1
|
Chen Q, Zhou Q. Identification of exosome-related gene signature as a promising diagnostic and therapeutic tool for breast cancer. Heliyon 2024; 10:e29551. [PMID: 38665551 PMCID: PMC11043961 DOI: 10.1016/j.heliyon.2024.e29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Exosomes are promising tools for the development of new diagnostic and therapeutic approaches. Exosomes possess the ability to activate signaling pathways that contribute to the remodeling of the tumor microenvironment, angiogenesis, and the regulation of immune responses. We aimed to develop a prognostic score based on exosomes derived from breast cancer. Materials and methods Training was conducted on the TCGA-BRCA dataset, while validation was conducted on GSE20685, GSE5764, GSE7904, and GSE29431. A total of 121 genes related to exosomes were retrieved from the ExoBCD database. The Cox proportional hazards model is used to develop risk score model. The GSVA package was utilized to analyze single-sample gene sets and identify exosome signatures, while the WGCNA package was utilized to identify gene modules associated with clinical outcomes. The clusterProfiler and GSVA R packages facilitated gene set enrichment and variation analyses. Furthermore, CIBERSORT quantified immune infiltration, and a correlation between gene expression and drug sensitivity was assessed using the TIDE algorithm. Results An exosome-related prognostic score was established using the following selected genes: ABCC9, PIGR, CXCL13, DOK7, CD24, and IVL. Various immune cells that promote cancer immune evasion were associated with a high-risk prognostic score, which was an independent predictor of outcome. High-risk and low-risk groups exhibited significantly different infiltration abundances (p < 0.05). By conducting a sensitivity comparison, we found that patients with high-risk scores exhibited more favorable responses to immunotherapy than those with low-risk scores. Conclusion The exosome-related gene signature exhibits outstanding performance in predicting the prognosis and cancer status of patients with breast cancer and guiding immunotherapy.
Collapse
Affiliation(s)
- Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| | - Qin Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
DOK7 CpG hypermethylation in blood leukocytes as an epigenetic biomarker for acquired tamoxifen resistant in breast cancer. J Hum Genet 2023; 68:33-38. [PMID: 36372800 DOI: 10.1038/s10038-022-01092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Breast cancer (BC) is among the most common cause of cancer 10.4% and one of the leading causes of death among 20-50 years old women in the world. Tamoxifen drug is the first line therapy for BC however tamoxifen resistance (TR) has shown in 30-50% of cases that may face BC recurrence. Hence, TR early detection reduces BC recurrence and fatalities. The epigenetic alteration that happens by hypermethylation of tumor suppressor genes and hypomethylation of oncogenes has been suggested to be useful in early cancer or drug resistance diagnosis. METHODS This is the first study to investigate DOK7 CpG hypermethylation in blood leukocytes of 31 TR (ER+) BC compared to 29 tamoxifen sensitive BC to evaluate DOK7 as a potential TR biomarker. DNA was extracted from blood samples of all participants and MSRE-PCR and real-time PCR were used for quantification of CpG methylation alterations. RESULTS The means of DOK7 CpG hypermethylation were obtained as 85.03%, 29.1% and 57.34% in TR, TS and normal control respectively. Significant hypermethylation were found among TR vs. TS (p < 0.001), TS vs. normal (p < 0.001) and TR vs. normal controls (p < 0.03). Online databases expression and survival analysis of DOK7 showed increasing expression in TS groups vs. TR groups which have consistency with our methylation alteration results. The sensitivity and specificity of the TR epigenetic test were determined using ROC analysis showed 89.66% and 96.77% respectively and showed that 37.5% above hypermethylation is at risk for TR and breast cancer recurrence. CONCLUSION There is a significant difference in the methylation ratio of DOK7 between tamoxifen resistant and tamoxifen sensitive groups that may be useful in the early diagnosis of tamoxifen resistance in BC cases and cancer recurrence prevention.
