1
|
Thomas CE, Peters U. Genomic landscape of cancer in racially and ethnically diverse populations. Nat Rev Genet 2024:10.1038/s41576-024-00796-w. [PMID: 39609636 DOI: 10.1038/s41576-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Cancer incidence and mortality rates can vary widely among different racial and ethnic groups, attributed to a complex interplay of genetic, environmental and social factors. Recently, substantial progress has been made in investigating hereditary genetic risk factors and in characterizing tumour genomes. However, most research has been conducted in individuals of European ancestries and, increasingly, in individuals of Asian ancestries. The study of germline and somatic genetics in cancer across racial and ethnic groups using omics technologies offers opportunities to identify similarities and differences in both heritable traits and the molecular features of cancer genomes. An improved understanding of population-specific cancer genomics, as well as translation of those findings across populations, will help reduce cancer disparities and ensure that personalized medicine and public health approaches are equitable across racial and ethnic groups.
Collapse
Affiliation(s)
- Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Bıyıkoğlu M, Tanrıverdi R, Bozlu M, Şenel S, Fidancı ŞB, Tamer L, Akbay E. Evaluation of homeobox protein B13 (HOXB13) gene G84E mutation in patients with prostate cancer. World J Urol 2024; 42:476. [PMID: 39115757 DOI: 10.1007/s00345-024-05186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES To comprehensively investigate the potential association between prostate cancer (PCa) and the G84E mutation within the Homeobox Protein B13 (HOXB13) gene among individuals of Turkish descent, our study aims to undertake a prospective examination. METHODS We evaluated 300 patients (150 diagnosed with prostate cancer, 150 controls) who presented in our clinic. Data collected were prospectively examined. DNA isolation was performed using an isolation kit. The HOXB13-G84E mutation (rs138213197) was analyzed in the obtained samples. Data encoding and statistical analysis were performed. RESULTS The pathological allele for the G84E mutation was T. According to the findings, no mutations were detected in the control group, while the G84E mutation was detected in 17 patients in the patient group, all of whom had the TC genotype. The analysis showed that having the CC genotype reduced the risk of prostate cancer by 0.47 times (OR=0.47, CI=0.415-0.532). Our results did not support a trend toward family history or earlier-onset disease in comparisons between carriers and non-carriers of HOXB13 G84E mutation. Individuals with a positive family history exhibited a higher frequency of the G84E mutation. CONCLUSIONS We concluded that HOXB13 gene mutation is indeed linked to PCa in Turkish men. However, we did not find a relationship between the HOXB13 gene G84E mutation carrier status and either early-onset PCa or familial PCa in Turkish men.
Collapse
Affiliation(s)
- Melih Bıyıkoğlu
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye.
| | - Rojda Tanrıverdi
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Murat Bozlu
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Samet Şenel
- Department of Urology, Ankara State Hospital, Ankara, Türkiye
| | - Şenay Balcı Fidancı
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Lülüfer Tamer
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Erdem Akbay
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye
| |
Collapse
|
3
|
Kanayama M, Chen Y, Rabizadeh D, Vera L, Lu C, Nielsen SM, Russell EM, Esplin ED, Wang H, Isaacs WB, Antonarakis ES, Luo J. Clinical and Functional Analyses of an African-ancestry Gain-of-function HOXB13 Variant Implicated in Aggressive Prostate Cancer. Eur Urol Oncol 2024; 7:751-759. [PMID: 37806842 DOI: 10.1016/j.euo.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Recent reports have uncovered a HOXB13 variant (X285K) predisposing to prostate cancer in men of West African ancestry. The clinical relevance and protein function associated with this inherited variant are unknown. OBJECTIVE To determine the clinical relevance of HOXB13 (X285K) in comparison with HOXB13 (G84E) and BRCA2 pathogenic/likely pathogenic (P/LP) variants, and to elucidate the oncogenic mechanisms of the X285K protein. DESIGN, SETTING, AND PARTICIPANTS Real-world data were collected from 21,393 men with prostate cancer undergoing genetic testing from 2019 to 2022, and in vitro cell-line models were established for the evaluation of oncogenic functions associated with the X285K protein. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Genetic testing results were compared among patient groups according to self-reported race/ethnicity, Gleason scores, and American Joint Committee on Cancer stages using the exact test. Oncogenic functions of X285K were evaluated by RNA sequencing, chromatin immunoprecipitation sequencing, and Western blot analyses. RESULTS AND LIMITATIONS HOXB13 (X285K) was significantly enriched in self-reported Black (1.01%) versus White (0.01%) patients. We observed a trend of more aggressive disease in the HOXB13 (X285K) and BRCA2 P/LP carriers than in the HOXB13 (G84E) carriers. Replacement of the wild-type HOXB13 protein with the X285K protein resulted in a gain of an E2F/MYC signature, validated by the elevated expression of cyclin B1 and c-Myc, without affecting the androgen response signature. Elevated expression of cyclin B1 and c-Myc was explained by enhanced binding of the X285K protein to the promoters and enhancers of these genes. The limitations of the study are the lack of complete clinical outcome data for all patients studied and the use of a single cell line in the functional analysis. CONCLUSIONS HOXB13 (X285K) is significantly enriched in self-reported Black patients, and X285K carriers detected in the real-world clinical setting have aggressive prostate cancer features similar to the BRCA2 carriers. Functional studies revealed a unique gain-of-function oncogenic mechanism of X285K protein in regulating E2F/MYC signatures. PATIENT SUMMARY The HOXB13 (X285K) variant is clinically and functionally linked to aggressive prostate cancer, supporting genetic testing for X285K in Black men and early disease screening of carriers of this variant.
