1
|
Dönmez H, Batar B, Turgut B. Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-15. [PMID: 39797947 DOI: 10.1080/15257770.2025.2451818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231. To determine the expression of miR-182, PCR was performed with primers specific to miR-182, and agarose gel electrophoresis was performed. To reduce the expression of miR-182 in MDA-MB-231 cells, anti-miR-182 oligonucleotides were used. RT-qPCR was used to confirm knockdown. The knockdown and control groups were treated with cisplatin at the same time. Propidium iodide (PI) and Annexin V staining were performed for apoptosis assay. Flow cytometric analysis was used to investigate the effect of miR-182 knockdown on cell cycle arrest. In comparison to untreated control MDA-MB-231 cells with MDA-MB-231 cells treated with anti-miR-182, there was a significant increase in the cisplatin-induced early apoptosis phase (p = 0.023). Also, inhibition of miR-182 significantly increased the cell cycle arrest at the G2/M phase in MDA-MB-231 cells (p = 0.031). Our results revealed that miR-182 inhibition may play a role in the overcoming of cisplatin resistance by inducing apoptosis and, cell cycle arrest in TNBC.
Collapse
Affiliation(s)
- Hülya Dönmez
- Bone Marrow Transplant Unit, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Bahadır Batar
- Department of Medical Biology, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Burhan Turgut
- Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
2
|
Zehtabi M, Ghaedrahmati F, Dari MAG, Moramezi F, Kempisty B, Mozdziak P, Farzaneh M. Emerging biologic and clinical implications of miR-182-5p in gynecologic cancers. Clin Transl Oncol 2024:10.1007/s12094-024-03822-9. [PMID: 39661239 DOI: 10.1007/s12094-024-03822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
Collapse
Affiliation(s)
- Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, USA
- Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Paul Mozdziak
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, USA
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Noun T, Kurdi A, Maatouk N, Talhouk R, Dohna HZ. Investigating the interplay between the mir-183/182/96 cluster and the adherens junction pathway in early-stage breast cancer. Sci Rep 2024; 14:24711. [PMID: 39433788 PMCID: PMC11494207 DOI: 10.1038/s41598-024-73632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Although the miR-183/182/96 cluster is overexpressed in breast cancer (BC), little is known about its role in the development of pre-carcinogenic lesions which harbor disrupted adherens junctions (AJ) and may promote BC. Here, we used microRNA and RNA sequencing data from The Cancer Genome Atlas (TCGA) Breast Cancer project to investigate the relationship between the miR-183/182/96 cluster and AJ signaling in early-stage BC. We found that all members of the cluster are significantly overexpressed in early-stage BC, the AJ signaling pathway is enriched for genes down-regulated in early-stage BC, and the AJ signaling pathway is enriched for experimentally validated targets of the miR-183/182/96 cluster. The expression of hsa-miR-182 correlates inversely with the mRNA expression of four of its target genes belonging to the AJ signaling pathway: WASF3, EGFR, MET, and CTNNA3. However, the correlations between hsa-miR-182 and AJ gene expression did not differ significantly between targets and non-targets of hsa-miR-182. This suggests that regulatory effects of microRNAs are less pronounced in cancer, as has been shown by other studies. Furthermore, WASF3, EGFR, and MET are oncogenes that tend to be upregulated in later BC stages, implying that the role of some AJ genes changes with different BC stages.
