1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025:10.1038/s41568-024-00781-9. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Tabrizi S, Martin-Alonso C, Xiong K, Bhatia SN, Adalsteinsson VA, Love JC. Modulating cell-free DNA biology as the next frontier in liquid biopsies. Trends Cell Biol 2024:S0962-8924(24)00249-6. [PMID: 39730275 DOI: 10.1016/j.tcb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/29/2024]
Abstract
Technical advances over the past two decades have enabled robust detection of cell-free DNA (cfDNA) in biological samples. Yet, higher clinical sensitivity is required to realize the full potential of liquid biopsies. This opinion article argues that to overcome current limitations, the abundance of informative cfDNA molecules - such as circulating tumor DNA (ctDNA) - collected in a sample needs to increase. To accomplish this, new methods to modulate the biological processes that govern cfDNA production, trafficking, and clearance in the body are needed, informed by a deeper understanding of cfDNA biology. Successful development of such methods could enable a major leap in the performance of liquid biopsies and vastly expand their utility across the spectrum of clinical care.
Collapse
Affiliation(s)
- Shervin Tabrizi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Radiation Oncology, Mass General Brigham, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute at Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Chan WY, Lee JH, Stewart A, Diefenbach RJ, Gonzalez M, Menzies AM, Blank C, Scolyer RA, Long GV, Rizos H. Circulating tumour DNA dynamics predict recurrence in stage III melanoma patients receiving neoadjuvant immunotherapy. J Exp Clin Cancer Res 2024; 43:238. [PMID: 39169411 PMCID: PMC11337884 DOI: 10.1186/s13046-024-03153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Neoadjuvant therapy improves recurrence-free survival (RFS) in resectable stage III cutaneous melanoma. However, accurately predicting individual recurrence risk remains a significant challenge. We investigated circulating tumour DNA (ctDNA) as a biomarker for recurrence in measurable stage IIIB/C melanoma patients undergoing neoadjuvant immunotherapy. METHODS Plasma samples were collected pre-neoadjuvant treatment, pre-surgery and/or six weeks post-surgery from 40 patients enrolled in the OpACIN-neo and PRADO clinical trials. Patients received two cycles of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) before surgery. Cell free DNA (cfDNA) underwent unbiased pre-amplification followed by tumour-informed mutation detection using droplet digital polymerase chain reaction (ddPCR) with the Bio-Rad QX600 PCR system. RESULTS Pre-treatment ctDNA was detectable in 19/40 (48%) patients. Among these, 17/19 (89%) zero-converted within six weeks of surgery and none recurred. Positive ctDNA post-surgery (N = 4), irrespective of pre-treatment ctDNA status, was 100% predictive of recurrence (sensitivity 44%, specificity 100%). Furthermore, ctDNA cleared prior to surgery in 7/9 (78%) patients who did not recur, warranting further investigation into ctDNA-guided surgical management. CONCLUSION Post-surgery ctDNA positivity and zero-conversion are highly predictive of recurrence, offering a window for personalised modification of adjuvant therapy.
Collapse
Affiliation(s)
- Wei Yen Chan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jenny H Lee
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Russell J Diefenbach
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Maria Gonzalez
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Department of Hematology and Medical Oncology, University Clinic Regensburg (UKR), Regensburg, Germany
| | - Richard A Scolyer
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital & NSW Health Pathology, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Kudriavtsev A, Pastor B, Mirandola A, Pisareva E, Gricourt Y, Capdevila X, Thierry AR, Cuvillon P. Association of the immediate perioperative dynamics of circulating DNA levels and neutrophil extracellular traps formation in cancer patients. PRECISION CLINICAL MEDICINE 2024; 7:pbae008. [PMID: 38699382 PMCID: PMC11062027 DOI: 10.1093/pcmedi/pbae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives Elevated circulating DNA (cirDNA) concentrations were found to be associated with trauma or tissue damage which suggests involvement of inflammation or cell death in post-operative cirDNA release. We carried out the first prospective, multicenter study of the dynamics of cirDNA and neutrophil extracellular trap (NETs) markers during the perioperative period from 24 h before surgery up to 72 h after curative surgery in cancer patients. Methods We examined the plasma levels of two NETs protein markers [myeloperoxidase (MPO) and neutrophil elastase (NE)], as well as levels of cirDNA of nuclear (cir-nDNA) and mitochondrial (cir-mtDNA) origin in 29 colon, prostate, and breast cancer patients and in 114 healthy individuals (HI). Results The synergistic analytical information provided by these markers revealed that: (i) NETs formation contributes to post-surgery conditions; (ii) post-surgery cir-nDNA levels were highly associated with NE and MPO in colon cancer [r = 0.60 (P < 0.001) and r = 0.53 (P < 0.01), respectively], but not in prostate and breast cancer; (iii) each tumor type shows a specific pattern of cir-nDNA and NETs marker dynamics, but overall the pre- and post-surgery median values of cir-nDNA, NE, and MPO were significantly higher in cancer patients than in HI. Conclusion Taken as a whole, our work reveals the association of NETs formation with the elevated cir-nDNA release during a cancer patient's perioperative period, depending on surgical procedure or cancer type. By contrast, cir-mtDNA is poorly associated with NETs formation in the studied perioperative period, which would appear to indicate a different mechanism of release or suggest mitochondrial dysfunction.
