1
|
Zhong G, Shen Q, Zheng X, Yu K, Lu H, Wei B, Cui H, Dai Z, Lou W. CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer. J Transl Med 2024; 22:1149. [PMID: 39731153 DOI: 10.1186/s12967-024-06004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation. In this study, our objective is to investigate the prognostic value of CPSF4 and pinpoint pivotal AS events governed by CPSF4 specifically in TNBC. METHODS We examined the expression levels and prognostic implications of CPSF4 in patients diagnosed with TNBC through public databases. CPSF4-interacting transcripts, global transcriptome, and alternative splicing were captured through RNA immunoprecipitation sequencing (RIP-seq) and RNA sequencing (RNA-seq). The top 10 CPSF4-regulated alternative splicing events (ASEs) were validated using qRT-PCR. TNBC cells transfected with high mobility group 20B (HMG20B) siRNA were subjected to CCK-8 and transwell assays. RESULTS In TNBC, CPSF4 exhibited heightened expression levels and was correlated with unfavorable prognosis. Overexpression of CPSF4 significantly promoted colony formation and migration, whereas knockdown of CPSF4 had the opposite effect. Inhibition of CPSF4 altered the transcriptome profile of MDA-MB-231 cells. CPSF4-regulated numerous genes showed enrichment in cancer-related functional pathways, including mRNA processing, cell cycle, RNA transport, mRNA surveillance pathway, and apoptosis. CPSF4-regulated ASEs were highly validated by qRT-PCR. CPSF4 modulated selective splicing events by inhibiting alternative 3' splice site events of HMG20B and promoted cell proliferation, migration, and invasion. CONCLUSION CPSF4 promotes TNBC progression by regulating AS of HMG20B. These findings contribute to the development of more useful prognostic, diagnostic and potentially therapeutic biomarkers for TNBC.
Collapse
Affiliation(s)
- Guansheng Zhong
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qinyan Shen
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, Zhejiang, China
| | - Xinli Zheng
- Department of Eye, Ear, Nose and Throat, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Kun Yu
- Department of Head, Neck & Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Hongjiang Lu
- Department of Radiology, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Bajin Wei
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Haidong Cui
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Weiyang Lou
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
2
|
Fang D, Hu H, Zhao K, Xu A, Yu C, Zhu Y, Yu N, Yao B, Tang S, Wu X, Mei Y. MLF2 Negatively Regulates P53 and Promotes Colorectal Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303336. [PMID: 37438558 PMCID: PMC10502657 DOI: 10.1002/advs.202303336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Inactivation of the p53 pathway is linked to a variety of human cancers. As a critical component of the p53 pathway, ubiquitin-specific protease 7 (USP7) acts as a deubiquitinase for both p53 and its ubiquitin E3 ligase mouse double minute 2 homolog. Here, myeloid leukemia factor 2 (MLF2) is reported as a new negative regulator of p53. MLF2 interacts with both p53 and USP7. Via these interactions, MLF2 inhibits the binding of USP7 to p53 and antagonizes USP7-mediated deubiquitination of p53, thereby leading to p53 destabilization. Functionally, MLF2 plays an oncogenic role in colorectal cancer, at least partially, via the negative regulation of p53. Clinically, MLF2 is elevated in colorectal cancer and its high expression is associated with poor prognosis in patients with colorectal cancer. In wild-type-p53-containing colorectal cancer, MLF2 and p53 expressions are inversely correlated. These findings establish MLF2 as an important suppressor of p53 function. The study also reveals a critical role for the MLF2-p53 axis in promoting colorectal carcinogenesis.
Collapse
Affiliation(s)
- Debao Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Hao Hu
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Kailiang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Aman Xu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Changjun Yu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Yong Zhu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Ning Yu
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Bo Yao
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Suyun Tang
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Yide Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHMDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
3
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
4
|
Kou F, Wu L, Zhu Y, Li B, Huang Z, Ren X, Yang L. Somatic copy number alteration predicts clinical benefit of lung adenocarcinoma patients treated with cytokine-induced killer plus chemotherapy. Cancer Gene Ther 2022; 29:1153-1159. [PMID: 35022521 PMCID: PMC9395268 DOI: 10.1038/s41417-021-00422-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Somatic copy number alterations (SCNA), which are widespread in cancer, can predict the efficacy of immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC). However, the usefulness of SCNA for predicting the survival of patients treated with cytokine-induced killer (CIK) cells or chemotherapy (CT) is unknown. This study aimed to explore the correlation between SCNA and clinical outcome in NSCLC patients treated with CIK + CT or CT alone. We performed whole-exome sequencing on 45 NSCLC patients treated with CIK + CT, as well as 305 NSCLC patients treated with CT alone, from The Cancer Genome Atlas, which showed SCNA had a superiority in predicting the progression-free survival (PFS) over tumor mutation burden (TMB) and SCNA + TMB in NSCLC patients treated with CIK + CT, especially in lung adenocarcinoma, while SCNA could not predict the efficacy of CT alone. Additionally, we investigated the association between SCNA and immune cell infiltration by RNA sequencing and immunohistochemistry. The results revealed that SCNA was negatively associated with the expression of dendritic cells. Collectively, this study revealed a negative correlation between SCNA and response to CIK + CT and showed that SCNA is a predictive indicator in LUAD patients treated with CIK + CT.
