIP13 mRNA, as evidenced by the production of an alternative transcript with intron10 intermediate retention of 79 bp. Compared to normal controls, the expression of TRIP13 mRNA and abundance of TRIP13 protein were also significantly decreased in Epstein-Barr virus-immortalized lymphoblastoid cells derived from affected individuals. CONCLUSION Our findings confirm the contribution of genetic factors to OMA and expand the mutation spectrum of TRIP13 in female infertility.
Collapse
Affiliation(s)
- Jia Chen
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yuxin Liu
- Department of Clinical Medicine, Nanchang University School of Queen Mary, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yiwei Zhang
- Department of Clinical Medicine, Nanchang University School of Queen Mary, Nanchang, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wenbo Han
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ge Chen
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qiang Xu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Houyang Chen
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Jiawei Wang
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China.
| |
Collapse
|
4
|
Jacob Bunu S, Cai H, Wu L, Zhang H, Zhou Z, Xu Z, Shi J, Zhu W. TRIP13 - a potential drug target in cancer pharmacotherapy. Bioorg Chem 2024; 151:107650. [PMID: 39042962 DOI: 10.1016/j.bioorg.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Leyun Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Ji Y, Li C, Wan S, Dong Z, Liu C, Guo L, Shi S, Ci M, Xu M, Li Q, Hu H, Cui H, Liu Y. Tetrandrine targeting SIRT5 exerts anti-melanoma properties via inducing ROS, ER stress, and blocked autophagy. J Pharm Anal 2024; 14:101036. [PMID: 39850232 PMCID: PMC11755340 DOI: 10.1016/j.jpha.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 01/25/2025] Open
Abstract
Tetrandrine (TET), a natural bisbenzyl isoquinoline alkaloid extracted from Stephania tetrandra S. Moore, has diverse pharmacological effects. However, its effects on melanoma remain unclear. Cellular proliferation assays, multi-omics analyses, and xenograft models were used to determine the effect of TET on melanoma. The direct target of TET was identified using biotin-TET pull-down liquid chromatograph-mass spectrometry (LC-MS), cellular thermal shift assays, and isothermal titration calorimetry (ITC) analysis. Our findings revealed that TET treatment induced robust cellular autophagy depending on activating transcription factor 6 (ATF6)-mediated endoplasmic reticulum (ER) stress. Simultaneously, it hindered autophagic flux by inducing cytoskeletal protein depolymerization in melanoma cells. TET treatment resulted in excessive accumulation of reactive oxygen species (ROS) and simultaneously triggered mitophagy. Sirtuin 5 (SIRT5) was ultimately found to be a direct target of TET. Mechanistically, TET led to the degradation of SIRT5 via the ubiquitin (Ub)-26S proteasome system. SIRT5 knockdown induced ROS accumulation, whereas SIRT5 overexpression attenuated the TET-induced ROS accumulation and autophagy. Importantly, TET exhibited anti-cancer effects in xenograft models depending on SIRT5 expression. This study highlights the potential of TET as an antimelanoma agent that targets SIRT5. These findings provide a promising avenue for the use of TET in melanoma treatment and underscore its potential as a therapeutic candidate.
Collapse
Affiliation(s)
- Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chongyang Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Zhen Dong
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Mingxin Ci
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Minghao Xu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Huanrong Hu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- JinFeng Laboratory, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| |
Collapse
|
6
|
Swanson M, Yun J, Collier DM, Challagundla L, Dogan M, Kuscu C, Garrett MR, Regner KR, Chung JH, Park F. Removal of the catalytic subunit of DNA-protein kinase in the proximal tubules promotes DNA and tubular damage during kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609216. [PMID: 39229063 PMCID: PMC11370575 DOI: 10.1101/2024.08.22.609216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Tubular epithelial cell damage can be repaired through a series of complex signaling pathways. An early event in many forms of tubular damage is the observation of DNA damage, which can be repaired by specific pathways depending upon the type of genomic alteration.. In this study, we report that the catalytic subunit of DNA protein kinase (DNA-PKcs), a central DNA repair enzyme involved in sensing DNA damage and performing double stranded DNA break repair, plays an important role in the extent of tubular epithelial cell damage following exposure to injurious acute and chronic stimuli. Selective loss of DNA-PKcs in the proximal tubules led to increased markers of kidney dysfunction, DNA damage, and tubular epithelial cell injury in multiple models of acute kidney injury, specifically bilateral renal ischemia-reperfusion injury and single dose of cisplatin (15 mg/kg IP). In contrast, in a mouse model of kidney fibrosis and chronic kidney disease (UUO),the protective effects of DNA-PKcs was not as obvious histologically from the tissue sections. In the absence of proximal tubular DNA-PKcs, there was reduced levels of fibrotic markers, α-SMA and fibronectin, which suggests that there may be a biphasic role of DNA-PKcs depending upon the conditions exerted upon the kidney. In conclusion, this study demonstrates that the catalytic subunit of DNA-PKcs plays a context-dependent role in the kidney to reduce DNA damage during exposure to various types of acute, but not chronic forms of injurious stimuli.
Collapse
|
7
|
Nowialis P, Tobon J, Lopusna K, Opavska J, Badar A, Chen D, Abdelghany R, Pozas G, Fingeret J, Noel E, Riva A, Fujiwara H, Ishov A, Opavsky R. Genome-Wide Methylation Profiling of Peripheral T-Cell Lymphomas Identifies TRIP13 as a Critical Driver of Tumor Proliferation and Survival. EPIGENOMES 2024; 8:32. [PMID: 39189258 PMCID: PMC11348144 DOI: 10.3390/epigenomes8030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Cytosine methylation contributes to the regulation of gene expression and normal hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent aggressive mature T-cell malignancies exhibiting a broad spectrum of clinical features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we profiled DNA methylation and gene expression of PTCLs. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples, suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose genetic and pharmacologic inactivation inhibited the proliferation of T-cell lines by inducing G2-M arrest and apoptosis. Our data thus show that human PTCLs have a significant number of recurrent methylation alterations that may affect the expression of genes critical for proliferation whose targeting might be beneficial in anti-lymphoma treatments.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Julian Tobon
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Biomedical Research Center, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Arshee Badar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Duo Chen
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Reem Abdelghany
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Gene Pozas
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Jacob Fingeret
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Emma Noel
- College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL 32610, USA
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Alexander Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Mittal K, Cooper GW, Lee BP, Su Y, Skinner KT, Shim J, Jonus HC, Kim WJ, Doshi M, Almanza D, Kynnap BD, Christie AL, Yang X, Cowley GS, Leeper BA, Morton CL, Dwivedi B, Lawrence T, Rupji M, Keskula P, Meyer S, Clinton CM, Bhasin M, Crompton BD, Tseng YY, Boehm JS, Ligon KL, Root DE, Murphy AJ, Weinstock DM, Gokhale PC, Spangle JM, Rivera MN, Mullen EA, Stegmaier K, Goldsmith KC, Hahn WC, Hong AL. Targeting TRIP13 in favorable histology Wilms tumor with nuclear export inhibitors synergizes with doxorubicin. Commun Biol 2024; 7:426. [PMID: 38589567 PMCID: PMC11001930 DOI: 10.1038/s42003-024-06140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Garrett W Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Benjamin P Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yongdong Su
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Katie T Skinner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hunter C Jonus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Won Jun Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mihir Doshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diego Almanza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan D Kynnap
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Brittaney A Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula Keskula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Meyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine M Clinton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian D Crompton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuen-Yi Tseng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Merck & Co., Rahway, NJ, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer M Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miguel N Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Nowialis P, Tobon J, Lopusna K, Opavska J, Badar A, Chen D, Abdelghany R, Pozas G, Fingeret J, Noel E, Riva A, Fujiwara H, Opavsky R. Genome-wide methylation profiling of Peripheral T-cell lymphomas identifies TRIP13 as a critical driver of tumor proliferation and survival. RESEARCH SQUARE 2024:rs.3.rs-3971059. [PMID: 38464090 PMCID: PMC10925438 DOI: 10.21203/rs.3.rs-3971059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cytosine methylation of genomic DNA contributes to the regulation of gene expression and is involved in normal development including hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases (DNMTs) that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent a diverse group of aggressive mature T-cell malignancies accounting for approximately 10-15% of non-Hodgkin lymphoma cases in the US. PTCLs exhibit a broad spectrum of clinical, histological, and immunophenotypic features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we used high-resolution Whole Genome Bisulfite Sequencing (WGBS) and RNA-seq to profile DNA methylation and gene expression of PTCLs and normal T-cells. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose both genetic and pharmacologic inactivation, inhibited cellular growth of PTCL cell lines by inducing G2-M arrest accompanied by apoptosis suggesting that such an approach might be beneficial in human lymphoma treatment. Altogether we show that human PTCLs are characterized by a large number of recurrent methylation alterations, and demonstrated that TRIP13 is critical for PTCL maintenance in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Duo Chen
- University of Florida College of Medicine
| | - Reem Abdelghany
- UF College of Liberal Arts and Sciences, University of Florida
| | - Gene Pozas
- UF College of Liberal Arts and Sciences, University of Florida
| | - Jacob Fingeret
- UF College of Liberal Arts and Sciences, University of Florida
| | | | | | | | | |
Collapse
|
10
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Liu G, Wang H, Ran R, Wang Y, Li Y. TRIP13 Activates Glycolysis to Promote Cell Stemness and Strengthen Doxorubicin Resistance of Colorectal Cancer Cells. Curr Med Chem 2024; 31:3397-3411. [PMID: 38347785 DOI: 10.2174/0109298673255498231117100421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND Chemotherapy resistance is one of the main causes of clinical chemotherapy failure. Current cancer research explores the drug resistance mechanism and new therapeutic targets. This work aims to elucidate the mechanism of thyroid hormone receptor interactor 13 (TRIP13) affecting doxorubicin (DOX) resistance in colorectal cancer (CRC). METHODS Bioinformatics analyses were employed to clarify TRIP13 expression in CRC tissues and predict the correlation of the TRIP13 enrichment pathway with glycolysis-related genes and stemness index mRNAsi. Quantitative real-time polymerase chain reaction and western blot were adopted to analyze the expression of TRIP13 and glycolysis- related genes. Cell Counting Kit-8 was utilized to determine the cell viability and IC50 value. Western blot was employed to measure the expression of stemness-related factors. Cell function assays were performed to detect cells' sphere-forming ability and glycolysis level. Animal models were constructed to determine the effects of TRIP13 expression on CRC tumor growth. RESULTS TRIP13 was significantly overexpressed in CRC, concentrated in the glycolysis signaling pathway, and positively correlated with stemness index mRNAsi. High expression of TRIP13 facilitated DOX resistance in CRC. Further mechanistic studies revealed that overexpression of TRIP13 could promote cell stemness through glycolysis, which was also confirmed in animal experiments. CONCLUSION TRIP13 was highly expressed in CRC, which enhanced the DOX resistance of CRC cells by activating glycolysis to promote cell stemness. These findings offer new insights into the pathogenesis of DOX resistance in CRC and suggest that TRIP13 may be a new target for reversing DOX resistance in CRC.
