1
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
3
|
Watanabe Y, Tsukahara T, Murata K, Hamada S, Kubo T, Kanaseki T, Hirohashi Y, Emori M, Teramoto A, Nakatsugawa M, Yamashita T, Torigoe T. Development of CAR-T cells specifically targeting cancer stem cell antigen DNAJB8 against solid tumours. Br J Cancer 2023; 128:886-895. [PMID: 36526673 PMCID: PMC9977765 DOI: 10.1038/s41416-022-02100-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As therapy for solid tumours, various tumour antigens have been selected as targets, but CAR-T cells targeting these antigens have shown limited efficacy, in contrast to the effectiveness of CAR-T cells targeting haematological malignancies. In a previous report, we identified a cancer-testis antigen, DNAJB8. DNAJB8 plays a major role in tumorigenicity in cancer stem-like cells/cancer-initiating cells (CSCs/CICs). Here, we report a DNAJB8-reactive CAR yielding anti-tumour effects against renal cell carcinoma (RCC) and osteosarcoma. METHODS We constructed a second-generation chimeric antigen receptor (CAR) against HLA-A*24:02/DNAJB8-derived peptide (DNAJB_143) complex (B10 CAR). The reactivity of B10-CAR T cells against T2-A24 cells pulsed with the cognate peptide and an RCC and osteosarcoma cell lines were quantified. The effects of adoptive cell transfer (ACT) therapy were assessed using in vivo xenografted mice models. RESULTS B10 CAR-T cells recognised DNAJB8_143-pulsed T2-A24 cells and HLA-A*24:02(+)/DNAJB8(+) renal cell carcinoma and osteosarcoma cell lines. Moreover, ACT using B10 CAR-T cells showed anti-tumour effects against RCC and osteosarcoma cells. CONCLUSION B10 CAR-T cells could show specific cytotoxicity against RCC and osteosarcoma cells in vitro and in vivo. B10 CAR-T cells targeting the CSC/CIC antigen DNAJB8 might be a candidate immunotherapy for carcinoma and sarcoma.
Collapse
Affiliation(s)
- Yuto Watanabe
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Shuto Hamada
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Atsushi Teramoto
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Munehide Nakatsugawa
- Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan
| | - Toshihiko Yamashita
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
4
|
Iwabuchi S, Tsukahara T, Okayama T, Kitabatake M, Motobayashi H, Shichino S, Imafuku T, Yamaji K, Miyamoto K, Tamura S, Ueha S, Ito T, Murata SI, Kondo T, Ikeo K, Suzuki Y, Matsushima K, Kohara M, Torigoe T, Yamaue H, Hashimoto S. B cell receptor repertoire analysis from autopsy samples of COVID-19 patients. Front Immunol 2023; 14:1034978. [PMID: 36911681 PMCID: PMC9996338 DOI: 10.3389/fimmu.2023.1034978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being developed world over. We investigated the possibility of producing artificial antibodies from the formalin fixation and paraffin-embedding (FFPE) lung lobes of a patient who died by coronavirus disease 2019 (COVID-19). The B-cell receptors repertoire in the lung tissue where SARS-CoV-2 was detected were considered to have highly sensitive virus-neutralizing activity, and artificial antibodies were produced by combining the most frequently detected heavy and light chains. Some neutralizing effects against the SARS-CoV-2 were observed, and mixing two different artificial antibodies had a higher tendency to suppress the virus. The neutralizing effects were similar to the immunoglobulin G obtained from healthy donors who had received a COVID-19 mRNA vaccine. Therefore, the use of FFPE lung tissue, which preserves the condition of direct virus sensitization, to generate artificial antibodies may be useful against future unknown infectious diseases.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Toshitugu Okayama
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | | | - Hideki Motobayashi
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tadashi Imafuku
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kenzaburo Yamaji
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyohei Miyamoto
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinobu Tamura
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Shin-Ichi Murata
- Departments of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Michinori Kohara
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan.,Departments of Cancer Immunology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
5
|
Wang M, Zheng Z, Zhang Y, Wang G, Liu J, Yu H, Liu A. An ultrasensitive label-free electrochemical impedimetric immunosensor for vascular endothelial growth factor based on specific phage via negative pre-screening. Anal Chim Acta 2022; 1225:340250. [PMID: 36038244 DOI: 10.1016/j.aca.2022.340250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023]
Abstract
As a vascular growth regulator, vascular endothelial growth factor (VEGF) exerts significant biological roles through specific binding to its receptors on the vascular endothelial cells. VEGF165 is generally referenced as a potential therapeutic target of many malignant tumors. In this study, a negative pre-screening strategy with structurally analogous members of VEGF121, VEGFC and VEGFD was first proposed for VEGF165 biopanning, aiming at significantly improving the specificity of the selected phage monoclones. Indirect ELISA experiment showed that the phage monoclone expressing peptide SPFLLRM demonstrates excellent affinity and specificity. Then a VEGF165 electrochemical impedimetric spectroscopy (EIS) immunosensor was constructed by above specific phage modified electrode. After optimizing the experimental conditions, the as-explored EIS immunosensor had a linear range of 0.5-1000 pg/mL with the limit of detection of 0.15 pg/mL VEGF165. In addition, the developed phage-based EIS immunosensor was applied to satisfactorily detect VEGF165 in human serum samples. Considering its ultra-sensitivity, good selectivity, batch reproducibility and stability, the screened selective phage-based EIS sensor is envisioned potential application in diagnosis and therapy.
