1
|
Zhang T, Ji C, Zhang Y, Yuan M, Gao H, Yin Q. LncRNA SNHG1 Accelerates Cell Proliferation, Migration, and Invasion of Hepatoblastoma Through Mediating miR-6838-5p/PIM3/RhoA Axis. Biochem Genet 2024; 62:59-76. [PMID: 37248373 DOI: 10.1007/s10528-023-10404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Hepatoblastoma (HB) is a common primary liver malignant tumor in children. Long non-coding RNAs (lncRNAs) are closely engaged in HB progression. The role and regulatory molecule mechanism of lncRNA small nucleolar RNA host gene 1 (SNHG1) in HB remain unclear. Through qRT-PCR or western blot, we found that SNHG1 and proviral integration site for moloney murine leukemia virus 3 (PIM3) were elevated but miR-6838-5p was decreased in HB cells. Cell biology experiments revealed that SNHG1 depletion or miR-6838-5p upregulation suppressed cell proliferation, migration, and invasion of HB cells. Mechanistically, luciferase activity assay validated that miR-6838-5p could interact with SNHG1 or PIM3. SNHG1 up-regulated PIM3 expression via sponging miR-6838-5p. Moreover, miR-6838-5p inhibitor abolished SNHG1 depletion-mediated suppression of malignant behaviors in HB cells. PIM3 overexpression neutralized miR-6838-5p mimics-mediated repression of malignant phenotypes in HB cells. Furthermore, miR-6838-5p overexpression suppressed RhoA activation, which was restored by PIM3 upregulation. What's more, the results at the cellular level were further verified by nude mice tumor formation experiment. In conclusion, SNHG1 regulated miR-6838-5p/PIM3/RhoA axis to promote malignant phenotypes of HB, which might provide novel therapeutic target for HB treatment.
Collapse
Affiliation(s)
- Tian Zhang
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Chunyi Ji
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yanbing Zhang
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Miaoxian Yuan
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Hongqiang Gao
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Qiang Yin
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Julson JR, Quinn CH, Butey S, Erwin MH, Marayati R, Nazam N, Stewart JE, Beierle EA. PIM Kinase Inhibition Attenuates the Malignant Progression of Metastatic Hepatoblastoma. Int J Mol Sci 2023; 25:427. [PMID: 38203596 PMCID: PMC10778668 DOI: 10.3390/ijms25010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatoblastoma is the most common primary pediatric liver tumor. Children with pulmonary metastases at diagnosis experience survival rates as low as 25%. We have shown PIM kinases play a role in hepatoblastoma tumorigenesis. In this study, we assessed the role of PIM kinases in metastatic hepatoblastoma. We employed the metastatic hepatoblastoma cell line, HLM_2. PIM kinase inhibition was attained using PIM3 siRNA and the pan-PIM inhibitor, AZD1208. Effects of PIM inhibition on proliferation were evaluated via growth curve. Flow cytometry determined changes in cell cycle. AlamarBlue assay assessed effects of PIM kinase inhibition and cisplatin treatment on viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. PIM kinase inhibition resulted in decreased HLM_2 proliferation, likely through cell cycle arrest mediated by p21. Combination therapy with AZD1208 and cisplatin resulted in synergy, potentially through downregulation of the ataxia-telangiectasia mutated (ATM) kinase DNA damage response pathway. When assessing the combined effects of pharmacologic PIM kinase inhibition with cisplatin on HLM_2 cells, we found the agents to be synergistic, potentially through inhibition of the ATM pathway. These findings support further exploration of PIM kinase inhibition as a therapeutic strategy for metastatic hepatoblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder Building, Suite 300, Birmingham, AL 35233, USA; (J.R.J.)