Collapse
Affiliation(s)
- Guangyi Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huan Wang
- Department of Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Ran
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yicheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
12
|
Afaq F, Agarwal S, Bajpai P, Diffalha SA, Kim HG, Peter S, Khushman M, Chauhan SC, Mukherjee P, Varambally S, Manne U. Targeting of oncogenic AAA-ATPase TRIP13 reduces progression of pancreatic ductal adenocarcinoma. Neoplasia 2024; 47:100951. [PMID: 38039923 PMCID: PMC10716004 DOI: 10.1016/j.neo.2023.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) is involved in cancer progression, but its role in pancreatic ductal adenocarcinoma (PDAC) is unknown. Thus, we assessed the expression, functional role, and mechanism of action of TRIP13 in PDAC. We further examined the efficacy of TRIP13 inhibitor, DCZ0415, alone or in combination with gemcitabine on malignant phenotypes, tumor progression, and immune response. We found that TRIP13 was overexpressed in human PDACs relative to corresponding normal pancreatic tissues. TRIP13 knockdown or treatment of PDAC cells with DCZ0415 reduced proliferation and colony formation, and induced G2/M cell cycle arrest and apoptosis. Additionally, TRIP13 knockdown or targeting with DCZ0415 reduced the migration and invasion of PDAC cells by increasing E-cadherin and decreasing N-cadherin and vimentin. Pharmacologic targeting or silencing of TRIP13 also resulted in reduce expression of FGFR4 and STAT3 phosphorylation, and downregulation of the Wnt/β-catenin pathway. In immunocompromised mouse models of PDAC, knockdown of TRIP13 or treatment with DCZ0415 reduced tumor growth and metastasis. In an immunocompetent syngeneic PDAC model, DCZ0415 treatment enhanced the immune response by lowering expression of PD1/PDL1, increasing granzyme B/perforin expression, and facilitating infiltration of CD3/CD4 T-cells. Further, DCZ0415 potentiated the anti-metastatic and anti-tumorigenic activities of gemcitabine by reducing proliferation and angiogenesis and by inducing apoptosis and the immune response. These preclinical findings show that TRIP13 is involved in PDAC progression and targeting of TRIP13 augments the anticancer effect of gemcitabine.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Shajan Peter
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, USA
| | - Moh'd Khushman
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Priyabrata Mukherjee
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA.
| |
Collapse
|
13
|
Wang Z, Cai H, Li Z, Sun W, Zhao E, Cui H. Histone demethylase KDM4B accelerates the progression of glioblastoma via the epigenetic regulation of MYC stability. Clin Epigenetics 2023; 15:192. [PMID: 38093312 PMCID: PMC10720090 DOI: 10.1186/s13148-023-01608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant and invasive human brain tumor. Histone demethylase 4B (KDM4B) is abnormally expressed in GBM, but the molecular mechanisms by which KDM4B affects the malignant tumor progression are not well defined. METHODS GBM cell lines and xenograft tumor samples were subjected to quantitative PCR (qPCR), Western blot, immunohistochemical staining (IHC), as well as ubiquitination, immunoprecipitation (IP), and chromatin immunoprecipitation (ChIP) assays to investigate the role of KDM4B in the progression of GBM. RESULTS Here, we report that KDM4B is an epigenetic activator of GBM progression. Abnormal expression of KDM4B is correlated with a poor prognosis in GBM patients. In GBM cell lines, KDM4B silencing significantly inhibited cell survival, proliferation, migration, and invasion, indicating that KDM4B is essential for the anchorage-independent growth and tumorigenic activity of GBM cells. Mechanistically, KDM4B silencing led to downregulation of the oncoprotein MYC and suppressed the expression of cell cycle proteins and epithelial-to-mesenchymal transition (EMT)-related proteins. Furthermore, we found that KDM4B regulates MYC stability through the E3 ligase complex SCFFBXL3+CRY2 and epigenetically activates the transcription of CCNB1 by removing the repressive chromatin mark histone H3 lysine 9 trimethylation (H3K9me3). Finally, we provide evidence that KDM4B epigenetically activates the transcription of miR-181d-5p, which enhances MYC stability. CONCLUSIONS Our study has uncovered a KDM4B-dependent epigenetic mechanism in the control of tumor progression, providing a rationale for utilizing KDM4B as a promising therapeutic target for the treatment of MYC-amplified GBM.