Collapse
Affiliation(s)
- Mayuko Kanayama
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA; Department of Population Health Sciences, the University of Texas Health San Antonio, San Antonio, TX, USA
| | - Daniel Rabizadeh
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Vera
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Emmanuel S Antonarakis
- Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
5
|
Fenton SE, VanderWeeler DJ, Rebbeck TR, Chen DL. Advancing Prostate Cancer Care: Treatment Approaches to Precision Medicine, Biomarker Innovations, and Equitable Access. Am Soc Clin Oncol Educ Book 2024; 44:e433138. [PMID: 38781539 DOI: 10.1200/edbk_433138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Genetic testing and molecular imaging have great promise in the accurate diagnosis and treatment of #prostate #cancer, but only if they can be developed and implemented to achieve equitable benefit for all men.
Collapse
Affiliation(s)
- Sarah E Fenton
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - David J VanderWeeler
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA
| | - Delphine L Chen
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Bataba E, Babcock K, Isensee KA, Eldhose B, Kohaar I, Chesnut GT, Dobi A. Germline Mutations and Ancestry in Prostate Cancer. Curr Oncol Rep 2024; 26:175-180. [PMID: 38265515 PMCID: PMC10891190 DOI: 10.1007/s11912-024-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE OF REVIEW Prostate cancer is the most frequently diagnosed non-cutaneous malignancy of men in the USA; notably, the incidence is higher among men of African, followed by European and Asian ancestry. Germline mutations and, in particular, mutations in DNA damage repair genes (DDRGs) have been implicated in the pathogenesis of prostate cancer. This review intends to discuss the implication of ancestry on prostate cancer, specifically in regard to lack of diversity in genomic and genetic databases and the ability of providers to properly counsel patients on the significance of cancer genetic results. RECENT FINDINGS Ancestral differences in prostate cancer-associated DDRG germline mutations are increasingly recognized. Guidelines for treatment by the National Comprehensive Cancer Network® (NCCN®) support germline testing in certain patients, and a myriad of genetic testing panels for DDRG mutations are now available in clinical practice. However, the consensus among providers on what genes and mutations to include in the genetic tests has evolved from experience from men of European ancestry (EA). Gaps in ancestry-informed clinical practice exist in genetic risk assessment, implementation of screening, counseling, guiding recommendations, treatment, and clinical trial enrollment. The lack of diversity in tumor genomic and genetic databases may hinder ancestry-specific disease-predisposing alterations from being discovered and targeted in prostate cancer and, therefore, impede the ability of providers to accurately counsel patients on the significance of cancer genetic test results.
Collapse
Affiliation(s)
- Eudoxie Bataba
- Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
| | - Kevin Babcock
- Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
| | - Kathryn A Isensee
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, 20817, USA
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Gregory T Chesnut
- Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, 20817, USA.
| |
Collapse
|
8
|
Soh PXY, Mmekwa N, Petersen DC, Gheybi K, van Zyl S, Jiang J, Patrick SM, Campbell R, Jaratlerdseri W, Mutambirwa SBA, Bornman MSR, Hayes VM. Prostate cancer genetic risk and associated aggressive disease in men of African ancestry. Nat Commun 2023; 14:8037. [PMID: 38052806 PMCID: PMC10697980 DOI: 10.1038/s41467-023-43726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Naledi Mmekwa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Desiree C Petersen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Smit van Zyl
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Weerachai Jaratlerdseri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
9
|
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice? BJU Int 2023; 132:472-484. [PMID: 37410655 DOI: 10.1111/bju.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.