Collapse
Affiliation(s)
- Tala Noun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | - Heinrich Zu Dohna
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
4
|
Thompson E, Prior S, Brüning-Richardson A. Traditional Plant-Derived Compounds Inhibit Cell Migration and Induce Novel Cytoskeletal Effects in Glioblastoma Cells. J Xenobiot 2024; 14:613-633. [PMID: 38804289 PMCID: PMC11130960 DOI: 10.3390/jox14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Glioblastomas (GBMs) are aggressive and invasive cancers of the brain, associated with high rates of tumour recurrence and poor patient outcomes despite initial treatment. Targeting cell migration is therefore of interest in highly invasive cancers such as GBMs, to prevent tumour dissemination and regrowth. One current aim of GBM research focuses on assessing the anti-migratory properties of novel or repurposed inhibitors, including plant-based drugs which display anti-cancer properties. We investigated the potential anti-migratory activity of plant-based products with known cytotoxic effects in cancers, using a range of two-dimensional (2D) and three-dimensional (3D) migration and invasion assays as well as immunofluorescence microscopy to determine the specific anti-migratory and phenotypic effects of three plant-derived compounds, Turmeric, Indigo and Magnolia bark, on established glioma cell lines. Migrastatic activity was observed in all three drugs, with Turmeric exerting the most inhibitory effect on GBM cell migration into scratches and from the spheroid edge at all the timepoints investigated (p < 0.001). We also observed novel cytoskeletal phenotypes affecting actin and the focal adhesion dynamics. As our in vitro results determined that Turmeric, Indigo and Magnolia are promising migrastatic drugs, we suggest additional experimentation at the whole organism level to further validate these novel findings.
Collapse
Affiliation(s)
| | - Sally Prior
- Correspondence: (S.P.); (A.B.-R.); Tel.: +44-01484-472518 (A.B.-R.)
| | | |
Collapse
|
5
|
Retraction: The Significance of Notch1 Compared with Notch3 in High Metastasis and Poor Overall Survival in Hepatocellular Carcinoma. PLoS One 2024; 19:e0301556. [PMID: 38564505 PMCID: PMC10986984 DOI: 10.1371/journal.pone.0301556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
|
6
|
Retraction: SATB1 Overexpression Regulates the Development and Progression in Bladder Cancer through EMT. PLoS One 2024; 19:e0301572. [PMID: 38564501 PMCID: PMC10986978 DOI: 10.1371/journal.pone.0301572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
|
7
|
Retraction: Overexpression of SATB1 Is Associated with Biologic Behavior in Human Renal Cell Carcinoma. PLoS One 2024; 19:e0301571. [PMID: 38564511 PMCID: PMC10986959 DOI: 10.1371/journal.pone.0301571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
|
8
|
Retraction: Enhanced IMP3 Expression Activates NF-кB Pathway and Promotes Renal Cell Carcinoma Progression. PLoS One 2024; 19:e0301575. [PMID: 38564506 PMCID: PMC10986935 DOI: 10.1371/journal.pone.0301575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
|
9
|
Vo TH, EL-Sherbieny Abdelaal E, Jordan E, O'Donovan O, McNeela EA, Mehta JP, Rani S. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review. Biochem Biophys Rep 2024; 37:101588. [PMID: 38088952 PMCID: PMC10711031 DOI: 10.1016/j.bbrep.2023.101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | | | - Emmet Jordan
- Department of Oncology, University Hospital Waterford, Dunmore Road, X91 ER8E, Waterford, Ireland
| | - Orla O'Donovan
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Edel A. McNeela
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Jai Prakash Mehta
- Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960, Carlow, Ireland
| | - Sweta Rani
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| |
Collapse
|
10
|
Sameti P, Tohidast M, Amini M, Bahojb Mahdavi SZ, Najafi S, Mokhtarzadeh A. The emerging role of MicroRNA-182 in tumorigenesis; a promising therapeutic target. Cancer Cell Int 2023; 23:134. [PMID: 37438760 DOI: 10.1186/s12935-023-02972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
A wide range of studies have indicated that microRNAs (miRNAs), a type of small single-stranded regulatory RNAs, are dysregulated in a different variety of human cancers. Therefore, they are expected to play important roles in tumorigenesis by functioning as oncogenic (oncomiRs) or tumor-suppressive miRNAs. Subsequently, their potential as diagnostic and therapeutic targets for malignancies has attracted attention in recent years. In particular, studies have revealed the aberrant expression of miR-182 through tumorigenesis and its important roles in various aspects of malignancies, including proliferation, metastasis, and chemoresistance. Accumulating reports have illustrated that miR-182, as a dual-role regulator, directly or indirectly regulates the expression of a wide range of genes and modulates the activity of various signaling pathways involved in tumor progression, such as JAK / STAT3, Wnt / β-catenin, TGF-β, and P13K / AKT. Therefore, considering the high therapeutic and diagnostic potential of miR-182, this review aims to point out the effects of miR-182 dysregulation on the signaling pathways involved in tumorigenesis.