Collapse
Affiliation(s)
- Zhongze Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Huarui Cai
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Zekun Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
| | - Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
14
|
Wang Y, Dong S, Hu K, Xu L, Feng Q, Li B, Wang G, Chen G, Zhang B, Jia X, Xu Z, Gao X, Zhang H, Xie Y, Lu M, Chang S, Song D, Wu X, Jia Q, Zhu H, Zhou J, Zhu W, Shi J. The novel norcantharidin derivative DCZ5417 suppresses multiple myeloma progression by targeting the TRIP13-MAPK-YWHAE signaling pathway. J Transl Med 2023; 21:858. [PMID: 38012658 PMCID: PMC10680230 DOI: 10.1186/s12967-023-04739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application. In this study, we synthesized a series of derivatives of NCTD to address this. Among these compounds, DCZ5417 demonstrated the greatest anti-MM effect and fewest side effects. Its anti-myeloma effects and the mechanism were further tested. METHODS Molecular docking, pull-down, surface plasmon resonance-binding, cellular thermal shift, and ATPase assays were used to study the targets of DCZ5417. Bioinformatic, genetic, and pharmacological approaches were used to elucidate the mechanisms associated with DCZ5417 activity. RESULTS We confirmed a highly potent interaction between DCZ5417 and TRIP13. DCZ5417 inhibited the ATPase activity of TRIP13, and its anti-MM activity was found to depend on TRIP13. A mechanistic study verified that DCZ5417 suppressed cell proliferation by targeting TRIP13, disturbing the TRIP13/YWHAE complex and inhibiting the ERK/MAPK signaling axis. DCZ5417 also showed a combined lethal effect with traditional anti-MM drugs. Furthermore, the tumor growth-inhibitory effect of DCZ5417 was demonstrated using in vivo tumor xenograft models. CONCLUSIONS DCZ5417 suppresses MM progression in vitro, in vivo, and in primary cells from drug-resistant patients, affecting cell proliferation by targeting TRIP13, destroying the TRIP13/YWHAE complex, and inhibiting ERK/MAPK signaling. These results imply a new and effective therapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Yingcong Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Sanfeng Dong
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guangli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bibo Zhang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meiling Lu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
15
|
Hou J, Huang P, Xu M, Wang H, Shao Y, Weng X, Liu Y, Chang H, Zhang L, Cui H. Nonstructural maintenance of chromatin condensin I complex subunit G promotes the progression of glioblastoma by facilitating Poly (ADP-ribose) polymerase 1-mediated E2F1 transactivation. Neuro Oncol 2023; 25:2015-2027. [PMID: 37422706 PMCID: PMC10628937 DOI: 10.1093/neuonc/noad111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Nonstructural maintenance of chromatin condensin I complex subunit G (NCAPG), also known as non-structural maintenance of chromosomes condensin I complex subunit G, is mitosis-related protein that widely existed in eukaryotic cells. Increasing evidence has demonstrated that aberrant NCAPG expression was strongly associated with various tumors. However, little is known about the function and mechanism of NCAPG in glioblastoma (GBM). METHODS The expression and prognostic value of NCAPG were detected in the clinical databases and tumor samples. The function effects of NCAPG downregulation or overexpression were evaluated in GBM cell proliferation, migration, invasion, and self-renewal in vitro and in tumor growth in vivo. The molecular mechanism of NCAPG was researched. RESULTS We identified that NCAPG was upregulated in GBM and associated with poor prognosis. Loss of NCAPG suppressed the progression of GBM cells in vitro and prolonged survival in mouse models of GBM in vivo. Mechanistically, we revealed that NCAPG positively regulated E2F transcription factor 1 (E2F1) pathway activity. By directly interacting with Poly (ADP-ribose) polymerase 1, a co-activator of E2F1, and facilitating the PARP1-E2F1 interaction to activate E2F1 target gene expression. Intriguingly, we also discovered that NCAPG functioned as a downstream target of E2F1, which was proved by the ChIP and Dual-Luciferase results. Comprehensive data mining and immunocytochemistry analysis revealed that NCAPG expression was positively associated with the PARP1/E2F1 signaling axis. CONCLUSIONS Our findings indicate that NCAPG promotes GBM progression by facilitating PARP1-mediated E2F1 transactivation, suggesting that NCAPG is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Minghao Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yaqian Shao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuelian Weng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongbo Chang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Hebei Province, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
16
|
Hu L, Shi J, Shen D, Zhai X, Liang D, Wang J, Xie C, Xia Z, Cui J, Liu F, Du S, Meng S, Piao H. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov 2023; 9:333. [PMID: 37669963 PMCID: PMC10480197 DOI: 10.1038/s41420-023-01632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
- Department of Laboratory Medicine, Affiliated Qingdao Central Hospital, Qingdao University, 266000, Qingdao, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Dachuan Shen
- Department of Oncology, Affliated Zhongshan Hospital of Dalian University, 116001, Dalian, China
| | - Xingyue Zhai
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Zhiyu Xia
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Cui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Feng Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
17
|
Wan S, Liu C, Li C, Wang Z, Zhao G, Li J, Ran W, Zhong X, Li Y, Zhang L, Cui H. AKIP1 accelerates glioblastoma progression through stabilizing EGFR expression. Oncogene 2023; 42:2905-2918. [PMID: 37596322 DOI: 10.1038/s41388-023-02796-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
A Kinase Interacting Protein 1 (AKIP1) is found to be overexpressed in a variety of human cancers and associated with patients' worse prognosis. Several studies have established AKIP1's malignant functions in tumor metastasis, angiogenesis, and chemoradiotherapy resistance. However, the mechanism of AKIP1 involved in accelerating glioblastoma (GBM) progression remains unknown. Here, we showed that the expression of AKIP1 was positively correlated with the glioma pathological grades. Down-regulating AKIP1 greatly impaired the proliferation, colony formation, and tumorigenicity of GBM cells. In terms of the mechanism, AKIP1 cooperates with transcriptional factor Yin Yang 1 (YY1)-mediated Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) transcriptional activation, enhancing the stability of Epidermal Growth Factor Receptor (EGFR). YY1 was identified as a potential transcriptional factor of HSP90AA1 and directly interacts with AKIP1. The overexpression of HSP90α significantly reversed AKIP1 depletion incurred EGFR instability and the blocked cell proliferation. Moreover, we further investigated the interacted pattern between EGFR and HSP90α. These findings established that AKIP1 acted as a critical oncogenic factor in GBM and uncovered a novel regulatory mechanism in EGFR aberrant expression.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chongyang Li
- School of Basic Medicine, Fudan University, Shanghai, 200032, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Jingui Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Wenhao Ran
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xi Zhong
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang, HeBei Province, 050000, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
18
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Zhang G, Zhu Q, Fu G, Hou J, Hu X, Cao J, Peng W, Wang X, Chen F, Cui H. Correction to: TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br J Cancer 2023:10.1038/s41416-023-02305-y. [PMID: 37336962 PMCID: PMC10403562 DOI: 10.1038/s41416-023-02305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Affiliation(s)
- Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Qingzong Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gang Fu
- Dental Hospital Affiliated to Chongqing Medical University, Chongqing, 400016, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiangjun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Fei Chen
- Department of Pharmaceutical Sciences EACPHS, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.
- Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Sinnarasan VSP, Paul D, Das R, Venkatesan A. Gastric Cancer Biomarker Candidates Identified by Machine Learning and Integrative Bioinformatics: Toward Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37229622 DOI: 10.1089/omi.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gastric cancer (GC) is among the leading causes of cancer-related deaths worldwide. The discovery of robust diagnostic biomarkers for GC remains a challenge. This study sought to identify biomarker candidates for GC by integrating machine learning (ML) and bioinformatics approaches. Transcriptome profiles of patients with GC were analyzed to identify differentially expressed genes between the tumor and adjacent normal tissues. Subsequently, we constructed protein-protein interaction networks so as to find the significant hub genes. Along with the bioinformatics integration of ML methods such as support vector machine, the recursive feature elimination was used to select the most informative genes. The analysis unraveled 160 significant genes, with 88 upregulated and 72 downregulated, 10 hub genes, and 12 features from the variable selection method. The integrated analyses found that EXO1, DTL, KIF14, and TRIP13 genes are significant and poised as potential diagnostic biomarkers in relation to GC. The receiver operating characteristic curve analysis found KIF14 and TRIP13 are strongly associated with diagnosis of GC. We suggest KIF14 and TRIP13 are considered as biomarker candidates that might potentially inform future research on diagnosis, prognosis, or therapeutic targets for GC. These findings collectively offer new future possibilities for precision/personalized medicine research and development for patients with GC.
Collapse
Affiliation(s)
| | - Dahrii Paul
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajesh Das
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Amouda Venkatesan
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
21
|
Xiao Z, Li M, Zhang X, Rong X, Xu H. TRIP13 overexpression promotes gefitinib resistance in non‑small cell lung cancer via regulating autophagy and phosphorylation of the EGFR signaling pathway. Oncol Rep 2023; 49:84. [PMID: 36896765 PMCID: PMC10035062 DOI: 10.3892/or.2023.8521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) accounts for the majority of lung cancers and remains the most common cause of cancer‑related death. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‑TKIs) have been used as first‑line treatment for patients with NSCLC showing EGFR mutations. Unfortunately, drug resistance is a crucial barrier affecting the treatment of patients with NSCLC. Thyroid hormone receptor interactor 13 (TRIP13) is an ATPase that is overexpressed in numerous tumors and is involved in drug resistance. However, whether TRIP13 plays a role in regulating sensitivity to EGFR‑TKIs in NSCLC remains unknown. TRIP13 expression was evaluated in gefitinib‑sensitive (HCC827) and ‑resistant (HCC827GR and H1975) cell lines. The effect of TRIP13 on gefitinib sensitivity was assessed using the MTS assay. The expression of TRIP13 was upregulated or knocked down to determine its effect on cell growth, colony formation, apoptosis and autophagy. Additionally, the regulatory mechanism of TRIP13 on EGFR and its downstream pathways in NSCLC cells were examined using western blotting, immunofluorescence and co‑immunoprecipitation assays. The expression levels of TRIP13 were significantly higher in gefitinib‑resistant than in gefitinib‑sensitive NSCLC cells. TRIP13 upregulation enhanced cell proliferation and colony formation while reducing the apoptosis of gefitinib‑resistant NSCLC cells, suggesting that TRIP13 may facilitate gefitinib resistance in NSCLC cells. In addition, TRIP13 improved autophagy to desensitize gefitinib in NSCLC cells. Furthermore, TRIP13 interacted with EGFR and induced its phosphorylation and downstream pathways in NSCLC cells. The present study demonstrated that TRIP13 overexpression promotes gefitinib resistance in NSCLC by regulating autophagy and activating the EGFR signaling pathway. Thus, TRIP13 could be used as a biomarker and therapeutic target for gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Zhangxian Xiao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingxi Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoqian Zhang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xuezhu Rong
- Department of Pathology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Hongtao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
22
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
23
|
TRIP13 Participates in Immediate-Early Sensing of DNA Strand Breaks and ATM Signaling Amplification through MRE11. Cells 2022; 11:cells11244095. [PMID: 36552858 PMCID: PMC9776959 DOI: 10.3390/cells11244095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation.