Collapse
|
3
|
Guan Y, Li M, Qiu Z, Xu J, Zhang Y, Hu N, Zhang X, Guo W, Yuan J, Shi Q, Wang W. Comprehensive analysis of DOK family genes expression, immune characteristics, and drug sensitivity in human tumors. J Adv Res 2022; 36:73-87. [PMID: 35127166 PMCID: PMC8799871 DOI: 10.1016/j.jare.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The expression of DOK family genes is related to overall survival (OS), clinical stage, tumor mutation, methylation, CNV, and SNV. DOK family genes are significantly associated with poor prognosis of UVM. DOK1-DOK3 has obvious correlation with tumor immunity and tumor microenvironment. DOK family gene is significantly related to tumor stemness and drug sensitivity. The expression of DOK family genes is related to the activation of EMT and hormone ER pathways, and is related to the inhibition of DNA damage response, cell cycle, and hormone AR pathways. DOK1 and DOK3, DOK2 and DOK3 have the significant correlation.
Introduction Objectives Methods Results Conclusions
Collapse
|
4
|
Methorst R, Pasterkamp G, van der Laan SW. Exploring the causal inference of shear stress associated DNA methylation in carotid plaque on cardiovascular risk. Atherosclerosis 2021; 325:30-37. [PMID: 33887531 DOI: 10.1016/j.atherosclerosis.2021.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a lipid-driven inflammatory disease presumably initiated by endothelial activation. Low vascular shear stress is known for its ability to activate endothelial cells. Differential DNA methylation (DNAm) is a relatively unexplored player in atherosclerotic disease development and endothelial dysfunction. Previous studies showed that the expression of 11 genes was associated with differential DNAm due to low shear stress in murine endothelial cells. We hypothesized a causal relationship between DNAm of shear stress associated genes in human carotid plaque and increased risk of cardiovascular disease. METHODS Using Mendelian randomisation (MR) analysis, we explored the potential causal role of DNAm of shear stress associated genes on cardiovascular disease risk. We used data from the Athero-Expression Biobank Study for the discovery of methylation quantitative trait loci (mQTLs) in 442 advanced carotid plaques. Next, we performed MR analysis using these mQTLs and publicly available GWAS summary statistics of coronary artery disease (CAD) and ischemic stroke (IS). RESULTS We discovered 9 mQTLs in plaque in the promoters of shear stress associated genes. We found no significant effect of shear stress gene promoter methylation and increased risk of CAD and IS. CONCLUSIONS Differential methylation of shear stress associated genes in advanced atherosclerotic plaques in unlikely to increase cardiovascular risk in human.
Collapse
Affiliation(s)
- Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Cheng Z, Dai Y, Huang W, Zhong Q, Zhu P, Zhang W, Wu Z, Lin Q, Zhu H, Cui L, Qian T, Deng C, Fu L, Liu Y, Zeng T. Prognostic Value of MicroRNA-20b in Acute Myeloid Leukemia. Front Oncol 2021; 10:553344. [PMID: 33680910 PMCID: PMC7930740 DOI: 10.3389/fonc.2020.553344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease that requires fine-grained risk stratification for the best prognosis of patients. As a class of small non-coding RNAs with important biological functions, microRNAs play a crucial role in the pathogenesis of AML. To assess the prognostic impact of miR-20b on AML in the presence of other clinical and molecular factors, we screened 90 AML patients receiving chemotherapy only and 74 also undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. In the chemotherapy-only group, high miR-20b expression subgroup had shorter event-free survival (EFS) and overall survival (OS, both P < 0.001); whereas, there were no significant differences in EFS and OS between high and low expression subgroups in the allo-HSCT group. Then we divided all patients into high and low expression groups based on median miR-20b expression level. In the high expression group, patients treated with allo-HSCT had longer EFS and OS than those with chemotherapy alone (both P < 0.01); however, there were no significant differences in EFS and OS between different treatment subgroups in the low expression group. Further analysis showed that miR-20b was negatively correlated with genes in “ribosome,” “myeloid leukocyte mediated immunity,” and “DNA replication” signaling pathways. ORAI2, the gene with the strongest correlation with miR-20b, also had significant prognostic value in patients undergoing chemotherapy but not in the allo-HSCT group. In conclusion, our findings suggest that high miR-20b expression is a poor prognostic indicator for AML, but allo-HSCT may override its prognostic impact.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
