1
|
Cameron CM, Raghu V, Richardson B, Zagore LL, Tamilselvan B, Golden J, Cartwright M, Schoen RE, Finn OJ, Benos PV, Cameron MJ. Pre-vaccination transcriptomic profiles of immune responders to the MUC1 peptide vaccine for colon cancer prevention. Front Immunol 2024; 15:1437391. [PMID: 39450169 PMCID: PMC11499122 DOI: 10.3389/fimmu.2024.1437391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Self-antigens abnormally expressed on tumors, such as MUC1, have been targeted by therapeutic cancer vaccines. We recently assessed in two clinical trials in a preventative setting whether immunity induced with a MUC1 peptide vaccine could reduce high colon cancer risk in individuals with a history of premalignant colon adenomas. In both trials, there were immune responders and non-responders to the vaccine. Methods Here we used PBMC pre-vaccination and 2 weeks after the first vaccine of responders and non-responders selected from both trials to identify early biomarkers of immune response involved in long-term memory generation and prevention of adenoma recurrence. We performed flow cytometry, phosflow, and differential gene expression analyses on PBMCs collected from MUC1 vaccine responders and non-responders pre-vaccination and two weeks after the first of three vaccine doses. Results MUC1 vaccine responders had higher frequencies of CD4 cells pre-vaccination, increased expression of CD40L on CD8 and CD4 T-cells, and a greater increase in ICOS expression on CD8 T-cells. Differential gene expression analysis revealed that iCOSL, PI3K AKT MTOR, and B-cell signaling pathways are activated early in response to the MUC1 vaccine. We identified six specific transcripts involved in elevated antigen presentation, B-cell activation, and NF-κB1 activation that were directly linked to finding antibody response at week 12. Finally, a model using these transcripts was able to predict non-responders with accuracy. Discussion These findings suggest that individuals who can be predicted to respond to the MUC1 vaccine, and potentially other vaccines, have greater readiness in all immune compartments to present and respond to antigens. Predictive biomarkers of MUC1 vaccine response may lead to more effective vaccines tailored to individuals with high risk for cancer but with varying immune fitness.
Collapse
Affiliation(s)
- Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Vineet Raghu
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, United States
- Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Brian Richardson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Leah L. Zagore
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Banumathi Tamilselvan
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Jackelyn Golden
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Robert E. Schoen
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Panayiotis V. Benos
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Knöbl V, Maier L, Grasl S, Kratzer C, Winkler F, Eder V, Hayden H, Sahagun Cortez MA, Sachet M, Oehler R, Frantal S, Fesl C, Zehetner K, Pfeiler G, Bartsch R, Fitzal F, Singer CF, Filipits M, Gnant M, Brostjan C. Monocyte subsets in breast cancer patients under treatment with aromatase inhibitor and mucin-1 cancer vaccine. J Transl Med 2024; 22:913. [PMID: 39380101 PMCID: PMC11460172 DOI: 10.1186/s12967-024-05659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Monocytes comprise subsets of classical, intermediate and non-classical monocytes with distinct anti- or pro-tumor effects in breast cancer (BC). They are modulated by estrogen, and can contribute to BC control by endocrine therapy in preclinical models. METHODS To elucidate whether changes in monocyte subsets are associated with treatment and response, we investigated peripheral blood samples of 73 postmenopausal women with estrogen receptor (ER) positive BC, who received aromatase inhibitor therapy with or without the mucin-1 vaccine tecemotide in the ABCSG34 trial. Blood was retrieved at baseline, midterm and end of therapy, and was analyzed for the distribution and ER expression of monocyte subsets by flow cytometry. RESULTS When 40 healthy, age-matched women were compared with BC patients before treatment start, ER levels of monocytes did not differ, yet patients presented with a higher frequency of classical and fewer non-classical monocytes. Endocrine therapy triggered a significant increase in ER levels in all monocyte subsets, without affecting subset distribution. Vaccination had no overall impact on subset frequency and ER expression. Yet, a shift from intermediate to classical monocytes during therapy correlated with changes in plasma cytokines and chemokines and was significantly associated with low residual cancer burden in vaccinated patients. Without tecemotide, baseline ER levels in classical monocytes were significantly higher in women with good response to endocrine therapy. CONCLUSIONS This study identified classical monocytes to be associated with ER positive BC and with patient response to neoadjuvant endocrine treatment and cancer vaccination.