Collapse
Affiliation(s)
- Andrei Kudriavtsev
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Brice Pastor
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Alexia Mirandola
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Ekaterina Pisareva
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Yann Gricourt
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| | - Xavier Capdevila
- Division of Anaesthesia Intensive Care, Pain and Emergency Medicine, Montpellier University Hospital, Montpellier 34090, France
- Montpellier NeuroSciences Institute, INSERM U1298, University of Montpellier, Montpellier 34295, France
| | - Alain R Thierry
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Philippe Cuvillon
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| |
Collapse
|
5
|
Tankov S, Petrovic M, Lecoultre M, Espinoza F, El-Harane N, Bes V, Chliate S, Bedoya DM, Jordan O, Borchard G, Migliorini D, Dutoit V, Walker PR. Hypoxic glioblastoma-cell-derived extracellular vesicles impair cGAS-STING activity in macrophages. Cell Commun Signal 2024; 22:144. [PMID: 38389103 PMCID: PMC10882937 DOI: 10.1186/s12964-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Solid tumors such as glioblastoma (GBM) exhibit hypoxic zones that are associated with poor prognosis and immunosuppression through multiple cell intrinsic mechanisms. However, release of extracellular vesicles (EVs) has the potential to transmit molecular cargos between cells. If hypoxic cancer cells use EVs to suppress functions of macrophages under adequate oxygenation, this could be an important underlying mechanism contributing to the immunosuppressive and immunologically cold tumor microenvironment of tumors such as GBM. METHODS EVs were isolated by differential ultracentrifugation from GBM cell culture supernatant. EVs were thoroughly characterized by transmission and cryo-electron microscopy, nanoparticle tracking analysis (NTA), and EV marker expression by Western blot and fluorescent NTA. EV uptake by macrophage cells was observed using confocal microscopy. The transfer of miR-25/93 as an EV cargo to macrophages was confirmed by miRNA real-time qPCR. The impact of miR-25/93 on the polarization of recipient macrophages was shown by transcriptional analysis, cytokine secretion and functional assays using co-cultured T cells. RESULTS We show that indirect effects of hypoxia can have immunosuppressive consequences through an EV and microRNA dependent mechanism active in both murine and human tumor and immune cells. Hypoxia enhanced EV release from GBM cells and upregulated expression of miR-25/93 both in cells and in EV cargos. Hypoxic GBM-derived EVs were taken up by macrophages and the miR-25/93 cargo was transferred, leading to impaired cGAS-STING pathway activation revealed by reduced type I IFN expression and secretion by macrophages. The EV-treated macrophages downregulated expression of M1 polarization-associated genes Cxcl9, Cxcl10 and Il12b, and had reduced capacity to attract activated T cells and to reactivate them to release IFN-γ, key components of an efficacious anti-tumor immune response. CONCLUSIONS Our findings suggest a mechanism by which immunosuppressive consequences of hypoxia mediated via miRNA-25/93 can be exported from hypoxic GBM cells to normoxic macrophages via EVs, thereby contributing to more widespread T-cell mediated immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Stoyan Tankov
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Marija Petrovic
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Lecoultre
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Felipe Espinoza
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Nadia El-Harane
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Viviane Bes
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Sylvie Chliate
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Paul R Walker
- Translational Research Center in Onco-Hematology (CRTOH), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland.