DOK7 Inhibits Cell Proliferation, Migration, and Invasion of Breast Cancer via the PI3K/PTEN/AKT Pathway. JOURNAL OF ONCOLOGY 2021; 2021:4035257. [PMID: 33552156 PMCID: PMC7847321 DOI: 10.1155/2021/4035257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 12/24/2022]
Abstract
Recently, increasing attention has been paid to the correlation between the expression of downstream of kinase 7 (DOK7) and the occurrence and development of various tumors. In this study, we clarified the effects of DOK7 in breast cancer. First, we showed that DOK7 expression was obviously reduced in the breast cancer tissues and lower levels of DOK7 linked to more aggressive behaviors and worse prognosis of patients. Furthermore, DOK7 expression of various breast cancer cell lines was lower than that of human noncancerous MCF-10A cells. Overexpression of DOK7 inhibited proliferation, migration, and invasion, while silencing DOK7 expression promoted the malignancy of breast cancer. In addition, overexpression of DOK7 suppressed tumor proliferation and lung metastasis in animal models. Finally, to investigate the possible signaling mechanism, we first found that the level of p-AKT protein was extremely downregulated and the level of PTEN protein was remarkably upregulated after overexpressing DOK7 in breast cancer cells. Repression of PTEN expression using PTEN siRNA or SF1670 (PTEN inhibitor) rescued the tumor-inhibiting effect induced by DOK7 overexpression, suggesting that DOK7 inhibits proliferation, migration, and invasion of breast cancer cells though the PI3K/PTEN/AKT pathway. These results suggest that the downregulation of DOK7 may become a novel breast cancer therapeutic target.
Collapse
|
7
|
Cui W, Liu Y, Tan Y, Peng X, Cui L, Cheng Z, Dai Y, Fu L, Zeng T, Liu Y. Prognostic value of HMGN family expression in acute myeloid leukemia. Future Oncol 2021; 17:541-548. [PMID: 33467898 DOI: 10.2217/fon-2020-0555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: The objective of this work was to investigate the prognostic role of the HMGN family in acute myeloid leukemia (AML). Methods: A total of 155 AML patients with HMGN1-5 expression data from the Cancer Genome Atlas database were enrolled in this study. Results: In the chemotherapy-only group, patients with high HMGN2 expression had significantly longer event-free survival (EFS) and overall survival (OS) than those with low expression (all p < 0.05), whereas high HMGN5 expressers had shorter EFS and OS than the low expressers (all p < 0.05). Multivariate analysis identified that high HMGN2 expression was an independent favorable prognostic factor for patients who only received chemotherapy (all p < 0.05). HMGN family expression had no impact on EFS and OS in AML patients receiving allogeneic hematopoietic stem cell transplantation. Conclusion: High HMGN2/5 expression is a potential prognostic indicator for AML.
Collapse
Affiliation(s)
- Wei Cui
- Department of Clinical Laboratory, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, 100080, China
| | - Yuna Liu
- Department of Clinical Laboratory Medicine, Beijing Hospital of Integrated Chinese & Western Medicine, Beijing, 100039, China
| | - Yanan Tan
- Department of Clinical Laboratory, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, 100080, China
| | - Xingyue Peng
- Department of Clinical Laboratory, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, 100080, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Zhiheng Cheng
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 999025, Netherlands
| | - Yifeng Dai
- Immunoendocrinology, Division of Medical Biology, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 999025, Netherlands
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| |
Collapse
|
8
|