Collapse
Affiliation(s)
- Pouriya Sameti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
12
|
Schwarzenbach H, Gahan PB. Interplay between LncRNAs and microRNAs in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098095. [PMID: 37175800 PMCID: PMC10179369 DOI: 10.3390/ijms24098095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Although long noncoding RNAs (lncRNAs) are known to be precursors of microRNAs (miRNAs), they frequently act as competing endogoneous RNAs (ceRNAs), yet still their interplay with miRNA is not well known. However, their interaction with miRNAs may result in the modulation of miRNA action. (2) To determine the contribution of these RNA molecules in tumor resistance to chemotherapeutic drugs, it is essential to consider not only the oncogenic and tumor suppressive function of miRNAs but also the impact of lncRNAs on miRNAs. Therefore, we performed an extensive search in different databases including PubMed. (3) The present study concerns the interplay between lncRNAs and miRNAs in the regulatory post-transcriptional network and their impact on drugs used in the treatment of breast cancer. (4) Consideration of this interplay may improve the search for new drugs to circumvent chemoresistance.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy
| |
Collapse
|
13
|
MACC1 as a Potential Target for the Treatment and Prevention of Breast Cancer. BIOLOGY 2023; 12:biology12030455. [PMID: 36979146 PMCID: PMC10045309 DOI: 10.3390/biology12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Metastasis associated in colon cancer 1 (MACC1) is an oncogene first identified in colon cancer. MACC1 has been identified in more than 20 different types of solid cancers. It is a key prognostic biomarker in clinical practice and is involved in recurrence, metastasis, and survival in many types of human cancers. MACC1 is significantly associated with the primary tumor, lymph node metastasis, distant metastasis classification, and clinical staging in patients with breast cancer (BC), and MACC1 overexpression is associated with reduced recurrence-free survival (RFS) and worse overall survival (OS) in patients. In addition, MACC1 is involved in BC progression in multiple ways. MACC1 promotes the immune escape of BC cells by affecting the infiltration of immune cells in the tumor microenvironment. Since the FGD5AS1/miR-497/MACC1 axis inhibits the apoptotic pathway in radiation-resistant BC tissues and cell lines, the MACC1 gene may play an important role in BC resistance to radiation. Since MACC1 is involved in numerous biological processes inside and outside BC cells, it is a key player in the tumor microenvironment. Focusing on MACC1, this article briefly discusses its biological effects, emphasizes its molecular mechanisms and pathways of action, and describes its use in the treatment and prevention of breast cancer.
Collapse
|
14
|
Ma C, He D, Tian P, Wang Y, He Y, Wu Q, Jia Z, Zhang X, Zhang P, Ying H, Jin ZB, Hu G. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci U S A 2022; 119:e2114006119. [PMID: 35105806 PMCID: PMC8833194 DOI: 10.1073/pnas.2114006119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFβ signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFβ/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.