Collapse
|
24
|
Wan S, Moure UAE, Liu R, Liu C, Wang K, Deng L, Liang P, Cui H. Combined bulk RNA-seq and single-cell RNA-seq identifies a necroptosis-related prognostic signature associated with inhibitory immune microenvironment in glioma. Front Immunol 2022; 13:1013094. [PMID: 36466844 PMCID: PMC9713702 DOI: 10.3389/fimmu.2022.1013094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 08/20/2023] Open
Abstract
Necroptosis is a programmed cell death playing a significant role in cancer. Although necroptosis has been related to tumor immune environment (TIME) remodeling and cancer prognosis, however, the role of necroptosis-related genes (NRGs) in glioma is still elusive. In this study, a total of 159 NRGs were obtained, and parameters such as mutation rate, copy number variation (CNV), and relative expression level were assessed. Then, we constructed an 18-NRGs-based necroptosis-related signature (NRS) in the TCGA dataset, which could predict the patient's prognosis and was validated in two external CGGA datasets. We also explored the correlation between NRS and glioma TIME, chemotherapy sensitivity, and certain immunotherapy-related factors. The two necroptosis-related subtypes were discovered and could also distinguish the patients' prognosis. Through the glioblastoma (GBM) scRNA-seq data analysis, NRGs' expression levels in different GBM patient tissue cell subsets were investigated and the relative necroptosis status of different cell subsets was assessed, with the microglia score culminating among all. Moreover, we found a high infiltration level of immunosuppressive cells in glioma TIME, which was associated with poor prognosis in the high-NRS glioma patient group. Finally, the necroptosis suppressor CASP8 exhibited a high expression in glioma and was associated with poor prognosis. Subsequent experiments were performed in human glioma cell lines and patients' tissue specimens to verify the bioinformatic analytic findings about CASP8. Altogether, this study provides comprehensive evidence revealing a prognostic value of NRGs in glioma, which is associated with TIME regulation.
Collapse
Affiliation(s)
- Sicheng Wan
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- The Ninth People’s Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Ruochen Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaolong Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Kun Wang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Longfei Deng
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Chongqing Children’s Hospital, Chongqing, China
| | - Hongjuan Cui
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
25
|
RAI14 Promotes Melanoma Progression by Regulating the FBXO32/c-MYC Pathway. Int J Mol Sci 2022; 23:ijms231912036. [PMID: 36233342 PMCID: PMC9569902 DOI: 10.3390/ijms231912036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma originates from the malignant transformation of melanocytes. Compared with other skin cancers, melanoma has a higher fatality rate. The 5-year survival rate of patients with early-stage primary melanoma through surgical resection can reach more than 90%. However, the 5-year survival rate of patients with metastatic melanoma is only 25%. Therefore, accurate assessment of melanoma progression is critical. Previous studies have found that Retinoic Acid Induced 14(RAI14) is critical in tumorigenesis. However, the biological function of RAI14 for the development of melanoma is unclear. In this study, RAI14 is highly expressed in melanoma and correlated with prognosis. The expression of RAI14 can affect the proliferation, migration and invasion of melanoma cells. F-Box Protein 32(FBXO32) is an E3 ubiquitin ligase of c-MYC. We found that RAI14 affects the transcriptional expression of FBXO32 and regulates the stability of c-MYC. These results suggest that RAI14 play an important role in the growth of melanoma and is expected to be a therapeutic target for melanoma.
Collapse
|
26
|
Jiang X, Huang X, Zheng G, Jia G, Li Z, Ding X, Lei L, Yuan L, Xu S, Gao N. Targeting PI4KA sensitizes refractory leukemia to chemotherapy by modulating the ERK/AMPK/OXPHOS axis. Am J Cancer Res 2022; 12:6972-6988. [PMID: 36276647 PMCID: PMC9576605 DOI: 10.7150/thno.76563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background: The emergence of chemoresistance in leukemia markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Recent evidence has revealed that phosphatidylinositol 4 kinase-IIIα (PI4KA) plays a critical role in tumorigenesis. However, the molecular mechanisms of PI4KA-regulated chemoresistance and leukemogenesis remain largely unknown. Methods: Liquid chromatography-mass spectrometry (LC-MS), patient samples and leukemia xenograft mouse models were used to investigate whether PI4KA was an effective target to overcome chemoresistance in leukemia. Enzyme-linked immunosorbent assay (ELISA) and molecular mechanics/generalized born surface area (MM/GBSA) method were employed to identify cepharanthine (CEP) as a novel PI4KA inhibitor. Results: High expression of PI4KA was observed in drug-resistant leukemia cells or in relapsed leukemia patients, which was correlated with poor overall survival. Depletion of PI4KA sensitized drug-resistant leukemia cells to chemotherapeutic drugs in vitro and in vivo by regulating ERK/AMPK/OXPHOS axis. We also identified cepharanthine (CEP) as a novel PI4KA inhibitor, which could undermine the stability of the PI4KA/TTC7/FAM126 complex, enhancing the sensitivity of drug-resistant leukemia cells to chemotherapeutic drugs in vitro and in vivo. Conclusions: Our study underscored the potential of therapeutic targeting of PI4KA to overcome chemoresistance in leukemia. A combination of the PI4KA inhibitor with classic chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of refractory leukemia.
Collapse
Affiliation(s)
- Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xiangtao Huang
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Guoxun Zheng
- Shanghai StoneWise AI Technology Co. Ltd. Shanghai 201210, China
| | - Guanfei Jia
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Zhiqiang Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xin Ding
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Ling Lei
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| |
Collapse
|
27
|
Cao Y, Huang F, Liu J, Qi H, Xiao J. MiR-129-5p/TRIP13 affects malignant phenotypes of colorectal cancer cells. Histol Histopathol 2022; 37:879-888. [PMID: 35362548 DOI: 10.14670/hh-18-455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Aberrant miR-129-5p expression is a key modulator of cancer development. But how the miRNA affects colorectal cancer (CRC) remains unclear. This study was designed to illustrate the underlying mechanism of miR-129-5p in CRC. METHODS MiR-129-5p expression at cellular level was assayed by qRT-PCR. Its role in CRC cell phenotypes was studied by cell function experiments. The binding relationship between miR-129-5p and TRIP13 was analyzed and verified by target changed to bioinformatics prediction and dual-luciferase detection. Furthermore, the functional mechanism based on miR-129-5p and TRIP13 in CRC was studied through rescue experiments. RESULTS CRC cell lines presented prominently lower miR-129-5p levels than the normal colon epithelial cell line. The forced miR-129-5p level suppressed CRC cell growth. TRIP13 was proved to be a target of miR-129-5p in CRC cells, and miR-129-5p overexpression reduced TRIP13 expression. TRIP13 knockdown resulted in cell cycle arrest. Additionally, TRIP13 overexpression restored the impacts of miR-129-5p overexpression on cell malignant phenotypes and cell cycle. CONCLUSION MiR-129-5p down-regulated TRIP13 expression, thereby restraining the malignant progression of CRC cells. The findings may offer a new target for molecular therapy of CRC.
Collapse
Affiliation(s)
- Yongqing Cao
- Department of Hematology, The first hospital of Changsha, Changsha City, Hunan Province, China.
| | - Fang Huang
- Department of Hematology, The first hospital of Changsha, Changsha City, Hunan Province, China
| | - Jiheng Liu
- Department of Hematology, The first hospital of Changsha, Changsha City, Hunan Province, China
| | - Hui Qi
- Department of Hematology, The first hospital of Changsha, Changsha City, Hunan Province, China
| | - Jinjun Xiao
- Department of Hematology, The first hospital of Changsha, Changsha City, Hunan Province, China
| |
Collapse
|
28
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
29
|
Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H, Zhang C. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer 2022; 13:2226-2237. [PMID: 35517402 PMCID: PMC9066198 DOI: 10.7150/jca.66020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13), an AAA-ATPase, participates in the development of many cancers. This study explores the function of TRIP13 and synergistic effects of TRIP13 and PARP1 inhibitors in hepatocellular carcinoma (HCC). The dose-dependent effects of TRIP13 and PARP1 inhibitors on HCC cells proliferation or migration were investigated by the CCK-8 and Transwell assays. Using siRNA or lentivirus to knock down TRIP13, we tested HCC cell and tumor growth in vitro and in vivo. The DNA damage caused by TRIP13 and PARP1 inhibitors was measured by the phosphorylation of H2AX, one of the DNA damage biomarkers. The phosphorylation of H2AX was increased after treatment with DCZ0415 or TRIP13 knockdown. Combining DCZ0415 with PARP1 inhibitor, Olaparib induced synergistic anti-HCC activity. We also found that the overexpression of TRIP13 is significantly associated with early recurrent HCC and poor survival. Up-regulation of TRIP13 in HCC was regulated by transcription factor SP1. In conclusion, our study demonstrated that DCZ0415 targeting TRIP13 impaired non-homologous end-joining repair to inhibit HCC progression and had a synergistic effect with PARP1 inhibitor Olaparib in HCC, suggesting a potential treatment of HCC.