| |
Collapse
|
3
|
Wang Q, Liang N, Liu C, Li J, Bai Y, Lei S, Huang Q, Sun L, Tang L, Zeng C, Tang Y, He X, Yang T, Wang G. BEX1 supports the stemness of hepatoblastoma by facilitating Warburg effect in a PPARγ/PDK1 dependent manner. Br J Cancer 2023; 129:1477-1489. [PMID: 37715024 PMCID: PMC10628275 DOI: 10.1038/s41416-023-02418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is a highly aggressive paediatric malignancy that exhibits a high presence of cancer stem cells (CSCs), which related to tumour recurrence and chemotherapy resistance. Brain expressed X-linked protein 1 (BEX1) plays a pivotal role in ciliogenesis, axon regeneration and differentiation of neural stem cells. However, the role of BEX1 in metabolic and stemness programs in HB remains unclear. METHODS BEX1 expression in human and mouse HB was analyzed using gene expression profile data from NCBI GEO and immunohistochemical validation. Seahorse extracellular flux analyzer, ultra-high-performance liquid-chromatography mass spectrometry (LC-MS), flow cytometry, qRT-PCR, Western Blot, sphere formation assay, and diluted xenograft tumour formation assay were used to analyze metabolic and stemness features. RESULTS Our results indicated that overexpression of BEX1 significantly enhanced the Warburg effect in HB cells. Furthermore, glycolysis inhibition largely attenuated the effects of BEX1 on HB cell growth and self-renewal, suggesting that BEX1 promotes stemness maintenance of HB cells by regulating the Warburg effect. Mechanistically, BEX1 enhances Warburg effect through the downregulation of peroxisome proliferator-activated receptor-gamma (PPARγ). Furthermore, pyruvate dehydrogenase kinase isozyme 1 (PDK1) is required for PPARγ-induced inhibition of Warburg effect in HB. In addition, BEX1 supports the stemness of HB by enhancing Warburg effect in a PPARγ/PDK1 dependent manner. CONCLUSIONS HB patients with high BEX1 and PDK1 expression had a poor prognosis. BEX1 promotes the stemness maintenance of HB cells via modulating the Warburg effect, which depends on PPARγ/PDK1 axis. Pioglitazone could be used to target BEX1-mediated stemness properties in HB by upregulating PPARγ.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Stomatology, Shaanxi Province People's Hospital, Xi'an, 710068, China
| | - Yaxing Bai
- Department of Dermatology, XiJing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuanghong Lei
- Anorectal Department, The First People's Hospital of Longnan, Longnan, 742500, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, The 75th Group Army Hospital, Dali, Yunnan, 671000, China
| | - Ligang Sun
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Liangke Tang
- Department of General Surgery, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chao Zeng
- Department of Neurology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Yuqun Tang
- Minimally Invasive tumour Comprehensive Therapy Center, Second People's Hospital of Guangdong Province, Guangzhou, 510310, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China.
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, Affiliated Jiangmen Hospital, Southern Medical University, Jiangmen, 529000, China.
| |
Collapse
|
4
|
Julson JR, Quinn CH, Bownes LV, Hutchins SC, Stewart JE, Aye J, Yoon KJ, Beierle EA. Inhibition of PIM Kinases Promotes Neuroblastoma Cell Differentiation to a Neuronal Phenotype. J Pediatr Surg 2023; 58:1155-1163. [PMID: 36907773 PMCID: PMC10198809 DOI: 10.1016/j.jpedsurg.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Neuroblastoma arises from aberrancies in neural stem cell differentiation. PIM kinases contribute to cancer formation, but their precise role in neuroblastoma tumorigenesis is poorly understood. In the current study, we evaluated the effects of PIM kinase inhibition on neuroblastoma differentiation. METHODS Versteeg database query assessed the correlation between PIM gene expression and the expression of neuronal stemness markers and relapse free survival. PIM kinases were inhibited with AZD1208. Viability, proliferation, motility were measured in established neuroblastoma cells lines and high-risk neuroblastoma patient-derived xenografts (PDXs). qPCR and flow cytometry detected changes in neuronal stemness marker expression after AZD1208 treatment. RESULTS Database query showed increased levels of PIM1, PIM2, or PIM3 gene expression were associated with higher risk of recurrent or progressive neuroblastoma. Increased levels of PIM1 were associated with lower relapse free survival rates. Higher levels of PIM1 correlated with lower levels of neuronal stemness markers OCT4, NANOG, and SOX2. Treatment with AZD1208 resulted in increased expression of neuronal stemness markers. CONCLUSIONS Inhibition of PIM kinases differentiated neuroblastoma cancer cells toward a neuronal phenotype. Differentiation is a key component of preventing neuroblastoma relapse or recurrence and PIM kinase inhibition provides a potential new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sara C Hutchins
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jamie Aye