Collapse
Affiliation(s)
- Chengxin Ma
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dasa He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pu Tian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunfei He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiuyao Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenchang Jia
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peiyuan Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Ying
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Lab of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
15
|
Yang L, Higashisaka K, Shimoda M, Haga Y, Sekine N, Tsujino H, Nagano K, Shimazu K, Tsutsumi Y. Alpha-crystallin B chains in trastuzumab-resistant breast cancer cells promote endothelial cell tube formation through activating mTOR. Biochem Biophys Res Commun 2021; 588:175-181. [PMID: 34959190 DOI: 10.1016/j.bbrc.2021.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023]
Abstract
The specific human epidermal growth factor receptor 2 (HER2)-targeting monoclonal antibody trastuzumab shows considerable clinical efficacy in patients with HER2-overexpressing breast cancer. However, about 20% of patients who receive trastuzumab in the adjuvant setting relapse, and approximately half of patients with metastatic HER2-positive breast cancer develop resistance to trastuzumab within 1 year. Although the mechanism of trastuzumab resistance has been explored broadly, whether and how angiogenesis participates in trastuzumab resistance is unclear. Here, we examined the association between angiogenesis and trastuzumab resistance by using a trastuzumab-resistant cell line (SKBR3-TR). Compared with that from the parental trastuzumab-sensitive SKBR3 cells, the culture supernatant from SKBR3-TR cells significantly increased the sprouting of endothelial cells. To identify intercellular features that contribute to the induction of endothelial tube formation, proteomics revealed that α-crystallin B chain (αB-crystallin) was upregulated in SKBR3-TR cells. Moreover, silencing of αB-crystallin significantly repressed SKBR3-TR-induced tube formation, and knockdown of αB-crystallin in SKBR3-TR cells suppressed the activation of mechanistic target of rapamycin (mTOR) in endothelial cells. In addition, treatment with rapamycin, an inhibitor of mTOR, reversed the SKBR3-TR-induced promotion of tube formation. In summary, αB-crystallin enhanced the ability of SKBR3-TR cells to activate mTOR in endothelial cells and thus promote angiogenesis.
Collapse
Affiliation(s)
- Lili Yang
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuya Haga
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Naoki Sekine
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hirofumi Tsujino
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; The Museum of Osaka University, 1-13 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Kazuya Nagano
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama, 640-8156, Japan.
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
16
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Taefehshokr S, Taefehshokr N, Derakhshani A, Baghbanzadeh A, Astamal RV, Safaei S, Abbasi S, Hajazimian S, Maroufi NF, Isazadeh A, Hajiasgharzadeh K, Baradaran B. The regulatory role of pivotal microRNAs in the AKT signaling pathway in breast cancer. Curr Mol Med 2021; 22:263-273. [PMID: 34238182 DOI: 10.2174/1566524021666210708095051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women, and it remains the main challenge despite improved treatments. MicroRNAs (miRNAs) are a small non-coding family of RNAs that play an indispensable role in regulating major physiological processes, including differentiation, proliferation, invasion, migration, cell cycle regulation, stem cell maintenance, apoptosis, and organ development. The dysregulation of these tiny molecules is associated with various human malignancies. More than 50% of these non-coding RNA sequences estimated have been placed on genomic regions or fragile sites linked to cancer. Following the discovery of the first signatures of specific miRNA in breast cancer, numerous researches focused on involving these tiny RNAs in breast cancer physiopathology as a new therapeutic approach or as reliable prognostic biomarkers. In the current review, we focus on recent findings related to the involvement of miRNAs in breast cancer via the AKT signaling pathway and the related clinical implications.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, United Kingdom
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samane Abbasi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Yang C, Zhu H, Tan Y, Zhu R, Wu X, Li Y, Wang C. MALAT1 Promotes Tumorigenesis and Increases Cellular Sensitivity to Herceptin in HER2-positive Breast Cancer. Curr Cancer Drug Targets 2021; 21:860-869. [PMID: 34148540 DOI: 10.2174/1568009621666210618164300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The function of MALAT1, a kind of long non-coding RNAs (lncRNA), in HER2-positive breast cancer remains largely unexplored. Therefore, there is a need investigate the effect of MALAT1 on tumor development in HER2-positive breast cancer. OBJECTIVES We detected MALAT1 expression in HER2-positive breast cancer cells and tissues and analyzed the effects of MALAT1 on cell proliferation in HER2-positive breast cancer cell lines (BT-474 and SKBR3). METHODS A mouse xenograft model was established for detecting the function of MALAT1 in HER2-positive breast cancer. RESULTS & DISCUSSION As a result, MALAT1 was remarkably up-regulated in HER2-positive breast cancer both in cells and tissues. In addition, the silence of MALAT1 inhibited the proliferation of HER2-positive breast cancer cells both in vitro and in vivo. Furthermore, the knockdown of MALAT1 by shRNA down-regulated DNMT1, DNMT3a, and DNMT3b, while up-regulated BRCA1 and PTEN in HER2-positive breast cancer both in cell lines and mouse xenograft models. CONCLUSION In short, MALAT1 might be a potential biomarker and therapeutic target for HER2-positive breast cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Hongbo Zhu
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Yeru Tan
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Renjie Zhu
- East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Xiaoping Wu
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Yuehua Li
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Cunchuan Wang
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
20
|
Coding the noncoding: 2 years of advances in the field of microRNAs and long noncoding RNAs. Cancer Gene Ther 2020; 28:355-358. [PMID: 32980865 DOI: 10.1038/s41417-020-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022]
|
21
|
PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11:797. [PMID: 32973135 PMCID: PMC7515865 DOI: 10.1038/s41419-020-02998-6] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3β), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.
