1
|
Pawlonka J, Buchalska B, Buczma K, Borzuta H, Kamińska K, Cudnoch-Jędrzejewska A. Targeting the Renin-angiotensin-aldosterone System (RAAS) for Cardiovascular Protection and Enhanced Oncological Outcomes: Review. Curr Treat Options Oncol 2024; 25:1406-1427. [PMID: 39422794 DOI: 10.1007/s11864-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
OPINION STATEMENT The renin-angiotensin-aldosterone system (RAAS) is a crucial regulator of the cardiovascular system and a target for widely used therapeutic drugs. Dysregulation of RAAS, implicated in prevalent diseases like hypertension and heart failure, has recently gained attention in oncological contexts due to its role in tumor biology and cardiovascular toxicities (CVTs). Thus, RAAS inhibitors (RAASi) may be used as potential supplementary therapies in cancer treatment and CVT prevention. Oncological treatments have evolved significantly, impacting patient survival and safety profiles. However, they pose cardiovascular risks, necessitating strategies for mitigating adverse effects. The main drug classes used in oncology include anthracyclines, anti-HER2 therapies, immune checkpoint inhibitors (ICIs), and vascular endothelial growth factor (VEGF) signaling pathway inhibitors (VSPI). While effective against cancer, these drugs induce varying CVTs. RAASi adjunctive therapy shows promise in enhancing clinical outcomes and protecting the cardiovascular system. Understanding RAAS involvement in cancer and CVT can inform personalized treatment approaches and improve patient care.
Collapse
Affiliation(s)
- J Pawlonka
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - B Buchalska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - K Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - H Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - K Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Agostini LDC, Silva NNT, Belo VDA, Luizon MR, Lima AA, da Silva GN. Pharmacogenetics of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) in cardiovascular diseases. Eur J Pharmacol 2024; 981:176907. [PMID: 39154825 DOI: 10.1016/j.ejphar.2024.176907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Nayara Nascimento Toledo Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Vanessa de Almeida Belo
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Angelica Alves Lima
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Chronic mitochondrial dynamic-targeted therapy alleviates left ventricular dysfunction by reducing multiple programmed cell death in post-myocardial infarction rats. Eur J Pharmacol 2024; 977:176736. [PMID: 38878877 DOI: 10.1016/j.ejphar.2024.176736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Mitochondrial dysfunction and the activation of multiple programmed cell death (PCD) have been shown to aggravate the severity and mortality associated with the progression of myocardial infarction (MI). Although pharmacological modulation of mitochondrial dynamics, including treatment with the fusion promoter (M1) and the fission inhibitor (Mdivi-1), exerted cardioprotection against several cardiac complications, their roles in the post-MI model have never been investigated. Using a MI rat model instigated by permanent left-anterior descending (LAD) coronary artery occlusion, post-MI rats were randomly assigned to receive one of 4 treatments (n = 10/group): vehicle (DMSO 3%V/V), enalapril (10 mg/kg), Mdivi-1 (1.2 mg/kg) and M1 (2 mg/kg), while a control group of sham operated rats underwent surgery without LAD occlusion (n = 10). After 32-day treatment, cardiac and mitochondrial function, and histopathological morphology were investigated and molecular analysis was performed. Treatment with enalapril, Mdivi-1, and M1 significantly mitigated cardiac pathological remodeling, reduced myocardial injury, and improved left ventricular (LV) function in post-MI rats. Importantly, all interventions also attenuated mitochondrial dynamic imbalance and mitigated activation of apoptosis, necroptosis, and pyroptosis after MI. This investigation demonstrated for the first time that chronic mitochondrial dynamic-targeted therapy mitigated mitochondrial dysfunction and activation of PCD, leading to improved LV function in post-MI rats.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kewarin Jinawong