Collapse
Affiliation(s)
- Haojun Xu
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Ma
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Mo
- Department of Pathology, The first people's hospital of Foshan, Foshan 528041, China.,School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoli Chen
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fanggui Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hongjin Chen
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Institute of Cancer Research, Nanjing 2100092, China
| | - Hongping Xia
- School of Basic Medical Sciences &Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China.,Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Chengfei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
30
|
Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, Zhao M, Jiang X, Liu W, Ren C. FBXW7 and the Hallmarks of Cancer: Underlying Mechanisms and Prospective Strategies. Front Oncol 2022; 12:880077. [PMID: 35515121 PMCID: PMC9063462 DOI: 10.3389/fonc.2022.880077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system, performs an indispensable role in orchestrating cellular processes through ubiquitination and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E. Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations of its downstream pathway, resulting in the occurrence of diseases especially tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks of cancer and discuss the underlying mechanisms. Considering the interplay of cancer hallmarks, we propose several prospective strategies for circumventing the deficits of therapeutic resistance and complete cure of cancer patients.
Collapse
Affiliation(s)
- Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenxi Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaheng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Changsha Kexin Cancer Hospital, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
31
|
HECTD3 promotes gastric cancer progression by mediating the polyubiquitination of c-MYC. Cell Death Dis 2022; 8:185. [PMID: 35397617 PMCID: PMC8994759 DOI: 10.1038/s41420-022-01001-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022]
Abstract
The E3 ubiquitin ligase HECTD3 is homologous with the E6 related protein carboxyl terminus, which plays a vital role in biological modification, including immunoreactivity, drug resistance and apoptosis. Current research indicates that HECTD3 promotes the malignant proliferation of multiple tumors and increases drug tolerance. Our study primarily explored the important function and effects of HECTD3 in gastric cancer. Here, we discovered that HECTD3 is abnormally activated in gastric cancer, and the clinical prognosis database suggested that HECTD3 was strongly expressed in gastric cancer. Depletion of HECTD3 restrained the proliferative and clone abilities of cells and induced the apoptosis of gastric cancer cells. Mechanistically, our findings revealed that interaction between HECTD3 and c-MYC, and that the DOC domain of HECTD3 interacted with the CP and bHLHZ domains of c-MYC. Furthermore, we discovered that HECTD3 mediates K29-linked polyubiquitination of c-MYC. Then, our research indicated that cysteine mutation at amino acid 823 (ubiquitinase active site) of HECTD3 reduces the polyubiquitination of c-MYC. Our experimental results reveal that HECTD3 facilitates the malignant proliferation of gastric cancer by mediating K29 site-linked polyubiquitination of c-MYC. HECTD3 might become a curative marker.
Collapse
|
32
|
Agarwal S, Afaq F, Bajpai P, Kim H, Elkholy A, Behring M, Chandrashekar DS, Diffalha SA, Khushman M, Sugandha SP, Varambally S, Manne U. DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol Oncol 2022; 16:1728-1745. [PMID: 35194944 PMCID: PMC9019876 DOI: 10.1002/1878-0261.13201] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Thyroid receptor-interacting protein 13 (TRIP13), a protein of the AAA-ATPase family, is upregulated in various human cancers, including colorectal cancer (CRC). This study focused on the inhibition of TRIP13-induced CRC progression and signalling by DCZ0415, a small molecule targeting TRIP13. It demonstrated potent antitumour activity in TRIP13-deregulated cancer cell lines, regardless of their p53, KRAS, BRAF, epidermal growth factor receptor or microsatellite instability status. The treatment of CRC cells with DCZ0415 resulted in decreased cell proliferation, induced cell cycle arrest in the G2-M phase and increased apoptosis. DCZ0415 diminished xenograft tumour growth and metastasis of CRC in immunocompromised mice. DCZ0415 reduced expression of fibroblast growth factor receptor 4 (FGFR4), signal transducer and activator of transcription 3 (STAT3), and proteins associated with the epithelial-mesenchymal transition and nuclear factor kappa B (NF-κB) pathways in cells and xenografts exhibiting high expression of TRIP13. Additionally, DCZ0415 decreased cyclin D1, β-catenin and T-cell factor 1, leading to the inactivation of the Wnt/β-catenin pathway. In a syngeneic CRC model, DCZ0415 treatment induced an immune response by decreasing PD1 and CTLA4 levels and increasing granzyme B, perforin and interferon gamma. In sum, DCZ04145 inhibits the TRIP13-FGFR4-STAT3 axis, inactivates NF-κB and Wnt/β-catenin signalling, activates antitumour immune response and reduces the progression and metastasis of CRC. This study provides a rationale to evaluate DCZ0415 clinically for the treatment of a subset of CRCs that exhibit dysregulated TRIP13 and FGFR4.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Farrukh Afaq
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Amr Elkholy
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Michael Behring
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | - Sameer Al Diffalha
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Moh’d Khushman
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
- Department of MedicineDivision of Medical OncologyUniversity of Alabama at BirminghamALUSA
| | - Shajan P. Sugandha
- Department of MedicineDivision of GastroenterologyUniversity of Alabama at BirminghamALUSA
| | - Sooryanarayana Varambally
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
33
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
34
|
Lan J, Huang J, Tao X, Gao Y, Zhang L, Huang W, Luo J, Liu C, Deng Y, Liu L, Liu X. Evaluation of the TRIP13 level in breast cancer and insights into potential molecular pathways. J Cell Mol Med 2022; 26:2673-2685. [PMID: 35322916 PMCID: PMC9077308 DOI: 10.1111/jcmm.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Abstract
TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan–Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K‐AKT‐mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein–protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.
Collapse
Affiliation(s)
- Jin Lan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingzhan Huang
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinyi Tao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuan Gao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chuqin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yunyao Deng
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|
36
|
Streese L, Demougin P, Iborra P, Kanitz A, Deiseroth A, Kröpfl JM, Schmidt-Trucksäss A, Zavolan M, Hanssen H. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population. Sci Rep 2022; 12:2991. [PMID: 35194110 PMCID: PMC8863825 DOI: 10.1038/s41598-022-06956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
We performed untargeted profiling of circulating microRNAs (miRNAs) in a well characterized cohort of older adults to verify associations of health and disease-related biomarkers with systemic miRNA expression. Differential expression analysis revealed 30 miRNAs that significantly differed between healthy active, healthy sedentary and sedentary cardiovascular risk patients. Increased expression of miRNAs miR-193b-5p, miR-122-5p, miR-885-3p, miR-193a-5p, miR-34a-5p, miR-505-3p, miR-194-5p, miR-27b-3p, miR-885-5p, miR-23b-5b, miR-365a-3p, miR-365b-3p, miR-22-5p was associated with a higher metabolic risk profile, unfavourable macro- and microvascular health, lower physical activity (PA) as well as cardiorespiratory fitness (CRF) levels. Increased expression of miR-342-3p, miR-1-3p, miR-92b-5p, miR-454-3p, miR-190a-5p and miR-375-3p was associated with a lower metabolic risk profile, favourable macro- and microvascular health as well as higher PA and CRF. Of note, the first two principal components explained as much as 20% and 11% of the data variance. miRNAs and their potential target genes appear to mediate disease- and health-related physiological and pathophysiological adaptations that need to be validated and supported by further downstream analysis in future studies. Clinical Trial Registration: ClinicalTrials.gov: NCT02796976 (https://clinicaltrials.gov/ct2/show/NCT02796976).