| |
Collapse
|
6
|
Roch B, Pisareva E, Mirandola A, Sanchez C, Pastor B, Tanos R, Frayssinoux F, Diab-Assaf M, Anker P, Al Amir Dache Z, Thierry AR. Impact of platelet activation on the release of cell-free mitochondria and circulating mitochondrial DNA. Clin Chim Acta 2024; 553:117711. [PMID: 38101467 DOI: 10.1016/j.cca.2023.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Research on circulating mitochondrial DNA (cir-mtDNA) based diagnostic is insufficient, as to its function, origin, structural features, and particularly its standardization of isolation. To date, plasma preparation performed in previous studies do not take into consideration the potential bias resulting from the release of mitochondria by activated platelets. METHODS To tackle this, we compared the mtDNA amount determined by a standard plasma preparation method or a method optimally avoiding platelet activation. MtDNA extracted from the plasma of seven healthy individuals was quantified by Q-PCR in the course of the process of both methods submitted to filtration, freezing or differential centrifugation. RESULTS 98.7 to 99.4% of plasma mtDNA corresponded to extracellular mitochondria, either free or into large extracellular vesicles. Without platelet activation, the proportion of both types of entities remained preponderant (76-80%), but the amount of detected mtDNA decreased 67-fold. CONCLUSION We show the high capacity of platelets to release free mitochondria in "in vitro" conditions. This represents a potent confounding factor when extracting mtDNA for cir-mtDNA investigation. Platelet activation during pre-analytical conditions should therefore be avoided when studying cir-mtDNA. Our findings lead to a profound revision of the assumptions previously made by most works in this field. Overall, our data suggest the need to characterize or isolate mtDNA associated various structural forms, as well as to standardize plasma preparation, to better circumscribe cir-mtDNA's diagnostic capacity.
Collapse
Affiliation(s)
- Benoit Roch
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France; Thoracic Oncology Unit, Arnaud de Villeneuve Hospital, University Hospital of Montpellier, Montpellier F-34295, France
| | - Ekaterina Pisareva
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Alexia Mirandola
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Cynthia Sanchez
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Brice Pastor
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Rita Tanos
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Florence Frayssinoux
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut, Lebanon
| | - Philippe Anker
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Zahra Al Amir Dache
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France
| | - Alain R Thierry
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier F-34298, France; ICM, Institut Régional du Cancer de Montpellier, Montpellier F-34298, France.
| |
Collapse
|
7
|
Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van ’t Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer 2023; 22:15. [PMID: 36681803 PMCID: PMC9862574 DOI: 10.1186/s12943-022-01710-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse. MAIN BODY Recent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility. CONCLUSIONS A deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| |
Collapse
|
8
|
Pisareva E, Roch B, Sanchez C, Pastor B, Mirandola A, Diab-Assaf M, Mazard T, Prévostel C, Al Amir Dache Z, Thierry AR. Comparison of the structures and topologies of plasma extracted circulating nuclear and mitochondrial cell-free DNA. Front Genet 2023; 14:1104732. [PMID: 37152979 PMCID: PMC10158822 DOI: 10.3389/fgene.2023.1104732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: The function, origin and structural features of circulating nuclear DNA (cir-nDNA) and mitochondrial DNA (cir-mtDNA) are poorly known, even though they have been investigated in numerous clinical studies, and are involved in a number of routine clinical applications. Based on our previous report disproving the conventional plasma isolation used for cirDNA analysis, this work enables a direct topological comparison of the circulating structures associated with nuclear DNA and mitochondrial cell-free DNA. Materials and methods: We used a Q-PCR and low-pass whole genome sequencing (LP-WGS) combination approach of cir-nDNA and cir-mtDNA, extracted using a procedure that eliminates platelet activation during the plasma isolation process to prevent mitochondria release in the extracellular milieu. Various physical procedures, such as filtration and differential centrifugation, were employed to infer their circulating structures. Results: DSP-S cir-mtDNA mean size profiles distributed on a slightly shorter range than SSP-S. SSP-S detected 40-fold more low-sized cir-mtDNA fragments (<90 bp/nt) and three-fold less long-sized fragments (>200 bp/nt) than DSP-S. The ratio of the fragment number below 90 bp over the fragment number above 200 bp was very homogenous among both DSP-S and SSP-S profiles, being 134-fold lower with DSP-S than with SSP-S. Cir-mtDNA and cir-nDNA DSP-S and