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Yang X, Zhang B. A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Funct Integr Genomics 2023; 23:182. [PMID: 37231285 DOI: 10.1007/s10142-023-01117-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Cancer is one of the leading causes of death worldwide and it has the trend of increase incidence. However, in the past decades, as quickly developed new technologies and modified old techniques for cancer screening, diagnosis, and treatment, the cancer-caused mortality rates dropped quickly, and the survival times of cancer patients are enhanced. However, the current death rate is still about 50% and the survival patients always suffer from the side effect of current cancer treatments. Recently developed Nobel Prize-winning CRISPR/Cas technology provides new hope on cancer screening, early diagnosis, and clinic treatment as well as new drug development. Currently, four major CRISPR/Cas9-derived genome editors, CRISPR/Cas9 nucleotide sequence editor, CRISPR/Cas base editor (BE), CRISPR prime editor (PE), and CRISPR interference (CRISPRi) (including both CRISPRa and CRISPRr), were well developed and used to various research and applications, including cancer biology study and cancer screening, diagnosis, and treatment. Additionally, CRISPR/Cas12 and CRISPR/Cas13 genome editors were also widely used in cancer-related basic and applied research as well as treatment. Cancer-associated SNPs and genetic mutations as well as both oncogenes and tumor suppressor genes are perfect targets for CRISPR/Cas-based gene therapy for cancer treatment. CRISPR/Cas is also employed to modify and generate new Chimeric antigen receptor (CAR) T-cells for improving its safety, efficiency, and longer-time last for treating various cancers. Currently, there are many clinic trails of CRISPR-based gene therapy for cancer treatments. Although all CRISPR/Cas-derived genome and epigenome tools are promising methods for cancer biology study and treatment, the efficiency and long term-safety are still the major concerns for CRISPR-based gene therapy. Developing new CRISPR/Cas delivery methods and reducing the potential side effects, including off-target impacts, will enhance CRISPR/Cas application in cancer-related research, diagnosis, and therapeutical treatment.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
6
|
Marayati R, Julson J, Bownes LV, Quinn CH, Stafman LL, Beierle AM, Markert HR, Hutchins SC, Stewart JE, Crossman DK, Hjelmeland AB, Mroczek-Musulman E, Beierle EA. PIM3 kinase promotes tumor metastasis in hepatoblastoma by upregulating cell surface expression of chemokine receptor cxcr4. Clin Exp Metastasis 2022; 39:899-912. [PMID: 36315303 PMCID: PMC9753553 DOI: 10.1007/s10585-022-10186-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Patients presenting with metastatic hepatoblastoma have limited treatment options and survival rates as low as 25%. We previously demonstrated that Proviral Integration site in Maloney murine leukemia virus 3 (PIM3) kinase promotes tumorigenesis and cancer cell stemness in hepatoblastoma. In this study, we assessed the role of PIM3 kinase in promoting hepatoblastoma metastasis. We utilized a tail vein injection model of metastasis to evaluate the effect of CRISPR/Cas9-mediated PIM3 knockout, stable overexpression of PIM3, and pharmacologic PIM inhibition on the formation of lung metastasis. In vivo studies revealed PIM3 knockout impaired the formation of lung metastasis: 5 out of 6 mice injected with wild type hepatoblastoma cells developed lung metastasis while none of the 7 mice injected with PIM3 knockout hepatoblastoma cells developed lung metastasis. PIM3 overexpression in hepatoblastoma increased the pulmonary metastatic burden in mice and mechanistically, upregulated the phosphorylation and cell surface expression of CXCR4, a key receptor in the progression of cancer cell metastasis. CXCR4 blockade with AMD3100 decreased the metastatic phenotype of PIM3 overexpressing cells, indicating that CXCR4 contributed to PIM3's promotion of hepatoblastoma metastasis. Clinically, PIM3 expression correlated positively with CXCR4 expression in primary hepatoblastoma tissues. In conclusion, we have shown PIM3 kinase promotes the metastatic phenotype of hepatoblastoma cells through upregulation of CXCR4 cell surface expression and these findings suggest that targeting PIM3 kinase may provide a novel therapeutic strategy for metastatic hepatoblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Janet Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Sara C Hutchins
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | | | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 35233, Birmingham, AL, USA.
- , 1600 7th Ave South Lowder Room 300, 35233, Birmingham, AL, USA.
| |
Collapse
|
7
|
Lee-Theilen M, Fadini DD, Hadhoud JR, van Dongen F, Kroll G, Rolle U, Fiegel HC. Hepatoblastoma Cancer Stem Cells Express PD-L1, Reveal Plasticity and Can Emerge upon Chemotherapy. Cancers (Basel) 2022; 14:cancers14235825. [PMID: 36497307 PMCID: PMC9736435 DOI: 10.3390/cancers14235825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The biology of cancer stem cells (CSCs) of pediatric cancers, such as hepatoblastoma, is sparsely explored. This is mainly due to the very immature nature of these tumors, which complicates the distinction of CSCs from the other tumor cells. Previously, we identified a CSC population in hepatoblastoma cell lines expressing the CSC markers CD34 and CD90, cell surface Vimentin (csVimentin) and binding of OV-6. In this study, we detected the co-expression of the immune escape factor PD-L1 in the CSC population, whereas the other tumor cells remained negative. FACS data revealed that non-CSCs give rise to CSCs, reflecting plasticity of CSCs and non-CSCs in hepatoblastoma as seen in other tumors. When we treated cells with cisplatin and decitabine, a new CD34+/lowOV-6lowCD90+ population emerged that lacked csVimentin and PD-L1 expression. Expression analyses showed that this new CSC subset shared similar pluripotency and EMT features with the already-known CSCs. FACS results further revealed that this subset is also generated from non-CSCs. In conclusion, we showed that hepatoblastoma CSCs express PD-L1 and that the biology of hepatoblastoma CSCs is of a plastic nature. Chemotherapeutic treatment leads to another CSC subset, which is highly chemoresistant and could be responsible for a poor prognosis after postoperative chemotherapy.