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Chen S, Ning R, Jiang W, Zhou S, Yu Q, Gan H. Causal linkage between angiotensin-converting enzyme 2 and risk of lung cancer: a bidirectional two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1419612. [PMID: 39040892 PMCID: PMC11260785 DOI: 10.3389/fmed.2024.1419612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Background Observational studies suggest a connection between ACE2 (angiotensin-converting enzyme 2) and lung cancer. However, it's not apparent if confounding variables are interfering with the link. Therefore, we aimed to define the relationships between ACE2 and the risk of lung cancer. Methods With the aim of developing genetic tools, we selected SNPs substantially associated with ACE2 using a statistically significant criterion. The relevant SNPs were then taken from the lung cancer GWAS dataset for additional research. After that, we used two-sample Mendelian randomization (MR) to ascertain if ACE2 is causally linked to the risk of developing lung cancer. To investigate the causal links' directions, we also performed a reverse MR analysis. Results According to our findings, there is strong evidence that ACE2 is linked to a decreased chance of developing lung cancer (odds ratio: 0.94; 95% confidence interval: 0.90-0.98; P = 0.0016). The IVW method, the major MR analysis, was not impacted by heterogeneity in any of the analyses, according to Cochrane's Q test (P Cochran e ' sQ = 0.207). The MR-Egger intercept (P intercept = 0.622) showed no indication of horizontal pleiotropy in any of the investigations. Outlier SNPs were not detected by the MR-PRESSO global test (P globaltest = 0.191). The leave-one-out analysis was performed, and the results showed a steady outcome. Nonsignificant causal estimates between lung cancer and ACE2 were produced by reverse MR analysis. Conclusion MR investigation revealed a significant causal link between ACE2 and the risk of getting lung cancer. These findings may have implications for public health measures aimed at reducing the incidence of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Qitao Yu
- Medical Oncology of Respiratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haijie Gan
- Medical Oncology of Respiratory, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
5
|
Kalupahana NS, Moustaid-Moussa N. Beyond blood pressure, fluid and electrolyte homeostasis - Role of the renin angiotensin aldosterone system in the interplay between metabolic diseases and breast cancer. Acta Physiol (Oxf) 2024; 240:e14164. [PMID: 38770946 DOI: 10.1111/apha.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The classical renin angiotensin aldosterone system (RAAS), as well as the recently described counter-regulatory or non-canonical RAAS have been well characterized for their role in cardiovascular homeostasis. Moreover, extensive research has been conducted over the past decades on both paracrine and the endocrine roles of local RAAS in various metabolic regulations and in chronic diseases. Clinical evidence from patients on RAAS blockers as well as pre-clinical studies using rodent models of genetic manipulations of RAAS genes documented that this system may play important roles in the interplay between metabolic diseases and cancer, namely breast cancer. Some of these studies suggest potential therapeutic applications and repurposing of RAAS inhibitors for these diseases. In this review, we discuss the mechanisms by which RAAS is involved in the pathogenesis of metabolic diseases such as obesity and type-2 diabetes as well as the role of this system in the initiation, expansion and/or progression of breast cancer, especially in the context of metabolic diseases.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
6
|
Bernstein KE, Cao D, Shibata T, Saito S, Bernstein EA, Nishi E, Yamashita M, Tourtellotte WG, Zhao TV, Khan Z. Classical and nonclassical effects of angiotensin-converting enzyme: How increased ACE enhances myeloid immune function. J Biol Chem 2024; 300:107388. [PMID: 38763333 PMCID: PMC11208953 DOI: 10.1016/j.jbc.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tuantuan V Zhao
- Research Oncology, Gilead Sciences, Foster City, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Institute for Myeloma & Bone Cancer Research, West Hollywood, California, USA
| |
Collapse
|
7
|
Su C, Li C, Hu X, Wang J, Liu L, Zhang X, Tong Y. Association Between ACE2 and Lung Diseases. Infect Drug Resist 2024; 17:1771-1780. [PMID: 38736435 PMCID: PMC11088384 DOI: 10.2147/idr.s445180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 05/14/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is an important regulator of the Renin-Angiotensin System (RAS). Additionally, it has been identified as a functional receptor for the Coronavirus. Research indicates that ACE2 plays a role in the regulation of cardiovascular systems by modulating blood pressure and electrolyte balance. Its role in pulmonary diseases has also garnered significant attention due to the widespread prevalence of Coronavirus. There is solid evidence linking ACE2 to other pulmonary diseases, including chronic obstructive pulmonary disease, acute respiratory distress syndrome, allergic asthma, among others. However, the exact pathological and physiological mechanisms of ACE2 in these diseases remain elusive. Our research aims to review and explore the latest advancements in ACE2-related studies in pulmonary diseases. These findings have the potential to open new avenues for utilizing ACE2 as a potential biomarker for early diagnosis and monitoring of pulmonary diseases.