Dai Y, Cheng Z, Fricke DR, Zhao H, Huang W, Zhong Q, Zhu P, Zhang W, Wu Z, Lin Q, Zhu H, Liu Y, Qian T, Fu L, Cui L, Zeng T. Prognostic role of Wnt and Fzd gene families in acute myeloid leukaemia. J Cell Mol Med 2021; 25:1456-1467. [PMID: 33417298 PMCID: PMC7875934 DOI: 10.1111/jcmm.16233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023] Open
Abstract
Wnt-Fzd signalling pathway plays a critical role in acute myeloid leukaemia (AML) progression and oncogenicity. There is no study to investigate the prognostic value of Wnt and Fzd gene families in AML. Our study screened 84 AML patients receiving chemotherapy only and 71 also undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. We found that some Wnt and Fzd genes had significant positive correlations. The expression levels of Fzd gene family were independent of survival in AML patients. In the chemotherapy group, AML patients with high Wnt2B or Wnt11 expression had significantly shorter event-free survival (EFS) and overall survival (OS); high Wnt10A expressers had significantly longer OS than the low expressers (all P < .05), whereas, in the allo-HSCT group, the expression levels of Wnt gene family were independent of survival. We further found that high expression of Wnt10A and Wnt11 had independent prognostic value, and the patients with high Wnt10A and low Wnt11 expression had the longest EFS and OS in the chemotherapy group. Pathway enrichment analysis showed that genes related to Wnt10A, Wnt11 and Wnt 2B were mainly enriched in 'cell morphogenesis involved in differentiation', 'haematopoietic cell lineage', 'platelet activation, signalling and aggregation' and 'mitochondrial RNA metabolic process' signalling pathways. Our results indicate that high Wnt2B and Wnt11 expression predict poor prognosis, and high Wnt10A expression predicts favourable prognosis in AML, but their prognostic effects could be neutralized by allo-HSCT. Combined Wnt10A and Wnt11 may be a novel prognostic marker in AML.
Collapse
Affiliation(s)
- Yifeng Dai
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Doerte R Fricke
- Department of Genetics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Oshi M, Tokumaru Y, Patel A, Yan L, Matsuyama R, Endo I, Katz MH, Takabe K. A Novel Four-Gene Score to Predict Pathologically Complete (R0) Resection and Survival in Pancreatic Cancer. Cancers (Basel) 2020; 12:E3635. [PMID: 33291601 PMCID: PMC7761977 DOI: 10.3390/cancers12123635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Pathologically complete (R0) resection is essential for prolonged survival in pancreatic cancer. Survival depends not only on surgical technique, but also on cancer biology. A biomarker to predict survival is a critical need in pancreatic treatment. We hypothesized that this 4-gene score, which was reported to reflect cell proliferation, is a translatable predictive biomarker for pancreatic cancer. A total of 954 pancreatic cancer patients from multiple cohorts were analyzed and validated. Pancreatic cancer had the 10th highest median score of 32 cancers in The Cancer Genome Atlas (TCGA) cohort. The four-gene score significantly correlated with pathological grade and MKI67 expression. The high four-gene score enriched cell proliferation-related and cancer aggressiveness-related gene sets. The high score was associated with activation of KRAS, p53, transforming growth factor (TGF)-β, and E2F pathways, and with high alteration rate of KRAS and CDKN2A genes. The high score was also significantly associated with reduced CD8+ T cell infiltration of tumors, but with high levels of interferon-γ and cytolytic activity in tumors. The four-gene score correlated with the area under the curve of irinotecan and sorafenib in primary pancreatic cancer, and with paclitaxel and doxorubicin in metastatic pancreatic cancer. The high four-gene score was associated with significantly fewer R0 resections and worse survival. The novelty of the study is in the application of the four-gene score to pancreatic cancer, rather than the bioinformatics technique itself. Future analyses of inoperable lesions are expected to clarify the utility of our score as a predictive biomarker of systemic treatments.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (Y.T.); (A.P.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (Y.T.); (A.P.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Ankit Patel
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (Y.T.); (A.P.)