Collapse
Affiliation(s)
- Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ye Zhu
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
5
|
Patil S, Bhat MY, Advani J, Mohan SV, Babu N, Datta KK, Subbannayya T, Rajagopalan P, Bhat FA, Al-Hebshi N, Sidransky D, Gowda H, Chatterjee A. Proteomic and phosphoproteomic profiling of shammah induced signaling in oral keratinocytes. Sci Rep 2021; 11:9397. [PMID: 33931671 PMCID: PMC8087671 DOI: 10.1038/s41598-021-88345-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/08/2021] [Indexed: 12/09/2022] Open
Abstract
Shammah is a smokeless tobacco product often mixed with lime, ash, black pepper and flavorings. Exposure to shammah has been linked with dental diseases and oral squamous cell carcinoma. There is limited literature on the prevalence of shammah and its role in pathobiology of oral cancer. In this study, we developed a cellular model to understand the effect of chronic shammah exposure on oral keratinocytes. Chronic exposure to shammah resulted in increased proliferation and invasiveness of non-transformed oral keratinocytes. Quantitative proteomics of shammah treated cells compared to untreated cells led to quantification of 4712 proteins of which 402 were found to be significantly altered. In addition, phosphoproteomics analysis of shammah treated cells compared to untreated revealed hyperphosphorylation of 36 proteins and hypophosphorylation of 83 proteins (twofold, p-value ≤ 0.05). Bioinformatics analysis of significantly altered proteins showed enrichment of proteins involved in extracellular matrix interactions, necroptosis and peroxisome mediated fatty acid oxidation. Kinase-Substrate Enrichment Analysis showed significant increase in activity of kinases such as ROCK1, RAF1, PRKCE and HIPK2 in shammah treated cells. These results provide better understanding of how shammah transforms non-neoplastic cells and warrants additional studies that may assist in improved early diagnosis and treatment of shammah induced oral cancer.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sonali V Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Keshava K Datta
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | - Firdous A Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Nezar Al-Hebshi
- Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education, Manipal, India.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
6
|
Yin Z, Huang G, Gu C, Liu Y, Yang J, Fei J. Discovery of Berberine that Targetedly Induces Autophagic Degradation of both BCR-ABL and BCR-ABL T315I through Recruiting LRSAM1 for Overcoming Imatinib Resistance. Clin Cancer Res 2020; 26:4040-4053. [PMID: 32098768 DOI: 10.1158/1078-0432.ccr-19-2460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Imatinib, the breakpoint cluster region protein (BCR)/Abelson murine leukemia viral oncogene homolog (ABL) inhibitor, is widely used to treat chronic myeloid leukemia (CML). However, imatinib resistance develops in many patients. Therefore, new drugs with improved therapeutic effects are urgently needed. Berberine (BBR) is a potent BCR-ABL inhibitor for imatinib-sensitive and -resistant CML. EXPERIMENTAL DESIGN Protein structure analysis and virtual screening were used to identify BBR targets in CML. Molecular docking analysis, surface plasmon resonance imaging, nuclear magnetic resonance assays, and thermoshift assays were performed to confirm the BBR target. The change in BCR-ABL protein expression after BBR treatment was assessed by Western blotting. The effects of BBR were assessed in vitro in cell lines, in vivo in mice, and in human CML bone marrow cells as a potential strategy to overcome imatinib resistance. RESULTS We discovered that BBR bound to the protein tyrosine kinase domain of BCR-ABL. BBR inhibited the activity of BCR-ABL and BCR-ABL with the T315I mutation, and it also degraded these proteins via the autophagic lysosome pathway by recruiting E3 ubiquitin-protein ligase LRSAM1. BBR inhibited the cell viability and colony formation of CML cells and prolonged survival in CML mouse models with imatinib sensitivity and resistance. CONCLUSIONS The results show that BBR directly binds to and degrades BCR-ABL and BCR-ABL T315I via the autophagic lysosome pathway by recruiting LRSAM1. The use of BBR is a new strategy to improve the treatment of patients with CML with imatinib sensitivity or resistance.See related commentary by Elf, p. 3899.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China. .,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|