Collapse
Affiliation(s)
- Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Rendon RA, Selvarajah S, Wyatt AW, Kolinsky M, Schrader KA, Fleshner NE, Kinnaird A, Merrimen J, Niazi T, Saad F, Shayegan B, Wood L, Chi KN. 2023 Canadian Urological Association guideline: Genetic testing in prostate cancer. Can Urol Assoc J 2023; 17:314-325. [PMID: 37851913 PMCID: PMC10581723 DOI: 10.5489/cuaj.8588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
| | - Shamini Selvarajah
- Department of Clinical Laboratory Genetics, UHN Laboratory Medicine Program, University of Toronto, Toronto, ON, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Kolinsky
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Neil E. Fleshner
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam Kinnaird
- Divison of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | | | - Tamim Niazi
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Fred Saad
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Bobby Shayegan
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Lori Wood
- Division of Medical Oncology, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | |
Collapse
|
11
|
Soh PXY, Hayes VM. Common Genetic Variants Associated with Prostate Cancer Risk: The Need for African Inclusion. Eur Urol 2023:S0302-2838(23)02729-X. [PMID: 37100647 DOI: 10.1016/j.eururo.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Camperdown, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Camperdown, Australia.
| |
Collapse
|
12
|
Girgin B, Kocabaş F. Newly developed MEIS inhibitor selectively blocks MEIS High prostate cancer growth and induces apoptosis. Gene 2023; 871:147425. [PMID: 37044182 DOI: 10.1016/j.gene.2023.147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in males. Understanding the molecular mechanism and investigation of novel ways to block PCa growth or metastasis are vital and a medical necessity. In this study, we examined differential expression of MEIS1/2/3 and its associated factors in PCa cell lines. MEIS1/2/3 content, reactive oxygen species, and cell cycle status were analyzed in PCa cells post MEIS inhibitor (MEISi) treatments, which is developed in our laboratory as a first-in-class small molecule inhibitor. A correlation was detected between MEIS content and MEISi IC50 values of PCa cells. MEISi decreased the viability of PC-3, DU145, 22Rv-1 and LNCaP cells, and significantly increased apoptosis in parallel with the increased cellular ROS content. The efficacy of MEISi was shown to positively correlate with the levels of MEIS1/2/3 proteins and the long term exposure to MEISi elevated MEIS1/2/3 protein content in PCa cells. Our findings suggest that MEISi could be used to target PCa with high MEIS expression in order to reduce PCa viability and growth; however, more research is needed before this can be translated into clinical settings.
Collapse
Affiliation(s)
- Birkan Girgin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey; Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
13
|
Wei J, Beebe-Dimmer J, Shi Z, Sample C, Yan G, Rifkin AS, Sadeghpour A, Gielzak M, Choi S, Moon D, Zheng SL, Helfand BT, Walsh PC, Xu J, Cooney KA, Isaacs WB. Association of rare, recurrent nonsynonymous variants in the germline of prostate cancer patients of African ancestry. Prostate 2023; 83:454-461. [PMID: 36567534 DOI: 10.1002/pros.24477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although men of African ancestry (AA) have the highest mortality rate from prostate cancer (PCa), relatively little is known about the germline variants that are associated with PCa risk in AA men. The goal of this study is to systematically evaluate rare, recurrent nonsynonymous variants across the exome for their association with PCa in AA men. METHODS Whole exome sequencing (WES) of germline DNA in two AA PCa patient cohorts of Johns Hopkins Hospital (N = 960) and Wayne State University (N = 747) was performed. All nonsynonymous variants present in both case cohorts, with a carrier rate between 0.5% and 1%, were identified. Their carrier rates were compared with rates from 8128 African/African American (AFR) control subjects from The Genome Aggregation Database (gnomAD) using Fisher's exact test. Significant variants, defined as false discovery rate (FDR) adjusted p-value ≤ 0.05, were further evaluated in AA PCa cases (N = 132) and controls (N = 1184) from the UK Biobank (UKB). RESULTS Two variants reached a pre-specified statistical significance level. The first was p.R14Q in GPRC5C (found in 0.47% of PCa cases and 0.01% of population controls); odds ratio (OR) for PCa was 37.46 (95% confidence interval CI 4.68-299.72), pexact = 7.01E-06, FDR-adjusted p-value = 0.05. The second was p.R511Q in IGF1R (found in 0.53% of PCa cases and 0.01% of population controls); OR for PCa was 21.54 (95%CI 4.65-99.76), pexact = 5.51E-06, FDR-adjusted p-value = 0.05. The mean percentage of African ancestry was similar between variant carriers and noncarriers of each variant, p > 0.05. In the UKB AA men, GPRC5C R14Q was 0.76% and 0.08% in cases and controls, respectively, OR for PCa was 9.00 (95%CI 0.56-145.23), pexact = 0.19. However, IGF1R R511Q was not found in cases or controls. CONCLUSIONS This WES study identified two rare, recurrent nonsynonymous PCa risk-associated variants in AA. Confirmation in additional large populations of AA PCa cases and controls is required.