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Matthew H.G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (Y.T.); (A.P.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
10
|
A Novel 4-Gene Score to Predict Survival, Distant Metastasis and Response to Neoadjuvant Therapy in Breast Cancer. Cancers (Basel) 2020; 12:cancers12051148. [PMID: 32370309 PMCID: PMC7281399 DOI: 10.3390/cancers12051148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
We generated a 4-gene score with genes upregulated in LM2-4, a metastatic variant of MDA-MB-231 (DOK 4, HCCS, PGF, and SHCBP1) that was strongly associated with disease-free survival (DFS) in TCGA cohort (hazard ratio [HR]>1.2, p < 0.02). The 4-gene score correlated with overall survival of TCGA (HR = 1.44, p < 0.001), which was validated with DFS and disease-specific survival of METABRIC cohort. The 4-gene score was able to predict worse survival or clinically aggressive tumors, such as high Nottingham pathological grade and advanced cancer staging. High score was associated with worse survival in the hormonal receptor (HR)-positive/Her2-negative subtype. High score enriched cell proliferation-related gene sets in GSEA. The score was high in primary tumors that originated, in and metastasized to, brain and lung, and it predicted worse progression-free survival for metastatic tumors. Good tumor response to neoadjuvant chemotherapy or hormonal therapy was accompanied by score reduction. High scores were also predictive of response to neoadjuvant chemotherapy for HR-positive/Her2-negative subtype. High score tumors had increased expression of T cell exhaustion marker genes, suggesting that the score may also be a biomarker for immunotherapy response. Our novel 4-gene score with both prognostic and predictive values may, therefore, be clinically useful particularly in HR-positive breast cancer.
Collapse
|
11
|
Cheng Z, Dai Y, Zeng T, Liu Y, Cui L, Qian T, Si C, Huang W, Pang Y, Ye X, Shi J, Fu L. Upregulation of Glutamic-Oxaloacetic Transaminase 1 Predicts Poor Prognosis in Acute Myeloid Leukemia. Front Oncol 2020; 10:379. [PMID: 32266153 PMCID: PMC7105742 DOI: 10.3389/fonc.2020.00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the key features of acute myeloid leukemia (AML), a group of very aggressive myeloid malignancies, is their strikingly heterogenous outcomes. Accurate biomarkers are needed to improve prognostic assessment. Glutamate oxaloacetate transaminase 1 (GOT1) is essential for cell proliferation and apoptosis by regulating cell's metabolic dependency on glucose. It is unclear whether the expression level of GOT1 has clinical implications in AML. Therefore, we analyzed the data of 155 AML patients with GOT1 expression information from The Cancer Genome Atlas (TCGA) database. Among them, 84 patients were treated with chemotherapy alone, while 71 received allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both treatment groups, high GOT1 expression was associated with shorter event-free survival (EFS) and overall survival (OS) (all P < 0.05). Multivariate analysis identified several independent risk factors for both EFS and OS in the chemotherapy-only group, including high GOT1 expression, age ≥60 years, white blood cell count ≥15 × 109/L, bone marrow blasts ≥70%, and DNMT3A, RUNX1 or TP53 mutations (all P < 0.05); but in the allo-HSCT group, the only independent risk factor for survival was high GOT1 expression (P < 0.05 for both EFS and OS). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the genes related to GOT1 expression were mainly concentrated in “hematopoietic cell lineage” and “leukocyte transendothelial migration” signaling pathways. Collectively, GOT1 expression may be a useful prognostic indicator in AML, especially in patients who have undergone allo-HSCT.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tiansheng Zeng
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
12
|
Qian T, Cheng Z, Quan L, Zeng T, Cui L, Liu Y, Si C, Huang W, Dai Y, Chen J, Liu L, Jiao Y, Deng C, Pang Y, Ye X, Shi J, Fu L. Prognostic role of SCAMP family in acute myeloid leukemia. THE PHARMACOGENOMICS JOURNAL 2020; 20:595-600. [PMID: 31988488 DOI: 10.1038/s41397-020-0149-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 01/10/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease of myeloid hematopoietic stem or progenitor cells characterized by abnormal proliferation of primary and immature myeloid cells in bone marrow and peripheral blood. Gene mutation and expression profiles can be used as prognosis predictors for different prognostic subgroups. Secretory carrier-associated membrane proteins (SCAMPs) are a multigenic family with five members and act as cell surface vectors in the post-Golgi recycling pathways in mammals. Nevertheless, the prognostic and clinical influence of SCAMP family has hardly ever been illustrated in AML. In our study, expression patterns of SCAMP family (SCAMP1-5) were analyzed in 155 AML patients which were extracted from the Cancer Genome Atlas database. In chemotherapy, only subgroup, higher SCAMP1 level was significantly associated with longer EFS and OS (all P = 0.002), and SCAMP1 was confirmed to be an independent favorable factor in un-transplanted patients by Multivariate analysis (all P < 0.05). Nevertheless, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) treatment subgroup, none of the SCAMP genes had any effect on the clinical survival. Our study found that high expression level of SCAMP1 is a favorable prognostic factor in AML, but allo-HSCT may neutralize its prognostic effect.