Collapse
Affiliation(s)
- Cheng Su
- School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Cai Li
- Infectious Disease Prevention and Control Center, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| | - Xinyi Hu
- Global Study Institute, University of Geneva, Geneva, 1205, Switzerland
| | - Jing Wang
- School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Linlin Liu
- Infectious Disease Prevention and Control Center, Hubei Center for Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| | - Xianfeng Zhang
- Infectious Disease Prevention and Control Center, Hubei Center for Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| | - Yeqing Tong
- Infectious Disease Prevention and Control Center, Hubei Center for Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
8
|
Ahmad M, Khan MWZ, Ali S, Khan S, Ullah S. ACE inhibitors and lung cancer: There is more to it than just a cough. Eur J Intern Med 2024; 123:159-160. [PMID: 38311511 DOI: 10.1016/j.ejim.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Affiliation(s)
- Muhammad Ahmad
- Department of Internal Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | | | - Shandana Ali
- Department of Internal Medicine, Hayatabad Medical Complex, Peshawar, Pakistan
| | - Salman Khan
- Department of Internal Medicine, Staten Island University Hospital/Northwell Health, Staten Island, NY, USA
| | - Shakir Ullah
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, California, USA
| |
Collapse
|
9
|
Tang H, Abston E, Sojoodi M, Wang Y, Erstad DJ, Lin Z, Fuchs BC, Tanabe KK, Lanuti M. An angiotensin system inhibitor (losartan) potentiates antitumor efficacy of cisplatin in a murine model of non-small cell lung cancer. JTCVS OPEN 2024; 18:306-321. [PMID: 38690408 PMCID: PMC11056477 DOI: 10.1016/j.xjon.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 05/02/2024]
Abstract
Objective Previous studies have demonstrated synergistic antitumor effects of angiotensin system inhibition (ASI) combined with cisplatin therapy in pancreatic cancer. This study examines whether or not synergistic antitumor effects occur with combination ASI and cisplatin treatment in lung cancer, and whether or not ASI-induced changes in epithelial-mesenchymal transition play a role in the mechanism of this antitumor phenomenon. Methods A set of lung cancer cell lines representing a spectrum of epithelial to mesenchymal phenotypes were identified and characterized. Response of epithelial-mesenchymal transition markers to losartan was characterized. Cell culture models of lung cancer were next treated with losartan, cisplatin, or combination of both. Markers of epithelial-mesenchymal transition or surrogates of other signaling pathways (AKT, Stat3, and programmed death-ligand), and cell viability were quantified. Findings were confirmed in both allogenic and syngeneic in vivo murine flank tumor models. Results Losartan treatment significantly increased E-cadherin and reduced vimentin in human lung cancer cell lines. Combination treatment with losartan and cisplatin enhanced epithelial markers, reduced mesenchymal markers, inhibited promesenchymal signaling mediators, and reduced cell viability. Findings were confirmed in vivo in a murine flank tumor model with transition from mesenchymal to epithelial phenotype and reduced tumor size following combination losartan and cisplatin treatment. Conclusions Combination losartan and cisplatin treatment attenuates the epithelial-mesenchymal transition pathway and enhances the cytotoxic effect of chemotherapy with in vitro and in vivo models of non-small cell lung cancer. This study suggests an important role for ASI therapy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Hexiao Tang
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
- Division of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Eric Abston
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Yongtao Wang
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Zenan Lin
- Guangdong Provincial People's Hospital, Department of Thoracic Surgery, Southern Medical University, Guangzhou, China
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
10
|
Imran S, Rao MS, Shah MH, Gaur A, Guernaoui AE, Roy S, Roy S, Bharadwaj HR, Awuah WA. Evolving perspectives in reverse cardio-oncology: A review of current status, pathophysiological insights, and future directives. Curr Probl Cardiol 2024; 49:102389. [PMID: 38184129 DOI: 10.1016/j.cpcardiol.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of mortality worldwide, traditionally linked through adverse effects of cancer therapies on cardiovascular health. However, reverse cardio-oncology, a burgeoning field, shifts this perspective to examine how cardiovascular diseases influence the onset and progression of cancer. This novel approach has revealed a higher likelihood of cancer development in patients with pre-existing cardiovascular conditions, attributed to shared risk factors such as obesity, a sedentary lifestyle, and smoking. Underlying mechanisms like chronic inflammation and clonal hematopoiesis further illuminate the connections between cardiovascular ailments and cancer. This comprehensive narrative review, spanning a broad spectrum of studies, outlines the syndromic classification of cardio-oncology, the intersection of cardiovascular risk factors and oncogenesis, and the bidirectional dynamics between CVD and cancer. Additionally, the review also discusses the pathophysiological mechanisms underpinning this interconnection, examining the roles of cardiokines, genetic factors, and the effects of cardiovascular therapies and biomarkers in cancer diagnostics. Lastly, it aims to underline future directives, emphasising the need for integrated healthcare strategies, interdisciplinary research, and comprehensive treatment protocols.