Collapse
Affiliation(s)
- Jun Wei
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Jennifer Beebe-Dimmer
- Barabara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Christopher Sample
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Guifang Yan
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew S Rifkin
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Azita Sadeghpour
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Marta Gielzak
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sodam Choi
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Moon
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
- Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Patrick C Walsh
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Kathleen A Cooney
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - William B Isaacs
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Li M, Tan T, Geng Y, Tao Y, Pan J, Zhang J, Xu Q, Shen H, Zuo L, Chen Y. HOXB13 facilitates hepatocellular carcinoma progression by activating AKT/mTOR signaling pathway. Ann Hepatol 2023; 28:100759. [PMID: 36179794 DOI: 10.1016/j.aohep.2022.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC) is one of the sixth most common malignancies worldwide and is accompanied by high mortality. Homeobox B13 (HOXB13) has been shown to be involved in the development of various cancers. This study aimed to investigate the role of HOXB13 in HCC progression. MATERIALS AND METHODS The expression of HOXB13 in HCC tumor tissues was analyzed using qRT-PCR and immunohistochemical staining . After overexpression or downregulation of HOXB13 in HCC cell lines, cell proliferation was detected by CCK8 assay and Ki67 staining and cell invasion ability were tested by transwell assay. Western blot assay was applied to analyze the effect of HOXB13 on related signaling pathways. In addition, the role of HOXB13 on HCC in vivo was explored using a HCC mouse model. IF and WB were performed to detect cell proliferation, apoptosis and related protein expression in mice tumor tissues. RESULTS The results showed that the expression of HOXB13 was significantly increased in HCC tissues compared with adjacent tissues and positively correlated with the tumor stage and survival of HCC patients. Overexpression of HOXB13 promoted the proliferation and invasion of HCC cells and up-regulated the protein expression of AKT, mTOR and MMP2. In contrast, the downregulation of HOXB13 resulted in the opposite results. In vivo experiments, HOXB13 significantly promoted tumor growth in mice bearing HCC by promoting cell proliferation and inhibiting cell apoptosis. CONCLUSIONS This study suggested that HOXB13 can facilitate HCC progression by activation of the AKT/mTOR signaling pathway. HOXB13 may be a novel target for HCC therapy.
Collapse
Affiliation(s)
- Miao Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Jie Pan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Jun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qin Xu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Lingyun Zuo
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China.
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Trendowski MR, Sample C, Baird T, Sadeghpour A, Moon D, Ruterbusch JJ, Beebe-Dimmer JL, Cooney KA. Germline Variants in DNA Damage Repair Genes and HOXB13 Among Black Patients With Early-Onset Prostate Cancer. JCO Precis Oncol 2022; 6:e2200460. [PMID: 36446039 PMCID: PMC9812633 DOI: 10.1200/po.22.00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Genetic studies of prostate cancer susceptibility have predominantly focused on non-Hispanic White men, despite the observation that Black men are more likely to develop prostate cancer and die from the disease. Therefore, we sought to identify genetic variants in Black patients diagnosed with early-onset prostate cancer. METHODS Whole-exome sequencing of germline DNA from a population-based cohort of Black men diagnosed with prostate cancer at age 62 years or younger was performed. Analysis was focused on a panel of DNA damage repair (DDR) genes and HOXB13. All discovered variants were ranked according to their pathogenic potential based upon REVEL score, evidence from existing literature, and prevalence in the cohort. Logistic regression was used to investigate associations between mutation status and relevant clinical characteristics. RESULTS Among 743 Black prostate cancer patients, we identified 26 unique pathogenic (P) or likely pathogenic (LP) variants in 14 genes (including HOXB13, BRCA1/2, BRIP1, ATM, CHEK2, and PALB2) among 30 men, or approximately 4.0% of the patient population. We also identified 33 unique variants of unknown significance in 16 genes among 39 men. Because of the rarity of these variants in the population, most associations between clinical characteristics did not achieve statistical significance. However, our results suggest that carriers for P or LP (P/LP) variants were more likely to have a first-degree relative diagnosed with DDR gene-associated cancer, have a higher prostate-specific antigen at time of diagnosis, and be diagnosed with metastatic disease. CONCLUSION Variants in DDR genes and HOXB13 may be important cancer risk factors for Black men diagnosed with early-onset prostate cancer, and are more frequently observed in men with a family history of cancer.
Collapse
Affiliation(s)
| | | | - Tara Baird
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Azita Sadeghpour
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - David Moon
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Julie J. Ruterbusch
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Jennifer L. Beebe-Dimmer
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Kathleen A. Cooney
- Department of Medicine, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| |
Collapse
|
16
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|