Collapse
Affiliation(s)
- Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Tiansheng Zeng
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China.,Department of Hematology, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China.,Department of Hematology, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jinghong Chen
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Ling Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 310058, Hangzhou, China
| | - Cong Deng
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, 100853, Beijing, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China. .,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China. .,Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China. .,Department of Hematology, Huaihe Hospital of Henan University, 475000, Kaifeng, China.
| |
Collapse
|
13
|
Cheng Z, Dai Y, Pang Y, Jiao Y, Liu Y, Cui L, Quan L, Qian T, Zeng T, Si C, Huang W, Chen J, Pang Y, Ye X, Shi J, Fu L. Up-regulation of DDIT4 predicts poor prognosis in acute myeloid leukaemia. J Cell Mol Med 2019; 24:1067-1075. [PMID: 31755224 PMCID: PMC6933361 DOI: 10.1111/jcmm.14831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/23/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) inhibitor, DNA damage inducible transcript 4 (DDIT4), has inducible expression in response to various cellular stresses. In multiple malignancies, studies have shown that DDIT4 participates in tumorigenesis and impacts patient survival. We aimed to study the prognostic value of DDIT4 in acute myeloid leukaemia (AML), which is currently unclear. Firstly, The Cancer Genome Atlas was screened for AML patients with complete clinical characteristics and DDIT4 expression data. A total of 155 patients were included and stratified according to the treatment modality and the median DDIT4 expression levels. High DDIT4 expressers had shorter overall survival (OS) and event‐free survival (EFS) than the low expressers among the chemotherapy‐only group (all P < .001); EFS and OS were similar in the high and low DDIT4 expressers of the allogeneic haematopoietic stem cell transplantation (allo‐HSCT) group. Furthermore, in the DDIT4high group, patients treated with allo‐HSCT had longer EFS and OS than those who received chemotherapy alone (all P < .01). In the DDIT4low group, OS and EFS were similar in different treatment groups. Secondly, we analysed two other cytogenetically normal AML (CN‐AML) cohorts derived from the Gene Expression Omnibus database, which confirmed that high DDIT4 expression was associated with poorer survival. Gene Ontology (GO) enrichment analysis showed that the genes related to DDIT4 expression were mainly concentrated in the acute and chronic myeloid leukaemia signalling pathways. Collectively, our study indicates that high DDIT4 expression may serve as a poor prognostic factor for AML, but its prognostic effects could be outweighed by allo‐HSCT.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,State Key Laboratory of Respiratory Disease, Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tiansheng Zeng
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- State Key Laboratory of Respiratory Disease, Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
14
|
Sun GK, Tang LJ, Zhou JD, Xu ZJ, Yang L, Yuan Q, Ma JC, Liu XH, Lin J, Qian J, Yao DM. DOK6 promoter methylation serves as a potential biomarker affecting prognosis in de novo acute myeloid leukemia. Cancer Med 2019; 8:6393-6402. [PMID: 31486300 PMCID: PMC6797566 DOI: 10.1002/cam4.2540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Downstream of tyrosine kinase 6 (DOK6), which is specifically expressed in the nervous system, was previously recognized as an adapter only in neurite outgrowth. Recent studies also demonstrated the potential role of DOK6 in solid tumors such as gastric cancer and breast cancer. However, previous studies of DOK6 have not dealt with its roles in myeloid malignancies. Herein, we verified the promoter methylation status of DOK6 and further explored its clinical implication in de novo acute myeloid leukemia (AML). METHODS A total of 100 newly diagnosed adult AML patients were involved in the current study. DOK6 expression and methylation were detected by real-time qPCR and methylation-specific PCR (MSP), respectively. Bisulfite sequencing PCR (BSP) was performed to assess the methylation density of the DOK6 promoter. RESULTS Downstream of tyrosine kinase 6 promoter methylation was significantly increased in AML patients compared to controls (P = .037), whereas DOK6 expression significantly decreased in AML patients (P < .001). The expression of DOK6 was markedly up-regulated after treated by 5-aza-2'-deoxycytidine (5-aza-dC) in THP-1 cell lines. The methylation status of the DOK6 promoter was associated with French-American-British classifications (P = .037). There was no significant correlation existed between DOK6 expression and its promoter methylation (R = .077, P = .635). Interestingly, of whole-AML and non-APL AML patients, both have a tendency pertaining to the DOK6 methylation group and a significantly longer overall survival (OS) than the DOK6 unmethylation group (P = .042 and .036, respectively). CONCLUSION Our study suggested that DOK6 promoter hypermethylation was a common molecular event in de novo AML patients. Remarkably, DOK6 promoter methylation could serve as an independent and integrated prognostic biomarker not only in non-APL AML patients but also in AML patients who are less than 60 years old.