SSP-S mean size profiles of healthy individuals ranged in different intervals with periodic sub-peaks only detectable with cir-nDNA. The very low amount of cir-mtDNA fragments of short size observed suggested that most of the cir-mtDNA is poorly fragmented and appearing longer than ∼1,000 bp, the readout limit of this LP-WGS method. Data suggested that cir-nDNA is, among DNA extracted in plasma, associated with ∼8.6% of large structures (apoptotic bodies, large extracellular vesicles (EVs), cell debris…), ∼27.7% in chromatin and small EVs and ∼63.7% mainly in oligo- and mono-nucleosomes. By contrast, cir-mtDNA appeared to be preponderantly (75.7%) associated with extracellular mitochondria, either in its free form or with large EVs; to a lesser extent, it was also associated with other structures: small EVs (∼18.4%), and exosomes or protein complexes (∼5.9%). Conclusion: This is the first study to directly compare the structural features of cir-nDNA and cir-mtDNA. The significant differences revealed between both are due to the DNA topological structure contained in the nucleus (chromatin) and in the mitochondria (plasmid) that determine their biological stability in blood. Although cir-nDNA and cir-mtDNA are principally associated with mono-nucleosomes and cell-free mitochondria, our study highlights the diversity of the circulating structures associated with cell-free DNA. They consequently have different pharmacokinetics as well as physiological functions. Thus, any accurate evaluation of their biological or diagnostic individual properties must relies on appropriate pre-analytics, and optimally on the isolation or enrichment of one category of their cirDNA associated structures.
Collapse
Affiliation(s)
- Ekaterina Pisareva
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Benoit Roch
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
- Thoracic Oncology Unit, Arnaud De Villeneuve Hospital, University Hospital of Montpellier, Montpellier, France
| | - Cynthia Sanchez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Brice Pastor
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Alexia Mirandola
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut, Lebanon
| | - Thibault Mazard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Corinne Prévostel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Zahra Al Amir Dache
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Alain R. Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
- *Correspondence: Alain R. Thierry,
| |
Collapse
|
9
|
Vishwakarma SK, Fathima N, Tiwari SK, Khan AA. Simultaneous extraction and quantification of circulating mitochondrial and nuclear DNA using a single plasma sample to predict specific molecular diagnostic implications. Mitochondrion 2023; 68:114-124. [PMID: 36509340 DOI: 10.1016/j.mito.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The magnitude of variations in the level of circulating mitochondrial (cir-mtDNA) and nuclear DNA (cir-ncDNA) in different diseases has indicated the need for investigating a discriminative approach for evaluating their diagnostic significance. This study reports a typical in-house process for extracting both types of cir-DNAs from a single plasma sample and assessed their usefulness in discriminating type 2 diabetes mellitus patients from healthy individuals to eliminate the prevailing dispute about their discriminative role and improve their diagnostic value. This approach offers a more precise and valuable tool for distinguishing the impact of cir-mtDNA from cir-ncDNA in diagnostic implications.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India.
| | - Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Santosh K Tiwari
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Fathima N, Manorenj S, Vishwakarma SK, Khan AA. Role of cell-free DNA for predicting incidence and outcome of patients with ischemic stroke. World J Neurol 2022; 8:1-9. [DOI: 10.5316/wjn.v8.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 02/08/2023] Open
Abstract
Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings. A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke. Cell-free DNA (cfDNA) has recently turned out to be a popular circulating biomarker due to its potential relevance for diagnostic applications in a variety of disorders. Despite bright outlook of cfDNA in clinical applications, very less is known about its origin, composition, or function. Several recent studies have identified cell-derived mitochondrial components including mitochondrial DNA (mtDNA) in the extracellular spaces including blood and cerebrospinal fluid. However, the time course of alterations in plasma mtDNA concentrations in patients after an ischemic stroke is poorly understood. DNA is thought to be freed into the plasma shortly after the commencement of an ischemic stroke and then gradually decreased. However, the importance of cell-free mtDNA (cf-mtDNA) in ischemic stroke is still unknown. This review summarizes about the utility of biomarkers which has been standardized in clinical settings and role of cfDNA including cf-mtDNA as a non-invasive potential biomarker of ischemic stroke.