Collapse
Affiliation(s)
- Viktoria Knöbl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Lukas Maier
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Stefan Grasl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Carmen Kratzer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Felix Winkler
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Vanessa Eder
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Maria Amparo Sahagun Cortez
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Monika Sachet
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sophie Frantal
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Christian Fesl
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Karin Zehetner
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Georg Pfeiler
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Rupert Bartsch
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Florian Fitzal
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of General Surgery, Hanusch Hospital, Vienna, Austria
| | - Christian F Singer
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Martin Filipits
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Cameron CM, Raghu V, Richardson B, Zagore LL, Tamilselvan B, Golden J, Cartwright M, Schoen RE, Finn OJ, Benos PV, Cameron MJ. Pre-vaccination transcriptomic profiles of immune responders to the MUC1 peptide vaccine for colon cancer prevention. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24305336. [PMID: 38766010 PMCID: PMC11100921 DOI: 10.1101/2024.05.09.24305336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Self-antigens abnormally expressed on tumors, such as MUC1, have been targeted by therapeutic cancer vaccines. We recently assessed in two clinical trials in a preventative setting whether immunity induced with a MUC1 peptide vaccine could reduce high colon cancer risk in individuals with a history of premalignant colon adenomas. In both trials, there were immune responders and non-responders to the vaccine. Here we used PBMC pre-vaccination and 2 weeks after the first vaccine of responders and non-responders selected from both trials to identify early biomarkers of immune response involved in long-term memory generation and prevention of adenoma recurrence. We performed flow cytometry, phosflow, and differential gene expression analyses on PBMCs collected from MUC1 vaccine responders and non-responders pre-vaccination and two weeks after the first of three vaccine doses. MUC1 vaccine responders had higher frequencies of CD4 cells pre-vaccination, increased expression of CD40L on CD8 and CD4 T-cells, and a greater increase in ICOS expression on CD8 T-cells. Differential gene expression analysis revealed that iCOSL, PI3K AKT MTOR, and B-cell signaling pathways are activated early in response to the MUC1 vaccine. We identified six specific transcripts involved in elevated antigen presentation, B-cell activation, and NF-kB1 activation that were directly linked to finding antibody response at week 12. Finally, a model using these transcripts was able to predict non-responders with accuracy. These findings suggest that individuals who can be predicted to respond to the MUC1 vaccine, and potentially other vaccines, have greater readiness in all immune compartments to present and respond to antigens. Predictive biomarkers of MUC1 vaccine response may lead to more effective vaccines tailored to individuals with high risk for cancer but with varying immune fitness.
Collapse
Affiliation(s)
- Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH
| | - Vineet Raghu
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA
- Massachusetts General Hospital, Harvard Medical School, Cambridge, MA
| | - Brian Richardson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Leah L Zagore
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | | | - Jackelyn Golden
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Robert E Schoen
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, FL
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
4
|
Bania A, Adamou A, Saloustros E. Racial and Ethnic Disparities in European Breast Cancer Clinical Trials. Cancers (Basel) 2024; 16:1726. [PMID: 38730678 PMCID: PMC11082959 DOI: 10.3390/cancers16091726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is the most prevalent female cancer worldwide with known correlations between the race and tumor characteristics of the patients and prognosis. International and US-based studies, however, have reported a disproportionate representation of Black and Hispanic patients in clinical trials. This is the first study assessing race and ethnicity reporting trends and inclusion in European breast cancer trials. The PubMed and ClinicalTrials.gov databases were systematically searched for trials on breast cancer treatment conducted exclusively in Europe between 2010 and 2022. Of the 97 identified trials, race was reported in 10.31%. Multinational participation, but not the study size or trial phase, was significantly associated with higher race reporting trends. These 10 trials featured a White-predominant population, with 1.08% Asian and 0.88% Black patients included. The acquisition of the race and ethnicity data of patients in European trials is lower compared to the U.S. or worldwide studies and does not permit extensive analysis of minority participation. In a limited analysis, the low rates of minority participation are concerning, based on population-based data on minorities in select European countries. These observations should encourage race reporting practices in European breast cancer trials and adequate minority participation to support the generalizability of the results of the studies and promote healthcare equity.