Collapse
Affiliation(s)
- Guo-Kang Sun
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Lan Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Yuan
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Next-Generation Sequencing Profiles of the Methylome and Transcriptome in Peripheral Blood Mononuclear Cells of Rheumatoid Arthritis. J Clin Med 2019; 8:jcm8091284. [PMID: 31443559 PMCID: PMC6780767 DOI: 10.3390/jcm8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Using next-generation sequencing to decipher methylome and transcriptome and underlying molecular mechanisms contributing to rheumatoid arthritis (RA) for improving future therapies, we performed methyl-seq and RNA-seq on peripheral blood mononuclear cells (PBMCs) from RA subjects and normal donors. Principal component analysis and hierarchical clustering revealed distinct methylation signatures in RA with methylation aberrations noted across chromosomes. Methylation alterations varied with CpG features and genic characteristics. Typically, CpG islands and CpG shores were hypermethylated and displayed the greatest methylation variance. Promoters were hypermethylated and enhancers/gene bodies were hypomethylated, with methylation variance associated with expression variance. RA genetically associated genes preferentially displayed differential methylation and differential expression or interacted with differentially methylated and differentially expressed genes. These differentially methylated and differentially expressed genes were enriched with several signaling pathways and disease categories. 10 genes (CD86, RAB20, XAF1, FOLR3, LTBR, KCNH8, DOK7, PDGFA, PITPNM2, CELSR1) with concomitantly differential methylation in enhancers/promoters/gene bodies and differential expression in B cells were validated. This integrated analysis of methylome and transcriptome identified novel epigenetic signatures associated with RA and highlighted the interaction between genetics and epigenetics in RA. These findings help our understanding of the pathogenesis of RA and advance epigenetic studies in regards to the disease.
Collapse
|
16
|
Cheng Z, Dai Y, Pang Y, Jiao Y, Liu Y, Cui L, Qian T, Quan L, Cui W, Pan Y, Ye X, Shi J, Fu L. High EGFL7 expression may predict poor prognosis in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Cancer Biol Ther 2019; 20:1314-1318. [PMID: 31306053 DOI: 10.1080/15384047.2019.1638663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epithelial growth factor-like 7 (EGFL7) is a secretory protein with a well-characterized role in angiogenesis and the oncogenesis of certain solid tumors. Overexpression of EGFL7 is associated with adverse prognosis in patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, whether this association persists after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. To further clarify the prognostic role of EGFL7, seventy-one AML patients with EGFL7 expression data who underwent allo-HSCT from The Cancer Genome Atlas database were included and divided into either EGFL7high or EGFL7low group based on the median EGFL7 expression level. Two groups had similar clinical and molecular characteristics except that the EGFL7high group had less frequent NPM1 mutations (P= .001). Kaplan-Meier survival curves showed that high EGFL7 expressers had shorter OS than the low expressers (P= .040). Univariate analysis showed that high EGFL7 expression, MLL-PTD, RUNX1 and TP53 mutations were associated with short OS (all P< .05). Multivariate analysis indicated that high EGFL7 expression, FLT3-ITD, RUNX1 and TP53 mutations were independent risk factors for OS (all P< .05). Collectively, our study suggested that EGFL7, like the other widely-used risk stratification factors, could serve as a prognostic tool and therapeutic target in AML, even after allo-HCST.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Translational Medicine Center, Huaihe Hospital of Henan University , Kaifeng , China
| | - Yifeng Dai
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital , Royal Oak , MI , USA
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou , China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University , Kaifeng , China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University , Kaifeng , China
| | - Tingting Qian
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Liang Quan
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Wei Cui
- Department of Clinical Laboratory, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital , Beijing , China