Collapse
Affiliation(s)
- Lukas Streese
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Philippe Demougin
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Life Sciences Training Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Paula Iborra
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Arne Deiseroth
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Julia M Kröpfl
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland.
| |
Collapse
|
37
|
TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Dis 2022; 8:35. [PMID: 35075117 PMCID: PMC8786872 DOI: 10.1038/s41420-022-00824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the digestive tract malignancies whose early symptoms are not obvious. This study aimed to identify novel targets for CRC therapy, especially early-stage CRC, by reanalyzing the publicly available GEO and TCGA databases. Thyroid hormone receptor interactor 13 (TRIP13) correlated with tumor progression and prognosis of patients after several rounds of analysis, including weighted gene correlation network analysis (WGCNA), and further chosen for experimental validation in cancer cell lines and patient samples. We identified that mRNA and protein levels of TRIP13 increased in CRC cells and tumor tissues with tumor progression. miR-4693-5p was significantly downregulated in CRC tumor tissues and bound to the 3′ untranslated region (3′UTR) of TRIP13, downregulating TRIP13 expression. DCZ0415, a small molecule inhibitor targeting TRIP13, induced anti-tumor activity in vitro and in vivo. DCZ0415 markedly suppressed CRC cell proliferation, migration, and tumor growth, promoted cell apoptosis, and resulted in the arrest of the cell cycle. Our research suggests that TRIP13 might play a crucial role in CRC progression and could be a potential target for CRC therapy.
Collapse
|
38
|
Meng J, Wei Y, Deng Q, Li L, Li X. Study on the expression of TOP2A in hepatocellular carcinoma and its relationship with patient prognosis. Cancer Cell Int 2022; 22:29. [PMID: 35033076 PMCID: PMC8761301 DOI: 10.1186/s12935-021-02439-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. However, the molecular mechanism of HCC formation remains to be explored and studied. Objective To investigate the expression of TOP2A in hepatocellular carcinoma (HCC) and its prognosis. Methods The data set of hepatocellular carcinoma was downloaded from GEO database for differential gene analysis, and hub gene was identified by Cytoscape. GEPIA was used to verify the expression of HUB gene and evaluate its prognostic value. Then TOP2A was selected as the research object of this paper by combining literature and clinical sample results. Firstly, TIMER database was used to study TOP2A, and the differential expression of TOP2A gene between normal tissues and cancer tissues was analyzed, as well as the correlation between TOP2A gene expression and immune infiltration of HCC cells. Then, the expression of top2a-related antibodies was analyzed using the Human Protein Atlas database, and the differential expression of TOP2A was verified by immunohistochemistry. Then, SRTING database and Cytoscape were used to establish PPI network for TOP2A and protein–protein interaction analysis was performed. The Oncomine database and cBioPortal were used to express and identify TOP2A mutation-related analyses. The expression differences of TOP2A gene were identified by LinkedOmics, and the GO and KEGG pathways were analyzed in combination with related genes. Finally, Kaplan–Meier survival analysis was performed to analyze the clinical and prognosis of HCC patients. Results TOP2A may be a new biomarker and therapeutic target for hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02439-0.
Collapse
Affiliation(s)
- Jiali Meng
- Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanchao Wei
- Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qing Deng
- Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Li
- Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaolong Li
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Key Laboratory of Longevity and Agingrelated Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
39
|
Yu DC, Chen XY, Zhou HY, Yu DQ, Yu XL, Hu YC, Zhang RH, Zhang XB, Zhang K, Lin MQ, Gao XD, Guo TW. TRIP13 knockdown inhibits the proliferation, migration, invasion, and promotes apoptosis by suppressing PI3K/AKT signaling pathway in U2OS cells. Mol Biol Rep 2022; 49:3055-3064. [PMID: 35032258 DOI: 10.1007/s11033-022-07133-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although osteosarcoma (OS) is the most common malignant bone tumor, the biological mechanism underlying its incidence and improvement remains unclear. This study investigated early diagnosis and treatment objectives using bioinformatics strategies and performed experimental verification. METHODS AND RESULTS The top 10 OS hub genes-CCNA2, CCNB1, AURKA, TRIP13, RFC4, DLGAP5, NDC80, CDC20, CDK1, and KIF20A-were screened using bioinformatics methods. TRIP13 was chosen for validation after reviewing literature. TRIP13 was shown to be substantially expressed in OS tissues and cells, according to Western blotting (WB) and quantitative real-time polymerase chain reaction data. Subsequently, TRIP13 knockdown enhanced apoptosis and decreased proliferation, migration, and invasion in U2OS cells, as validated by the cell counting kit-8 test, Hoechst 33,258 staining, wound healing assay, and WB. In addition, the levels of p-PI3K/PI3K and p-AKT/AKT in U2OS cells markedly decreased after TRIP13 knockdown. Culturing U2OS cells, in which TRIP13 expression was downregulated, in a medium supplemented with a PI3K/AKT inhibitor further reduced their proliferation, migration, and invasion and increased their apoptosis. CONCLUSIONS TRIP13 knockdown reduced U2OS cell proliferation, migration, and invasion via a possible mechanism involving the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China.,Department of Orthopedics, Xigu Branch of the Second Hospital of Lanzhou University, 730000, Lanzhou, China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China. .,Department of Orthopedics, Xigu Branch of the Second Hospital of Lanzhou University, 730000, Lanzhou, China.
| | - De-Quan Yu
- Department of Radiotherapy, Air Force Medical University Tangdu Hospital, 710000, Xi'an, China
| | - Xiao-Lei Yu
- Department of cardiology, Air Force Medical University Tangdu Hospital, 710000, Xi'an, China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Kun Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Mao-Qiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Tao-Wen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| |
Collapse
|
40
|
ZC3H15 Correlates with a Poor Prognosis and Tumor Progression in Melanoma. BIOMED RESEARCH INTERNATIONAL 2022; 2021:8305299. [PMID: 34988227 PMCID: PMC8723872 DOI: 10.1155/2021/8305299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Zinc figure CCCH-type containing 15 (ZC3H15), also called developmentally regulated GTP-binding protein 1 (DRG1) family regulatory protein 1 (DFRP1), is a zinc finger containing protein. Despite playing a role in cellular signaling, it is found overexpressed in acute myeloid leukemia and also an independent prognostic marker in hepatocellular carcinoma patients. However, the biological effect of ZC3H15 in malignant melanoma (MM) remains unexplored. The expression of ZC3H15 in patients was analyzed using the R2: Genomics Analysis and Visualization Platform database. Immunohistochemical analysis, western blot, and qRT-PCR were used to detect ZC3H15 expression in melanoma tissues and cell lines. MTT, BrdU, flow cytometry assay, transwell, and western blot were performed to explore the proliferation, cell cycle, invasion, and migration of melanoma cells. We undertaken colony formation assay in vitro and tumor xenograft in vivo to detect the tumorigenicity of melanoma cells. In the present study, ZC3H15 was demonstrated highly expressed in melanoma tissues and cells. Elevated ZC3H15 impairs the survival of melanoma patients. Meanwhile, attenuation of ZC3H15 in melanoma cells inhibited cell proliferation and induced cycle arrest at G0/G1 phase. Consistently, the expression of cell cycle-related proteins cyclin dependent kinase 4 (CDK4), CDK6, and cyclin D1 (CCND1) was decreased while p21 was upregulated. Furthermore, we found the migration and invasion abilities were inhibited in ZC3H15-knockdown melanoma cells. In addition, downregulation of ZC3H15 resulted in inhibition of colony formation abilities in vitro and tumorigenesis in vivo. ZC3H15 promotes proliferation, migration/invasion, and tumorigenicity of melanoma cells. As a promising biomarker and therapeutic target in MM, ZC3H15 is worthy of further exploration.
Collapse
|
41
|
Li Y, Su Y, Zhao Y, Hu X, Zhao G, He J, Wan S, Lü M, Cui H. Demethylzeylasteral inhibits proliferation, migration, and invasion through FBXW7/c-Myc axis in gastric cancer. MedComm (Beijing) 2021; 2:467-480. [PMID: 34766156 PMCID: PMC8554662 DOI: 10.1002/mco2.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most familiar malignancy in the digestive system. Demethylzeylasteral (Dem), a natural functional monomer extracted from Tripterygium wilfordii Hook F, shows anti‐tumor effects in a variety of cancers, including GC, however, with the underlying mechanism poorly understood. In our study, we show that Dem inhibits the proliferation, migration, and invasion of GC cells, which are mediated by down‐regulating c‐Myc protein levels. Mechanistically, Dem reduces the stability of c‐Myc by up‐regulating FBXW7, an E3 ubiquitin ligase. Moreover, in xenograft tumor model experiment, Dem also inhibits GC, which depends on suppressing c‐Myc expression. Finally, Dem enhances GC cell chemosensitivity to the combination treatment of 5‐Fluorouracil (5‐Fu) and doxorubicin (DOX) in vitro. Together, Dem exerts anti‐neoplastic activities through destabilizing and suppressing c‐Myc, establishing a theory foundation for using it in future treatment of GC.