Collapse
|
8
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
9
|
Marayati R, Julson JR, Bownes LV, Quinn CH, Hutchins SC, Williams AP, Markert HR, Beierle AM, Stewart JE, Hjelmeland AB, Mroczek-Musulman E, Beierle EA. Metastatic human hepatoblastoma cells exhibit enhanced tumorigenicity, invasiveness and a stem cell-like phenotype. J Pediatr Surg 2022; 57:1018-1025. [PMID: 35300860 PMCID: PMC9119922 DOI: 10.1016/j.jpedsurg.2022.01.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND/PURPOSE Metastatic hepatoblastoma continues to pose a significant treatment challenge, primarily because the precise mechanisms involved in metastasis are not fully understood, making cell lines and preclinical models that depict the progression of disease and metastasis-related biology paramount. We aimed to generate and characterize a metastatic hepatoblastoma cell line to create a model for investigation of the molecular mechanisms associated with metastasis. MATERIALS/METHODS Using a murine model of serial tail vein injections of the human hepatoblastoma HuH6 cell line, non-invasive bioluminescence imaging, and dissociation of metastatic pulmonary lesions, we successfully established and characterized the metastatic human hepatoblastoma cell line, HLM_3. RESULTS The HLM_3 cells exhibited enhanced tumorigenicity and invasiveness, both in vitro and in vivo compared to the parent HuH6 cell line. Moreover, HLM_3 metastatic hepatoblastoma cells exhibited a stem cell-like phenotype and were more resistant to the standard chemotherapeutic cisplatin. CONCLUSION This newly described metastatic hepatoblastoma cell line offers a novel tool to study mechanisms of tumor metastasis and evaluate new therapeutic strategies for metastatic hepatoblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sara C Hutchins
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Elizabeth Mroczek-Musulman
- Department of Pathology, The Children's Hospital of Alabama, Birmingham, AL 35233, United States of America
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
10
|
Mechanism of cancer stemness maintenance in human liver cancer. Cell Death Dis 2022; 13:394. [PMID: 35449193 PMCID: PMC9023565 DOI: 10.1038/s41419-022-04848-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Primary liver cancer mainly includes the following four types: hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA). Recent studies have indicated that there are differences in cancer stem cell (CSC) properties among different types of liver cancer. Liver cancer stem cells (LCSCs), also called liver tumor-initiating cells, have been viewed as drivers of tumor initiation and metastasis. Many mechanisms and factors, such as mitophagy, mitochondrial dynamics, epigenetic modifications, the tumor microenvironment, and tumor plasticity, are involved in the regulation of cancer stemness in liver cancer. In this review, we analyze cancer stemness in different liver cancer types. Moreover, we further evaluate the mechanism of cancer stemness maintenance of LCSCs and discuss promising treatments for eradicating LCSCs.
Collapse
|
11
|
Crocco M, Panciroli M, Milanaccio C, Morerio C, Verrico A, Garrè ML, Di Iorgi N, Capra V. Case Report: The Emerging Role of Ring Chromosome 22 in Phelan-McDermid Syndrome With Atypical Teratoid/Rhabdoid Tumor: The First Child Treated With Growth Hormone. Front Neurol 2021; 12:741062. [PMID: 34777208 PMCID: PMC8585933 DOI: 10.3389/fneur.2021.741062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) in the rhabdoid tumor predisposition syndromes are most often caused by germline mutations of the SMARCB1 gene located in chromosome 22q11.2. Although rarely, it can also result from the constitutional ring chromosome 22 (r22): during mitosis the ring chromosome may lead to an increased rate of somatic mutations, resulting in rhabdoid tumor predispositions when the tumor-suppressor gene SMARCB1 is involved. Individuals with r22 may present similar features as those with Phelan-McDermid syndrome (PMDS) due to 22q13.3 deletion, including the SHANK3 gene. Despite several reports on AT/RT in children with r22 and/or PMDS have been published, the role of constitutional r22 as new oncogenic mechanism for AT/RT is still under investigation. There is not a lot of data available on therapeutic and prognostic implications of r22 in AT/RT and PMDS. Herein, we present the first case of a child with constitutional r22, PMDS and AT/RT of the brain, who is a long term survivor and is been treated with growth hormone. We also describe an unexpected adverse reaction to midazolam.
Collapse
Affiliation(s)
- Marco Crocco
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy
| | - Marta Panciroli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy
| | - Claudia Milanaccio
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Cristina Morerio
- Laboratory of Human Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy.,Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Valeria Capra
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|