| | - Yue Pan
- Department of Clinical Laboratory, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital , Beijing , China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital , Beijing , China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Department of Hematology, Huaihe Hospital of Henan University , Kaifeng , China
| |
Collapse
|
17
|
Dai Y, Cheng Z, Pang Y, Jiao Y, Qian T, Quan L, Cui L, Liu Y, Si C, Chen J, Ye X, Chen J, Shi J, Wu D, Zhang X, Fu L. Prognostic value of the FUT family in acute myeloid leukemia. Cancer Gene Ther 2019; 27:70-80. [PMID: 31209266 DOI: 10.1038/s41417-019-0115-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
Genetic abnormalities are more frequently viewed as prognostic markers in acute myeloid leukemia (AML) in recent years. Fucosylation, catalyzed by fucosyltransferases (FUTs), is a post-translational modification that widely exists in cancer cells. However, the expression and clinical implication of the FUT family (FUT1-11) in AML has not been investigated. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and FUT1-11 expression data were included in our study. In patients who received chemotherapy alone showed that high expression levels of FUT3, FUT6, and FUT7 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P < 0.05), whereas high FUT4 expression had favorable effects on EFS and OS (all P < 0.01). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in EFS between the high and low FUT3 expression subgroups (P = 0.047), while other FUT members had no effect on survival. Multivariate analysis confirmed that high FUT4 expression was an independent favorable prognostic factor for both EFS (HR = 0.423, P = 0.001) and OS (HR = 0.398, P < 0.001), whereas high FUT6 expression was an independent risk factor for both EFS (HR = 1.871, P = 0.017) and OS (HR = 1.729, P = 0.028) in patients who received chemotherapy alone. Moreover, we found that patients with low FUT4 and high FUT6 expressions had the shortest EFS and OS (P < 0.05). Our study suggests that high expressions of FUT3/6/7 predict poor prognosis, high FUT4 expression indicates good prognosis in AML; FUT6 and FUT4 have the best prognosticating profile among them, but their effects could be neutralized by allo-HSCT.
Collapse
Affiliation(s)
- Yifeng Dai
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 310058, Hangzhou, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Jinghong Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Jingqi Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, 100853, Beijing, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Xinyou Zhang
- Department of Hematology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 518020, Shenzhen, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China. .,Department of Hematology, Huaihe Hospital of Henan University, 475000, Kaifeng, China.
| |
Collapse
|
18
|
High IFITM3 expression predicts adverse prognosis in acute myeloid leukemia. Cancer Gene Ther 2019; 27:38-44. [PMID: 30923336 DOI: 10.1038/s41417-019-0093-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a malignancy caused by the uncontrolled and dysregulated clonal expansion of abnormal myeloid primordial cells. In general, the prognosis of AML remains poor despite new discoveries in its pathogenesis and treatment. It is crucial to find early and sensitive biomarkers and continue to explore active targeted treatments. Interferon-induced transmembrane protein (IFITM) family is an important part of the interferon signaling pathway and participate in the regulation of immune cell signaling, adhesion, cancer, and liver cell migration. However, the clinical and prognostic value of the IFITM family in AML has rarely been studied. We screened The Cancer Genome Atlas database and found 155 AML patients with IFITM family (IFITM1-5) expression data. In patients who only received chemotherapy, those with high IFITM3 expression had significantly shorter event-free survival (EFS) and overall survival (OS) than patients with low expression (all P < 0.05). Multivariate analysis demonstrated that high IFITM3 expression was an independent risk factor for EFS and OS in patients only received chemotherapy (all P < 0.05). In patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), however, all IFITM members had no impact on either EFS or OS. In conclusion, our study elucidated that high IFITM3 expression could be an adverse prognostic factor for AML, whose effect might be overcome by allo-HSCT.
Collapse
|