Collapse
|
22
|
Fu R, Tong JS. miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J Cell Mol Med 2020; 24:7600-7608. [PMID: 32410348 PMCID: PMC7339158 DOI: 10.1111/jcmm.15396] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.
Collapse
Affiliation(s)
- Rao Fu
- College of Chemical Engineering, Northeast Electric Power University, Jilin city, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Qian L, Su H, Wang G, Li B, Shen G, Gao Q. Anti-tumor Activity of Bufalin by Inhibiting c-MET Mediated MEK/ERK and PI3K/AKT Signaling Pathways in Gallbladder Cancer. J Cancer 2020; 11:3114-3123. [PMID: 32231716 PMCID: PMC7097950 DOI: 10.7150/jca.38393] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
Gallbladder cancer is one of the most common malignant tumors in the biliary tract. In recent years, the chemotherapy treatment for gallbladder carcinoma has exhibited obvious characteristics of drug resistance and insensitivity, and one of the main factors is the existence of cancer stem cells. Here in this study, the effect of Bufalin on gallbladder cancer (GBC-SD) cells and the related mechanism were studied. The results indicated that Bufalin could inhibit the growth of gallbladder carcinoma both in vivo and in vitro. According to the biological behavior analysis, Bufalin induced apoptosis, inhibited the propagation, migration and invasion of GBC-SD cells, and blocked cell cycle at the G2/M stage. Besides, Bufalin inhibited the tumor sphere formation capability of gallbladder carcinoma in matrigel, reduced the expression of multiple stemness-associated proteins, including Oct4, Sox2 and the stem cell-surface marker proteins CD133 and CD44. Western blot assay showed that Bufalin inhibited MEK/ERK and PI3-K/AKT signaling pathways by inhibiting the expression of p-c-Met, which in turn affected the expression of apoptosis-related protein Mcl-1, and the invasion-associated proteins E-cadherin, MMP9 and Snail. Bufalin was found to have an inhibitory effect on the GBC-SD cell growth and reduce the self-renewal and characteristic of gallbladder cancer stem cells. It enhanced the chemotherapeutic sensitivity and reduced the metastasis of gallbladder carcinoma. In conclusion, Bufalin can be used as a new promising anticancer drug for gallbladder cancer patients who are resistant to traditional chemotherapy.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Haoyuan Su
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Gang Wang
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Genhai Shen
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Quangen Gao
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| |
Collapse
|
24
|
Kashyap D, Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci 2020; 246:117417. [PMID: 32044304 DOI: 10.1016/j.lfs.2020.117417] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the genetic diseases causing a high mortality among women around the world. Despite the availability of advanced diagnostic tools and treatment strategies, the incidence of breast cancer is increasing every year. This is due to the lack of accurate and reliable biomarkers whose deficiency creates difficulty in early breast cancer recognition, subtypes determination, and metastasis prophecy. Although biomarkers such as ER, PR, Her2, Ki-67, and other genetic platforms e.g. MammaPrint®, Oncotype DX®, Prosigna® or EndoPredict® are available for determination of breast cancer diagnosis and prognosis. However, pertaining to heterogeneous nature, lack of sensitivity, and specificity of these markers, it is still incessant to overcome breast cancer burden. Therefore, a novel biomarker is urgently needed for therapeutic diagnosis and improving prognosis. Lately, it has become more evident that cell-free miRNAs might be useful as good non-invasive biomarkers that are associated with different events in carcinogenesis. For example, some known biomarkers such as miR-21, miR-23a, miR-34a are associated with molecular subtyping and different biomolecular aspects i.e. apoptosis, angiogenesis, metastasis, and miR-1, miR-10b, miR-16 are associated with drug response. Cell-free miRNAs present in human body fluids have proven to be potential biomarkers with significant prognostic and predictive values. Numerous studies have found a distinct expression profile of circulating miRNAs in breast tumour versus non-tumour and in early and advanced-stage, thus implicating its clinical relevance. This review article will highlight the importance of different cell-free miRNAs as a biomarker for early breast cancer detection, subtype classification, and metastasis forecast.