1
|
Kim M, Tamukong P, Galvan GC, Yang Q, De Hoedt A, Freeman MR, You S, Freedland S. Prostate cancers with distinct transcriptional programs in Black and White men. Genome Med 2024; 16:92. [PMID: 39044302 PMCID: PMC11267822 DOI: 10.1186/s13073-024-01361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC. METHODS We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center. Differential expression, gene set enrichment analysis, master regulator analysis, and network modeling were conducted to compare gene expression by race. Findings were validated using external datasets that are available in the Gene Expression Omnibus (GEO) database. The first was a multi-institutional cohort of 1152 prostate cancer patients (596 Black, 556 White) with microarray data (GEO ID: GSE169038). The second was an Emory cohort of 106 patients (22 Black, 48 White, 36 men of unknown race) with RNA-seq data (GEO ID: GSE54460). Additionally, we analyzed androgen receptor (AR) chromatin binding profiles using paired AR ChIP-Seq datasets from Black and White men (GEO IDs: GSE18440 and GSE18441). RESULTS We identified 871 differentially expressed genes between Black and White men. White men had higher activity of MYC-related pathways, while Black men showed increased activity of inflammation, steroid hormone responses, and cancer progression-related pathways. We further identified the top 10 transcription factors (TFs) in Black patients, which formed a transcriptional regulatory network centered on the AR. The activities of this network and the pathways were significantly different in Black vs. White men across multiple cohorts and PC molecular subtypes. CONCLUSIONS These findings suggest PC in Black and White men have distinct tumor transcriptional profiles. Furthermore, a highly interactive TF network centered on AR drives differential gene expression in Black men. Additional study is needed to understand the degree to which these differences in transcriptional regulatory elements contribute to PC health disparities.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick Tamukong
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Qian Yang
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Stephen Freedland
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Veteran Affairs Health Care System, Durham, NC, USA.
| |
Collapse
|
2
|
Li S, Wang Y, Yin J, Li K, Liu L, Gao J. Design, synthesis, and activity evaluation of 2-iminobenzimidazoles as c-Myc inhibitors for treating multiple myeloma. Heliyon 2024; 10:e28411. [PMID: 38590884 PMCID: PMC10999938 DOI: 10.1016/j.heliyon.2024.e28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that remains incurable and poses a significant threat to global public health. The multifunctional transcription factor c-Myc plays a crucial role in various cellular processes and is closely associated with MM progression. As part of the basic-helix-loop-helix-leucine zipper (bHLHZip) family, c-Myc forms heterodimers with its obligate partner Max, binds to the Enhancer-box (E-box) of DNA, and ultimately co-regulates gene expression. Therefore, impeding the capacity for heterodimerization to bind to DNA represents a favored strategy in thwarting c-Myc transcription. In this study, we first synthesized a series of novel 2-iminobenzimidazole derivatives and further estimated their potential anti-MM activity. Notably, among all the derivatives, 5b and 5d demonstrated remarkable inhibitory activity against RPMI-8226 and U266 cells, with IC50 values of 0.85 μM and 0.97 μM for compound 5b, and 0.96 μM and 0.89 μM for compound 5d. Western blot and dual-luciferase reporter assays demonstrated that compounds 5b and 5d effectively suppressed both c-Myc protein expression and transcriptional activity of the c-Myc promoter in RPMI-8226 and U266 cells. Furthermore, these compounds induced apoptosis and G1 cell cycle arrest in the aforementioned MM cells. Molecular docking studies revealed that 5b and 5d exhibited strong binding affinity to the interface between c-Myc/Max and E-box of DNA. Taken together, our findings suggest that further investigations are warranted for potential therapeutic applications of 5b and 5d for c-Myc-related diseases.