Collapse
Affiliation(s)
- Angelina Bania
- Faculty of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Antonis Adamou
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, 30625 Hannover, Germany;
| | - Emmanouil Saloustros
- Division of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
5
|
Wimmer K, Sachet M, Ramos C, Frantal S, Birnleitner H, Brostjan C, Exner R, Filipits M, Bago-Horvath Z, Rudas M, Bartsch R, Gnant M, Singer CF, Balic M, Egle D, Oehler R, Fitzal F. Differential immunomodulatory effects of epirubicin/cyclophosphamide and docetaxel in breast cancer patients. J Exp Clin Cancer Res 2023; 42:300. [PMID: 37957750 PMCID: PMC10644559 DOI: 10.1186/s13046-023-02876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Epirubicin/cyclophosphamide (EC) and docetaxel (D) are commonly used in a sequential regimen in the neoadjuvant treatment of early, high-risk or locally advanced breast cancer (BC). Novel approaches to increase the response rate combine this treatment with immunotherapies such as PD-1 inhibition. However, the expected stimulatory effect on lymphocytes may depend on the chemotherapy backbone. Therefore, we separately compared the immunomodulatory effects of EC and D in the setting of a randomized clinical trial. METHODS Tumor and blood samples of 154 patients from the ABCSG-34 trial were available (76 patients received four cycles of EC followed by four cycles of D; 78 patients get the reverse treatment sequence). Tumor-infiltrating lymphocytes, circulating lymphocytes and 14 soluble immune mediators were determined at baseline and at drug change. Furthermore, six BC cell lines were treated with E, C or D and co-cultured with immune cells. RESULTS Initial treatment with four cycles of EC reduced circulating B and T cells by 94% and 45%, respectively. In contrast, no comparable effects on lymphocytes were observed in patients treated with initial four cycles of D. Most immune mediators decreased under EC whereas D-treatment resulted in elevated levels of CXCL10, urokinase-type plasminogen activator (uPA) and its soluble receptor (suPAR). Accordingly, only the exposure of BC cell lines to D induced similar increases as compared to E. While treatment of BC cells with E was associated with cell shrinkage and apoptosis, D induced cell swelling and accumulation of cells in G2 phase. CONCLUSION The deleterious effect of EC on lymphocytes indicates strong immunosuppressive properties of this combination therapy. D, in contrast, has no effect on lymphocytes, but triggers the secretion of stimulatory proteins in vivo and in vitro, indicating a supportive effect on the immune system. Underlying differences in the induced cell death might be causal. These divergent immunomodulatory effects of epirubicin/cyclophosphamide and docetaxel should be considered when planning future combinations with immunotherapies in breast cancer.
Collapse
Affiliation(s)
- Kerstin Wimmer
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Monika Sachet
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Sophie Frantal
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Hanna Birnleitner
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Ruth Exner
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Martin Filipits
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Margaretha Rudas
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Rupert Bartsch
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Medicine 1, Division of Oncology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Gnant
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Christian F Singer
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Gynecology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marija Balic
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Oncology, Medical University of Graz, Graz, Austria
| | - Daniel Egle
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria.
| | - Florian Fitzal
- Department of General Surgery, Division of Visceral Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| |
Collapse
|
6
|
Marhold M, Udovica S, Halstead A, Hirdler M, Ferner M, Wimmer K, Bago-Horvath Z, Exner R, Fitzal F, Strasser-Weippl K, Robinson T, Bartsch R. Emergence of immune-related adverse events correlates with pathological complete response in patients receiving pembrolizumab for early triple-negative breast cancer. Oncoimmunology 2023; 12:2275846. [PMID: 38025838 PMCID: PMC10653620 DOI: 10.1080/2162402x.2023.2275846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Based upon results of the KEYNOTE-522 trial and following approval by regulatory authorities, the addition of pembrolizumab to chemotherapy is now the standard-of-care for the treatment of early triple-negative breast cancer (eTNBC) (Clinical stage II-III). Pembrolizumab is a programmed cell death protein 1 monoclonal antibody, known to cause immune-related adverse events (irAEs) in a significant subset of patients. Real-world data on incidence, type and treatment strategies of irAEs in the setting of eTNBC treatment are sparse. In this multicenterretrospective analysis, we characterized real-world incidence of irAEs and treatment outcomes such as pathological complete response (pCR) from the combination of pembrolizumab and chemotherapy as neoadjuvant treatment for eTNBC. We found a rate of irAEs of all grades of 63.9% and of 20% for irAEs of grade 3 or higher. In the overall population, a pCR rate of 57.1% was observed. The emergence of irAEs correlated significantly with pCR (72.2% versus 30.8%; p =.03). Discontinuation of neoadjuvant chemotherapy before week 12 correlated significantly with a lower pCR rate. To our knowledge, this is the first study evaluating the real-world efficacy and safety of a neoadjuvant combination of chemotherapy and pembrolizumab in eTNBC, demonstrating a significant correlation between irAEs and pCR. Early discontinuation of neoadjuvant therapy due to AEs resulted in a lower pCR rate.