Collapse
Affiliation(s)
- Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ge Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
6
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Mayoral-Peña K, González Peña OI, Orrantia Clark AM, Flores-Vallejo RDC, Oza G, Sharma A, De Donato M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers (Basel) 2022; 14:1867. [PMID: 35454775 PMCID: PMC9030888 DOI: 10.3390/cancers14081867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.
Collapse
Affiliation(s)
- Kalaumari Mayoral-Peña
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Omar Israel González Peña
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
- Institute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
| | - Alexia María Orrantia Clark
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, C. Puente 222, Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Rosario del Carmen Flores-Vallejo
- Department of Biomedical Engineering and Mechatronics, Campus Toluca, Universidad del Valle de México (UVM), C. De Las Palmas Poniente 439, San Jorge Pueblo Nuevo, Metepec 52164, Mexico;
| | - Goldie Oza
- Laboratorio Nacional de Micro y Nanofluídica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque San Fandila, Pedro Escobedo, Queretaro 76703, Mexico;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Marcos De Donato
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| |
Collapse
|
8
|
Wang L, Wu J, Song S, Chen H, Hu Y, Xu B, Liu J. Plasma Exosome-Derived Sentrin SUMO-Specific Protease 1: A Prognostic Biomarker in Patients With Osteosarcoma. Front Oncol 2021; 11:625109. [PMID: 33791211 PMCID: PMC8006461 DOI: 10.3389/fonc.2021.625109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The exosomes contain many important proteins that can be used for early tumor diagnosis or patient prognosis analysis. In this study, we investigated plasma exosome-derived sentrin SUMO-specific protease 1 (SENP1) levels as a prognostic biomarker in patients with osteosarcoma. METHODS The expression of SENP1 protein in osteosarcoma tissues and adjacent tissues was detected by immunohistochemistry (IHC). The exosomes were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. ELISA was used to detect plasma exosome-derived SENP1 levels to assess prognosis in patients with osteosarcoma. RESULTS IHC showed that the positive expression rate of SENP1 in osteosarcoma tissues was 88.33%, whereas that in adjacent tissues was 46.67% (P < 0.05). Plasma exosome-derived SENP1 levels were related to tumor size, tumor location, necrosis rate, pulmonary metastasis, and surgical stage. Both disease-free survival (DFS) and overall survival (OS) were worse in patients who had higher plasma exosome-derived SENP1 levels compared with those in patients with lower plasma exosome-derived SENP1 levels (P < 0.001). The area under the receiver operating characteristic curve (AUROC) of plasma exosome-derived SENP1, as 1-year DFS and 3-year DFS prognostic biomarkers, was 0.90 (95% CI: 0.83-0.98) and 0.96 (95% CI: 0.94-0.99), respectively. As to OS, the AUROC of plasma exosome-derived SENP1 for 1-year and 3-year prediction was 0.90 (95% CI: 0.82-0.99) and 0.96 (0.93-0.98), respectively. The plasma exosome-derived SENP1 was better than plasma SENP1 as a prognostic biomarker both in DFS and OS. CONCLUSIONS Our findings show that the plasma exosome-derived SENP1 may serve as a novel and independent prognostic predictor in clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Orthopedics, The Third People’s Hospital of Yancheng City, Yancheng, China
| | - Jian Wu
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haining Chen
- Department of Orthopedics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yong Hu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Buwei Xu
- Department of Orthopedics, The Third People’s Hospital of Yancheng City, Yancheng, China
| | - Jinbo Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|