Collapse
Affiliation(s)
- Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandhya Manorenj
- Department of Neurology, Princess Esra Hospital, Deccan College of Medical Sciences, Hyderabad 500002, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
11
|
Dobre EG, Constantin C, Neagu M. Skin Cancer Research Goes Digital: Looking for Biomarkers within the Droplets. J Pers Med 2022; 12:jpm12071136. [PMID: 35887633 PMCID: PMC9323323 DOI: 10.3390/jpm12071136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Skin cancer, which includes the most frequent malignant non-melanoma carcinomas (basal cell carcinoma, BCC, and squamous cell carcinoma, SCC), along with the difficult to treat cutaneous melanoma (CM), pose important worldwide issues for the health care system. Despite the improved anti-cancer armamentarium and the latest scientific achievements, many skin cancer patients fail to respond to therapies, due to the remarkable heterogeneity of cutaneous tumors, calling for even more sophisticated biomarker discovery and patient monitoring approaches. Droplet digital polymerase chain reaction (ddPCR), a robust method for detecting and quantifying low-abundance nucleic acids, has recently emerged as a powerful technology for skin cancer analysis in tissue and liquid biopsies (LBs). The ddPCR method, being capable of analyzing various biological samples, has proved to be efficient in studying variations in gene sequences, including copy number variations (CNVs) and point mutations, DNA methylation, circulatory miRNome, and transcriptome dynamics. Moreover, ddPCR can be designed as a dynamic platform for individualized cancer detection and monitoring therapy efficacy. Here, we present the latest scientific studies applying ddPCR in dermato-oncology, highlighting the potential of this technology for skin cancer biomarker discovery and validation in the context of personalized medicine. The benefits and challenges associated with ddPCR implementation in the clinical setting, mainly when analyzing LBs, are also discussed.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Correspondence:
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
12
|
Boniface CT, Spellman PT. Blood, Toil, and Taxoteres: Biological Determinates of Treatment-Induce ctDNA Dynamics for Interpreting Tumor Response. Pathol Oncol Res 2022; 28:1610103. [PMID: 35665409 PMCID: PMC9160182 DOI: 10.3389/pore.2022.1610103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Collection and analysis of circulating tumor DNA (ctDNA) is one of the few methods of liquid biopsy that measures generalizable and tumor specific molecules, and is one of the most promising approaches in assessing the effectiveness of cancer care. Clinical assays that utilize ctDNA are commercially available for the identification of actionable mutations prior to treatment and to assess minimal residual disease after treatment. There is currently no clinical ctDNA assay specifically intended to monitor disease response during treatment, partially due to the complex challenge of understanding the biological sources of ctDNA and the underlying principles that govern its release. Although studies have shown pre- and post-treatment ctDNA levels can be prognostic, there is evidence that early, on-treatment changes in ctDNA levels are more accurate in predicting response. Yet, these results also vary widely among cohorts, cancer type, and treatment, likely due to the driving biology of tumor cell proliferation, cell death, and ctDNA clearance kinetics. To realize the full potential of ctDNA monitoring in cancer care, we may need to reorient our thinking toward the fundamental biological underpinnings of ctDNA release and dissemination from merely seeking convenient clinical correlates.
Collapse
Affiliation(s)
- Christopher T. Boniface
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| |
Collapse
|
13
|
Thierry AR, Pastor B, Dache ZAA. Reply to Comment on: 'Hypoxia differently modulates the release of mitochondrial and nuclear DNA'. Br J Cancer 2021; 124:2037-2038. [PMID: 33762715 DOI: 10.1038/s41416-021-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alain R Thierry
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, Université de Montpellier, ICM, Montpellier, France.