Collapse
Affiliation(s)
- Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Simon Udovica
- Department of Medicine I, Center for Oncology and Hematology, Clinic Ottakring, Vienna, Austria
| | - Anna Halstead
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Mona Hirdler
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Linz, Austria
- Institute for Pathology, Medical University of Vienna, Vienna, Austria
| | - Muna Ferner
- Department of Medicine I, Center for Oncology and Hematology, Clinic Ottakring, Vienna, Austria
| | - Kerstin Wimmer
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Ruth Exner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Fitzal
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Kathrin Strasser-Weippl
- Department of Medicine I, Center for Oncology and Hematology, Clinic Ottakring, Vienna, Austria
| | - Tim Robinson
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Rupert Bartsch
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Zhou Q, Gampenrieder SP, Frantal S, Rinnerthaler G, Singer CF, Egle D, Pfeiler G, Bartsch R, Wette V, Pichler A, Petru E, Dubsky PC, Bago-Horvath Z, Fesl C, Rudas M, Ståhlberg A, Graf R, Weber S, Dandachi N, Filipits M, Gnant M, Balic M, Heitzer E. Persistence of ctDNA in Patients with Breast Cancer During Neoadjuvant Treatment Is a Significant Predictor of Poor Tumor Response. Clin Cancer Res 2022; 28:697-707. [PMID: 34862246 PMCID: PMC9377752 DOI: 10.1158/1078-0432.ccr-21-3231] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Accurate response assessment during neoadjuvant systemic treatment (NST) poses a clinical challenge. Therefore, a minimally invasive assessment of tumor response based on cell-free circulating tumor DNA (ctDNA) may be beneficial to guide treatment decisions. EXPERIMENTAL DESIGN We profiled 93 genes in tissue from 193 patients with early breast cancer. Patient-specific assays were designed for 145 patients to track ctDNA during NST in plasma. ctDNA presence and levels were correlated with complete pathological response (pCR) and residual cancer burden (RCB) as well as clinicopathologic characteristics of the tumor to identify potential proxies for ctDNA release. RESULTS At baseline, ctDNA could be detected in 63/145 (43.4%) patients and persisted in 25/63 (39.7%) patients at mid-therapy (MT) and 15/63 (23.8%) patients at the end of treatment. ctDNA detection at MT was significantly associated with higher RCB (OR = 0.062; 95% CI, 0.01-0.48; P = 0.0077). Of 31 patients with detectable ctDNA at MT, 30 patients (96.8%) were nonresponders (RCB II, n = 8; RCB III, n = 22) and only one patient responded to the treatment (RCB I). Considering all 145 patients with baseline (BL) plasma, none of the patients with RCB 0 and only 6.7% of patients with RCB I had ctDNA detectable at MT, whereas 30.6% and 29.6% of patients with RCB II/III, respectively, had a positive ctDNA result. CONCLUSIONS Overall, our results demonstrate that the detection and persistence of ctDNA at MT may have the potential to negatively predict response to neoadjuvant treatment and identify patients who will not achieve pCR or be classified with RCB II/III.
Collapse
Affiliation(s)
- Qing Zhou
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Simon P. Gampenrieder
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research (LIMCR) and Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Sophie Frantal
- Department of Statistics, Austrian Breast and Colorectal Cancer Study Group, Vienna, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research (LIMCR) and Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Christian F. Singer
- Department of Gynecology and Gynecological Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Egle
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Pfeiler
- Department of Gynecology and Gynecological Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Viktor Wette
- Breast Center, Brustzentrum Kaernten, St. Veit, Austria
| | - Angelika Pichler
- Department of Hemato-Oncology, LKH Hochsteiermark-Leoben, Leoben, Austria
| | - Edgar Petru
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Peter C. Dubsky
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Breast Center St. Anna, Lucerne, Switzerland
| | - Zsuzsanna Bago-Horvath
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Fesl
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research (LIMCR) and Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
| | - Margaretha Rudas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenberg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Ricarda Graf
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sabrina Weber
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Nadia Dandachi
- Division of Oncology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Martin Filipits
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| |
Collapse
|