Collapse
Affiliation(s)
- Yongsen Li
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China
| | - Yongyue Su
- Department of Orthopaedic 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army Kunming China
| | - Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China
| | - Jiang He
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China
| | - Sicheng Wan
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China
| | - Muhan Lü
- Department of Gastroenterology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass sciences Southwest University Chongqing China.,Department of Gastroenterology The Affiliated Hospital of Southwest Medical University Luzhou China.,Cancer Centre Medical Research Institute Southwest University Chongqing China
| |
Collapse
|
42
|
Hou J, Liu Y, Huang P, Wang Y, Pei D, Tan R, Zhang Y, Cui H. RANBP10 promotes glioblastoma progression by regulating the FBXW7/c-Myc pathway. Cell Death Dis 2021; 12:967. [PMID: 34671019 PMCID: PMC8528885 DOI: 10.1038/s41419-021-04207-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022]
Abstract
RAN binding protein 10 (RANBP10), a ubiquitously expressed and evolutionarily conserved protein, as a RAN-GTP exchange factor (GEF) to regulate several factors involved in cellular progression. Previous studies showed that RANBP10 was overexpressed in prostate cancer cells and was responsible for androgen receptor (AR) activation. However, the biological function of RANBP10 in glioblastoma (GBM) has not been studied. Here, we found that RANBP10 was overexpressed in GBM, and high RANBP10 expression was closely linked to poor survival of patients with GBM. Downregulation of RANBP10 significantly inhibited cell proliferation, migration, invasion, and tumor growth of GBM cells. In addition, we revealed that RANBP10 could suppress the promoter activity of FBXW7, and thereby increase the protein stability of c-Myc in GBM cells. Silencing of FBXW7 in RANBP10-knockdown GBM cells could partly negate the effects induced by RANBP10 downregulation. Taken together, our findings established that RANBP10 significantly promoted GBM progression by control of the FBXW7-c-Myc axis, and suggest that RANBP10 may be a potential target in GBM.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Yutao Wang
- Department of Neurology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dakun Pei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Ruoyue Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Yundong Zhang
- Department of Neurology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
43
|
Liu X, Shen X, Zhang J. TRIP13 exerts a cancer-promoting role in cervical cancer by enhancing Wnt/β-catenin signaling via ACTN4. ENVIRONMENTAL TOXICOLOGY 2021; 36:1829-1840. [PMID: 34061428 DOI: 10.1002/tox.23303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has indicated that thyroid hormone receptor interacting protein 13 (TRIP13) exerts a cancer-promoting role in a broad spectrum of cancers. However, the detailed relevance and function of TRIP13 in cervical cancer remain undefined. The goal of this work was to evaluate the functional significance and mechanism of TRIP13 in cervical cancer. Our data demonstrated that TRIP13 expression was markedly increased in cervical cancer tissue, and high expression of TRIP13 predicted a low survival rate in cervical cancer patients. Knockdown of TRIP13 caused a significant reduction in the proliferation and invasion of cervical cancer cells. By contrast, over-expression of TRIP13 accelerated the proliferation and invasion of cervical cancer cells. Further data revealed that TRIP13 enhanced the activation of Wnt/β-catenin signaling associated with modulation of α-Actinin-4 (ACTN4). Knockdown of ACTN4 markedly reversed TRIP13-mediated activation of Wnt/β-catenin signaling. In addition, inhibition of Wnt/β-catenin signaling reversed TRIP13-induced cancer-promoting effects in cervical cancer cells. Knockdown of TRIP13 markedly retarded the tumor formation and growth of cervical cells in vivo in nude mice. Taken together, the data of this work indicate that TRIP13 accelerates the proliferation and invasion of cervical cancer by enhancing Wnt/β-catenin signaling via regulation of ACTN4. These findings underscore a relevance of the TRIP13/ACTN4/Wnt/β-catenin signaling axis in the progression of cervical cancer and suggest TRIP13 as a potential target for treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Xin Shen
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
44
|
Gen Y, Muramatsu T, Inoue J, Inazawa J. miR-766-5p targets super-enhancers by downregulating CBP and BRD4. Cancer Res 2021; 81:5190-5201. [PMID: 34353856 DOI: 10.1158/0008-5472.can-21-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Super-enhancers (SE) are clusters of transcription enhancers that drive gene expression. SEs are typically characterized by high levels of acetylation of histone H3 lysine 27 (H3K27ac), which is catalyzed by the histone lysine acetyltransferase CREB binding protein (CBP). Cancer cells frequently acquire tumor-specific SEs at key oncogenes, such as MYC, which induce several hallmarks of cancer. BRD4 is recruited to SEs and consequently functions as an epigenetic reader to promote transcription of SE-marked genes in cancer cells. miRNAs can be potent candidates for nucleic acid therapeutics for cancer. We previously identified miR-766-5p as a miRNA that downregulated MYC expression and inhibited cancer cell growth in vitro. In this study, we show that miR-766-5p directly targets CBP and BRD4. Concurrent suppression of CBP and BRD4 cooperatively downregulated MYC expression in cancer cells but not in normal cells. Chromatin immunoprecipitation analysis revealed that miR-766-5p reduced levels of H3K27ac at MYC SEs via CBP suppression. Moreover, miR-766-5p suppressed expression of a BRD4-NUT fusion protein that drives NUT midline carcinoma (NMC). In vivo administration of miR-766-5p suppressed tumor growth in two xenograft models. Collectively, these data suggest that targeting SEs using miR-766-5p-based therapeutics may serve as an effective strategy for the treatment of MYC-driven cancers.
Collapse
Affiliation(s)
- Yasuyuki Gen
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University
| | - Tomoki Muramatsu
- Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
45
|
Wei J, Wang B, Gao X, Sun D. Prognostic Value of a Novel Signature With Nine Hepatitis C Virus-Induced Genes in Hepatic Cancer by Mining GEO and TCGA Databases. Front Cell Dev Biol 2021; 9:648279. [PMID: 34336819 PMCID: PMC8322788 DOI: 10.3389/fcell.2021.648279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/25/2021] [Indexed: 01/29/2023] Open
Abstract
Background Hepatitis C virus-induced genes (HCVIGs) play a critical role in regulating tumor development in hepatic cancer. The role of HCVIGs in hepatic cancer remains unknown. This study aimed to construct a prognostic signature and assess the value of the risk model for predicting the prognosis of hepatic cancer. Methods Differentially expressed HCVIGs were identified in hepatic cancer data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases using the library (“limma”) package of R software. The protein–protein interaction (PPI) network was constructed using the Cytoscape software. Functional enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Univariate and multivariate Cox proportional hazard regression analyses were applied to screen for prognostic HCVIGs. The signature of HCVIGs was constructed. Gene Set Enrichment Analysis (GSEA) compared the low-risk and high-risk groups. Finally, the International Cancer Genome Consortium (ICGC) database was used to validate this prognostic signature. Polymerase chain reaction (PCR) was performed to validate the expression of nine HCVIGs in the hepatic cancer cell lines. Results A total of 143 differentially expressed HCVIGs were identified in TCGA hepatic cancer dataset. Functional enrichment analysis showed that DNA replication was associated with the development of hepatic cancer. The risk score signature was constructed based on the expression of ZIC2, SLC7A11, PSRC1, TMEM106C, TRAIP, DTYMK, FAM72D, TRIP13, and CENPM. In this study, the risk score was an independent prognostic factor in the multivariate Cox regression analysis [hazard ratio (HR) = 1.433, 95% CI = 1.280–1.605, P < 0.001]. The overall survival curve revealed that the high-risk group had a poor prognosis. The Kaplan–Meier Plotter online database showed that the survival time of hepatic cancer patients with overexpression of HCVIGs in this signature was significantly shorter. The prognostic signature-associated GO and KEGG pathways were significantly enriched in the risk group. This prognostic signature was validated using external data from the ICGC databases. The expression of nine prognostic genes was validated in HepG2 and LO-2. Conclusion This study evaluates a potential prognostic signature and provides a way to explore the mechanism of HCVIGs in hepatic cancer.