| | - Brice Pastor
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, Université de Montpellier, ICM, Montpellier, France
| | - Zahra Al Amir Dache
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, Université de Montpellier, ICM, Montpellier, France
| |
Collapse
|
14
|
Wong BKL, Zhang F, Do H, Testro A, Muralidharan V, Dobrovic A, Cox DRA. Comment on: "Hypoxia differently modulates the release of mitochondrial and nuclear DNA". Br J Cancer 2021; 124:2035-2036. [PMID: 33762717 DOI: 10.1038/s41416-021-01287-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Boris K L Wong
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery - Austin Precinct, University of Melbourne, Melbourne, VIC, Australia
| | - Fan Zhang
- Translational Genomics and Epigenomics Laboratory, Department of Surgery - Austin Precinct, University of Melbourne, Melbourne, VIC, Australia
| | - Hongdo Do
- Pathology Department, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Adam Testro
- Liver Transplant Unit, Department of Gastroenterology & Hepatology, Austin Hospital, Melbourne, VIC, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery - Austin Precinct, The University of Melbourne, Melbourne, VIC, Australia.,HPB & Transplant Surgery Unit, Department of Surgery, Austin Hospital, Melbourne, VIC, Australia
| | - Alexander Dobrovic
- Translational Genomics and Epigenomics Laboratory, Department of Surgery - Austin Precinct, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel R A Cox
- Translational Genomics and Epigenomics Laboratory, Department of Surgery - Austin Precinct, University of Melbourne, Melbourne, VIC, Australia. .,Department of Surgery - Austin Precinct, The University of Melbourne, Melbourne, VIC, Australia. .,HPB & Transplant Surgery Unit, Department of Surgery, Austin Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
de Oliveira LG, Angelo YDS, Iglesias AH, Peron JPS. Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Front Immunol 2021; 12:624919. [PMID: 33796100 PMCID: PMC8007920 DOI: 10.3389/fimmu.2021.624919] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory and neurodegenerative diseases are a major public health problem worldwide, especially with the increase of life-expectancy observed during the last decades. For many of these diseases, we still lack a full understanding of their etiology and pathophysiology. Nonetheless their association with mitochondrial dysfunction highlights this organelle as an important player during CNS homeostasis and disease. Markers of Parkinson (PD) and Alzheimer (AD) diseases are able to induce innate immune pathways induced by alterations in mitochondrial Ca2+ homeostasis leading to neuroinflammation. Additionally, exacerbated type I IFN responses triggered by mitochondrial DNA (mtDNA), failures in mitophagy, ER-mitochondria communication and mtROS production promote neurodegeneration. On the other hand, regulation of mitochondrial dynamics is essential for CNS health maintenance and leading to the induction of IL-10 and reduction of TNF-α secretion, increased cell viability and diminished cell injury in addition to reduced oxidative stress. Thus, although previously solely seen as power suppliers to organelles and molecular processes, it is now well established that mitochondria have many other important roles, including during immune responses. Here, we discuss the importance of these mitochondrial dynamics during neuroinflammation, and how they correlate either with the amelioration or worsening of CNS disease.
Collapse
Affiliation(s)
- Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
| | - Yan de Souza Angelo
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
| | - Antonio H Iglesias
- Loyola University Medical Center, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Immunology Department - Institute of Biomedical Sciences (ICB) IV, University of São Paulo (USP), São Paulo, Brazil
- Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur-USP, University of São Paulo (USP), São Paulo, Brazil
- Loyola University Medical Center, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Keller L, Belloum Y, Wikman H, Pantel K. Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br J Cancer 2021; 124:345-358. [PMID: 32968207 PMCID: PMC7852556 DOI: 10.1038/s41416-020-01047-5] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-free DNA (cfDNA) derived from tumours is present in the plasma of cancer patients. The majority of currently available studies on the use of this circulating tumour DNA (ctDNA) deal with the detection of mutations. The analysis of cfDNA is often discussed in the context of the noninvasive detection of mutations that lead to resistance mechanisms and therapeutic and disease monitoring in cancer patients. Indeed, substantial advances have been made in this area, with the development of methods that reach high sensitivity and can interrogate a large number of genes. Interestingly, however, cfDNA can also be used to analyse different features of DNA, such as methylation status, size fragment patterns, transcriptomics and viral load, which open new avenues for the analysis of liquid biopsy samples from cancer patients. This review will focus on the new perspectives and challenges of cfDNA analysis from mutation detection in patients with solid malignancies.
Collapse
Affiliation(s)
- Laura Keller
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Yassine Belloum
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany.
| |
Collapse
|
17
|
Walbrecq G, Margue C, Behrmann I, Kreis S. Distinct Cargos of Small Extracellular Vesicles Derived from Hypoxic Cells and Their Effect on Cancer Cells. Int J Mol Sci 2020; 21:ijms21145071. [PMID: 32709110 PMCID: PMC7404308 DOI: 10.3390/ijms21145071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk between cancer cells and cells from the tumor microenvironment. This crosstalk is facilitated by small extracellular vesicles (sEVs; diameter between 30 and 200 nm), including exosomes and microvesicles, which carry a cargo of proteins, mRNA, ncRNA and other biological molecules. Hypoxia is known to increase secretion of sEVs and has an impact on the composition of the cargo. This sEV-mediated crosstalk ultimately leads to various biological effects in the proximal tumor microenvironment but also at distant, future metastatic sites. In this review, we discuss the changes induced by hypoxia on sEV secretion and their cargo as well as their effects on the behavior and metabolism of cancer cells, the tumor microenvironment and metastatic events.
Collapse
|