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Liu X, Sun R, Chen J, Liu L, Cui X, Shen S, Cui G, Ren Z, Yu Z. Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Front Cell Dev Biol 2020; 8:23. [PMID: 32083078 PMCID: PMC7004951 DOI: 10.3389/fcell.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence have confirmed the magnitude of crosstalk between HGF/c-Met axis (hepatocyte growth factor and its high-affinity receptor c-mesenchymal-epithelial transition factor) and non-coding RNAs (ncRNAs) in tumorigenesis. Through activating canonical or non-canonical signaling pathways, the HGF/c-Met axis mediates a range of oncogenic processes such as cell proliferation, invasion, apoptosis, and angiogenesis and is increasingly becoming a promising target for cancer therapy. Meanwhile, ncRNAs are a cluster of functional RNA molecules that perform their biological roles at the RNA level and are essential regulators of gene expression. The expression of ncRNAs is cell/tissue/tumor-specific, which makes them excellent candidates for cancer research. Many studies have revealed that ncRNAs play a crucial role in cancer initiation and progression by regulating different downstream genes or signal transduction pathways, including HGF/c-Met axis. In this review, we discuss the regulatory association between ncRNAs and the HGF/c-Met axis by providing a comprehensive understanding of their potential mechanisms and roles in cancer development. These findings could reveal their possible clinical applications as biomarkers for therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xichun Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Liu F, Chen Y, Chen B, Liu C, Xing J. MiR-935 Promotes Clear Cell Renal Cell Carcinoma Migration and Invasion by Targeting IREB2. Cancer Manag Res 2019; 11:10891-10900. [PMID: 31920398 PMCID: PMC6941696 DOI: 10.2147/cmar.s232380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Clear cell renal cell carcinoma (ccRCC) has the highest rate of metastasis and invasion in RCC and is the third most common adult urinary malignancy. miRNA may serve a critical role in human cancer development and progression, has been confirmed to play a pivotal role in RCC cell invasion and migration. Since miR‑935 had been verified to be an oncogene or tumor suppressor in various cancers, the role of miR‑935 in RCC was unclear. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify miR-935 expression. CCK-8 assay, wound healing assay and transwell assay were used to investigate the cell proliferation, migration and invasion of miR-935. Receiver operating characteristic (ROC) curve analysis was applied to discriminate different clinical classifications. Gain or loss of function approaches were used to investigate the cell proliferation, migration and invasion of miR-935 in vitro. Bioinformatics analysis and dual-luciferase reporter assay were used to identify the target of miR-935. Results MiR-935 had a higher expression level in RCC cells and cancer tissues. MiR-935 mimics promoted cell proliferation, migration and invasion, and miR-935 inhibitor inhibited cell inhibit malignancy of cancer cells. Bioinformatics analysis and dual-luciferase reporter assay identified iron-responsive element-binding protein 2 (IREB2) as a direct target of miR-935. qRT-PCR showed IREB2 expression was downregulated in ccRCC cancer tissues and high IREB2 expression had a longer overall survival (OS) and disease-free survival (DFS). Silencing IREB2 could reverse the function of miR-935 inhibitor on cell proliferation and metastasis in renal cancer cells. Conclusion The study indicated that miR-935 may act as an oncomiRNA and influenced migration and invasion progress of ccRCC by targeting IREB2. Oncogene miR-935 may be a molecular marker and uncover new strategies for ccRCC.
Collapse
Affiliation(s)
- Fei Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, People's Republic of China.,Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Yuedong Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Bin Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| |
Collapse
|