Collapse
Affiliation(s)
- Jianming Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xibo Gao
- Department of Dermatology, Tianjin Children's Hospital, Tianjin, China
| | - Daqing Sun
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
46
|
Zeng L, Liu YM, Yang N, Zhang T, Xie H. Hsa_circRNA_100146 Promotes Prostate Cancer Progression by Upregulating TRIP13 via Sponging miR-615-5p. Front Mol Biosci 2021; 8:693477. [PMID: 34307457 PMCID: PMC8292639 DOI: 10.3389/fmolb.2021.693477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: This study was conducted for investigating the functions of circular RNA circRNA_100146 (circRNA_100146) in the development of prostate cancer (PCa) and identifying the underlying mechanisms of the circRNA_100146/miR-615-5p/TRIP13 axis. Materials and Methods: Under the support of RT-PCR, the expression of circRNA_100146 in PCa cells was examined. Cell Counting Kit-8 (CCK-8) assays and clone formation assays were applied to the assessment of cell proliferation. We then determined cell invasion and migration through transwell assays and wound healing assays. RNA pull-down assays and luciferase reporter assays were performed for the exploration of the regulatory effects of potential molecules on the expressions of the targeting genes. In addition, a nude mouse xenograft model was applied to demonstrate the oncogenic roles of circRNA_100146 in PCa. Results: CircRNA_100146 expression was distinctly upregulated in PCa cells. Silencing of circRNA_100146 suppressed PCa cells' invasion, migration, and proliferation. CircRNA_100146 sponged miR-615-5p to suppress its expressions, while miR-615-5p targeted the 3'-UTR of TRIP13 to repress the expression of TRIP13. In addition, we observed that knockdown of miR-615-5p reversed the suppression of circRNA_100146 silence on the proliferation and invasion of PCa cells. In addition, the tumor growth was also suppressed by silencing circRNA_100146 in vivo. Conclusion: CircRNA_100146 is a tumor promoter in PCa, which promoted progression by mediating the miR-615-5p/TRIP13. CircRNA_100146 can be a potential candidate for targeted therapy of PCa.
Collapse
Affiliation(s)
- Liang Zeng
- Emergency Department, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Yi-Min Liu
- Department of Anesthesiology, The Affiliated Nanhua Hospital, University of South China, Engyang, China
| | - Ning Yang
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Huang Xie
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
47
|
Lu R, Zhou Q, Ju L, Chen L, Wang F, Shao J. Upregulation of TRIP13 promotes the malignant progression of lung cancer via the EMT pathway. Oncol Rep 2021; 46:172. [PMID: 34184074 PMCID: PMC8261194 DOI: 10.3892/or.2021.8123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common malignant tumor type and it is associated with poor prognosis. The identification of potential biomarkers is of great significance for the early diagnosis and treatment of lung cancer. Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer. The present study aimed to investigate the mechanism via which thyroid hormone receptor-interacting protein 13 (TRIP13) participates in the malignant progression of NSCLC. Immunohistochemistry, reverse transcription-quantitative PCR and western blotting were used to assess the expression level of TRIP13. According to The Cancer Genome Atlas database, TRIP13 was upregulated in NSCLC tissues compared with adjacent normal tissues. Moreover, TRIP13 knockdown increased apoptosis, induced cell cycle arrest in the S phase and inhibited the proliferation, invasion and migration of H1299 cells in vitro. Furthermore, TRIP13 upregulation was closely associated with tumor metastasis via epithelial-mesenchymal transformation. In conclusion, TRIP13 could promote the malignant progression of lung cancer, and TRIP13 may be a potential biomarker for the early diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Rujian Lu
- Department of Cardiothoracic Surgery, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Qian Zhou
- Department of Internal Medicine, Medical School of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Linling Ju
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Jianguo Shao
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
48
|
Zhao N, Wang F, Ahmed S, Liu K, Zhang C, Cathcart SJ, DiMaio DJ, Punsoni M, Guan B, Zhou P, Wang S, Batra SK, Bronich T, Hei TK, Lin C, Zhang C. Androgen Receptor, Although Not a Specific Marker For, Is a Novel Target to Suppress Glioma Stem Cells as a Therapeutic Strategy for Glioblastoma. Front Oncol 2021; 11:616625. [PMID: 34094902 PMCID: PMC8175980 DOI: 10.3389/fonc.2021.616625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Targeting androgen receptor (AR) has been shown to be promising in treating glioblastoma (GBM) in cell culture and flank implant models but the mechanisms remain unclear. AR antagonists including enzalutamide are available for treating prostate cancer patients in clinic and can pass the blood-brain barrier, thus are potentially good candidates for GBM treatment but have not been tested in GBM orthotopically. Our current studies confirmed that in patients, a majority of GBM tumors overexpress AR in both genders. Enzalutamide inhibited the proliferation of GBM cells both in vitro and in vivo. Although confocal microscopy demonstrated that AR is expressed but not specifically in glioma cancer stem cells (CSCs) (CD133+), enzalutamide treatment significantly decreased CSC population in cultured monolayer cells and spheroids, suppressed tumor sphere-forming capacity of GBM cells, and downregulated CSC gene expression at mRNA and protein levels in a dose- and time-dependent manner. We have, for the first time, demonstrated that enzalutamide treatment decreased the density of CSCs in vivo and improved survival in an orthotopic GBM mouse model. We conclude that AR antagonists potently target glioma CSCs in addition to suppressing the overall proliferation of GBM cells as a mechanism supporting their repurposing for clinical applications treating GBM.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fei Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shaheen Ahmed
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kan Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sahara J Cathcart
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael Punsoni
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bingjie Guan
- Department of Radiation Oncology, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Ping Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuo Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tom K Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Chi Lin
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Zhang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
49
|
Elsharawy KA, Gerds TA, Rakha EA, Dalton LW. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision. Histopathology 2021; 79:187-199. [PMID: 33590486 DOI: 10.1111/his.14354] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
AIM Artificial intelligence (AI)-based breast cancer grading may help to overcome perceived limitations of human assessment. Here, the potential value of AI grade was evaluated at the molecular level and in predicting patient outcome. METHODS AND RESULTS A supervised convolutional neural network (CNN) model was trained on images of 612 breast cancers from The Cancer Genome Atlas (TCGA). The test set, obtained from the Cooperative Human Tissue Network (CHTN), comprised 1058 cancers with corresponding survival data. Upon reversal, a CNN was trained from images of 1537 CHTN cancers and tested on 397 TCGA cancers. In TCGA, mRNA models were trained using AI grade and Nottingham grade (NG) as labels. Performance of mRNA models in predicting patient outcome was evaluated using data from 1807 cancers from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. In selecting images for training, nucleolar prominence determined high- versus low-grade cancer cells. In CHTN, NG corresponded to significant survival stratification in stages 1, 2 and 3 cancers, while AI grade showed significance in stages 1 and 2 and borderline in stage 3 tumours. In METABRIC, the mRNA model trained from AI grade was not significantly different to the NG-based model. The gene which best described AI grade was TRIP13, a gene involved with mitotic spindle assembly. CONCLUSION An AI grade trained from the morphologically distinctive feature of nucleolar prominence could transmit significant patient outcome information across three independent patient cohorts. AI grade shows promise in gene discovery and for second opinions.
Collapse
Affiliation(s)
- Khloud A Elsharawy
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK.,Faculty of Science, Damietta University, Damietta, Egypt
| | - Thomas A Gerds
- Department Biostatistics, University CopenhagenA, Copenhagen, Denmark
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - Leslie W Dalton
- Department of Histopathology, South Austin Hospital, Emeritus, Austin, TX, USA
| |
Collapse
|
50
|
Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y, Zhang Z. HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:86. [PMID: 33648560 PMCID: PMC7923631 DOI: 10.1186/s13046-021-01890-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023]
Abstract
Background Cholangiocarcinoma is a highly malignant cancer with very dismal prognosis. Perihilar cholangiocarcinoma(pCCA) accounts for more than 50% of all cholangiocarcinoma and is well-characterized for its low rate of radical resection. Effects of radiotherapy and chemotherapy of pCCA are very limited. Methods Here we screened potential biomarkers of pCCA with transcriptome sequencing and evaluated the prognostic significance of HMGA1 in a large cohort pCCA consisting of 106 patients. With bioinformatics and in vitro/vivo experiments, we showed that HMGA1 induced tumor cell stemness and epithelial-mesenchymal-transition (EMT), and thus facilitated proliferation, migration and invasion by promoting TRIP13 transcription. Moreover, TRIP13 was also an unfavorable prognostic biomarker of pCCA, and double high expression of HMGA1/TRIP13 could predict prognosis more sensitively. TRIP13 promoted pCCA progression by suppressing FBXW7 transcription and stabilizing c-Myc. c-Myc in turn induced the transcription and expression of both HMGA1 and TRIP13, indicating that HMGA-TRIP13 axis facilitated pCCA stemness and EMT in a positive feedback pathway. Conclusions HMGA1 and TRIP13 were unfavorable prognostic biomarkers of pCCA. HMGA1 enhanced pCCA proliferation, migration, invasion, stemness and EMT, by inducing TRIP13 expression, suppressing FBXW7 expression and stabilizing c-Myc. Moreover, c-Myc can induce the transcription of HMGA1 and TRIP13, suggesting that HMGA-TRIP13 axis promoted EMT and stemness in a positive feedback pathway dependent on c-Myc. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01890-1.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|