Collapse
Affiliation(s)
- Shahzeb Imran
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Medha Sridhar Rao
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom; Centre for Anatomy, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aditya Gaur
- School of Medicine, University of Central Lancashire, Preston, United Kingdom
| | - Abderrahmane El Guernaoui
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Subham Roy
- Hull York Medical School, University of York, York, United Kingdom
| | - Sakshi Roy
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
11
|
Yao T, Wu Z, Wang Z, Chen L, Liu B, Lu M, Shen N. Association between angiotensin-converting enzyme inhibitor-induced cough and the risk of lung cancer: a Mendelian randomization study. Front Pharmacol 2023; 14:1267924. [PMID: 37799968 PMCID: PMC10550256 DOI: 10.3389/fphar.2023.1267924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
Background: Observational studies and meta-analyses have demonstrated a positive correlation between the use of angiotensin-converting enzyme inhibitors (ACEIs) and lung cancer. However, the findings remain controversial; furthermore, the relationship between ACEI-induced cough and lung cancer development remains unknown. We used Mendelian randomization (MR) to verify the association between ACEI use, ACEI-induced cough, and the risk of lung cancer. Methods: We performed a two-sample MR analysis to determine the unconfounded relationships between ACE inhibition, which mimics the effects of ACEIs, and genetic proxies for ACEI-induced cough and lung cancer. Single nucleotide polymorphisms that imitate ACE receptors and ACEI-induced cough were collected and integrated into a meta-analysis of existing genome-wide association studies for various lung cancers. The relationship was quantified using inverse variance weighting, weighted median, and MR-Egger methods. Results: A statistically significant association was observed between ACE inhibition and the risk of small cell lung cancer for Europeans (excluding rs118121655/rs80311894). Associations were identified between ACEI-induced cough and the risk of lung cancer for Europeans, although not for Asians, and between ACEI-induced cough and lung adenocarcinoma (excluding rs360206). Conclusion: Our findings reveal a relationship between ACE inhibition and lung cancer development, as well as a significant association between ACEI-induced cough and a higher risk of lung cancer for Europeans. Patients with hypertension who experience dry cough as a side effect of ACEI use should consider switching to an alternative antihypertensive treatment.
Collapse
Affiliation(s)
- Taikang Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Peking University, Beijing, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zilu Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Peking University, Beijing, China
| | - Liting Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Peking University, Beijing, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Strauss MH, Sipahi I, Hall AS. ACE inhibitors and the risk of lung cancer-is there causality? Br J Cancer 2023; 129:570-571. [PMID: 37400679 PMCID: PMC10421851 DOI: 10.1038/s41416-023-02346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Affiliation(s)
- Martin H Strauss
- University of Toronto, North York General Hospital, Toronto, ON, Canada.
| | | | | |
Collapse
|
13
|
Cutrell S, Alhomoud IS, Mehta A, Talasaz AH, Van Tassell B, Dixon DL. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr Hypertens Rep 2023; 25:243-250. [PMID: 37284934 DOI: 10.1007/s11906-023-01248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW This review describes the discovery and development of ACE inhibitors as antihypertensive agents, compares their efficacy, tolerability, and safety to ARBs, and highlights the contemporary issues surrounding ACE inhibitor use for HTN. RECENT FINDINGS Angiotensin-converting enzyme (ACE) inhibitors are commonly prescribed medications for the management of hypertension (HTN) and other chronic conditions including heart failure and chronic kidney disease. These agents inhibit ACE, the enzyme that is responsible for converting angiotensin (AT) I to AT II. Inhibiting the synthesis of AT II causes arterial and venous vasodilation, natriuresis, and a decrease in sympathetic activity, resulting in the reduction of blood pressure. ACE inhibitors are first-line therapy in HTN management along with thiazide diuretics, calcium channel blockers, and angiotensin receptor blockers (ARB). Along with inhibiting AT II synthesis, inhibition of ACE causes accumulation of bradykinin, increasing the risk of bradykinin-mediated side effects like angioedema and cough. Since ARBs do not work on ACE in the renin-angiotensin system, the risk of angioedema and cough are lower with ARBs. Recent evidence has also suggested ARBs may have neuroprotective effects compared to other antihypertensives, including ACE inhibitors; however, this warrants further study. Currently, ACE inhibitors and ARBs have an equal class of recommendation for first-line treatment for the management of HTN. Recent evidence has shown ARBs to be just as effective as ACE inhibitors for HTN but with improved tolerability.
Collapse
Affiliation(s)
- Stacey Cutrell
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, 410 N. 12th St., Smith Building, 6th floor, Room 660, Richmond, VA, USA
| | - Ibrahim S Alhomoud
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, 410 N. 12th St., Smith Building, 6th floor, Room 660, Richmond, VA, USA
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Anurag Mehta
- Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Azita H Talasaz
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, 410 N. 12th St., Smith Building, 6th floor, Room 660, Richmond, VA, USA
| | - Benjamin Van Tassell
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, 410 N. 12th St., Smith Building, 6th floor, Room 660, Richmond, VA, USA
| | - Dave L Dixon
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, 410 N. 12th St., Smith Building, 6th floor, Room 660, Richmond, VA, USA.
| |
Collapse
|