Collapse
Affiliation(s)
- Shihao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yinchuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jiacheng Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Kaihang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Linlin Liu
- College of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China
| |
Collapse
|
3
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
5
|
Yao CJ, Chang CL, Hu MH, Liao CH, Lai GM, Chiou TJ, Ho HL, Kuo HC, Yang YY, Whang-Peng J, Chuang SE. Drastic Synergy of Lovastatin and Antrodia camphorata Extract Combination against PC3 Androgen-Refractory Prostate Cancer Cells, Accompanied by AXL and Stemness Molecules Inhibition. Nutrients 2023; 15:4493. [PMID: 37960146 PMCID: PMC10647293 DOI: 10.3390/nu15214493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in males worldwide. Early-stage PC patients can benefit from surgical, radiation, and hormonal therapies; however, once the tumor transitions to an androgen-refractory state, the efficacy of treatments diminishes considerably. Recently, the exploration of natural products, particularly dietary phytochemicals, has intensified in response to addressing this prevailing medical challenge. In this study, we uncovered a synergistic effect from combinatorial treatment with lovastatin (an active component in red yeast rice) and Antrodia camphorata (AC, a folk mushroom) extract against PC3 human androgen-refractory PC cells. This combinatorial modality resulted in cell cycle arrest at the G0/G1 phase and induced apoptosis, accompanied by a marked reduction in molecules responsible for cellular proliferation (p-Rb/Rb, Cyclin A, Cyclin D1, and CDK1), aggressiveness (AXL, p-AKT, and survivin), and stemness (SIRT1, Notch1, and c-Myc). In contrast, treatment with either AC or lovastatin alone only exerted limited impacts on the cell cycle, apoptosis, and the aforementioned signaling molecules. Notably, significant reductions in canonical PC stemness markers (CD44 and CD133) were observed in lovastatin/AC-treated PC3 cells. Furthermore, lovastatin and AC have been individually examined for their anti-PC properties. Our findings elucidate a pioneering discovery in the synergistic combinatorial efficacy of AC and clinically viable concentrations of lovastatin on PC3 PC cells, offering novel insights into improving the therapeutic effects of dietary natural products for future strategic design of therapeutics against androgen-refractory prostate cancer.
Collapse
Affiliation(s)
- Chih-Jung Yao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chia-Lun Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (M.-H.H.); (G.-M.L.); (T.-J.C.); (J.W.-P.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Ming-Hung Hu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (M.-H.H.); (G.-M.L.); (T.-J.C.); (J.W.-P.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Chien-Huang Liao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Gi-Ming Lai
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (M.-H.H.); (G.-M.L.); (T.-J.C.); (J.W.-P.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Tzeon-Jye Chiou
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (M.-H.H.); (G.-M.L.); (T.-J.C.); (J.W.-P.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Hsien-Ling Ho
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Hui-Ching Kuo
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Jacqueline Whang-Peng
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (M.-H.H.); (G.-M.L.); (T.-J.C.); (J.W.-P.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (C.-H.L.); (H.-L.H.); (H.-C.K.)
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan;
| |
Collapse
|
6
|
Shukla S, Riveros C, Al-Toubat M, Chardon-Robles J, Osumi T, Serrano S, Kase AM, Petit JL, Meurice N, Gleba J, Copland JA, Chauhan J, Fletcher S, Balaji KC. The Bivalent Bromodomain Inhibitor MT-1 Inhibits Prostate Cancer Growth. Cancers (Basel) 2023; 15:3851. [PMID: 37568667 PMCID: PMC10416835 DOI: 10.3390/cancers15153851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Bromodomains (BD) are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation of several genes including protooncogene cellular myelocytomatosis (c-Myc). c-Myc is difficult to target directly by agents due to its disordered alpha helical protein structure and predominant nuclear localization. The epigenetic targeting of c-Myc by BD inhibitors is an attractive therapeutic strategy for prostate cancer (PC) associated with increased c-Myc upregulation with advancing disease. MT-1 is a bivalent BD inhibitor that is 100-fold more potent than the first-in-class BD inhibitor JQ1. MT-1 decreased cell viability and causes cell cycle arrest in G0/G1 phase in castration-sensitive and resistant PC cell lines in a dose-dependent fashion. The inhibition of c-Myc function by MT-1 was molecularly corroborated by the de-repression of Protein Kinase D1 (PrKD) and increased phosphorylation of PrKD substrate proteins: threonine 120, serine 11, and serine 216 amino acid residues in β-Catenin, snail, and cell division cycle 25c (CDC25c) proteins, respectively. The treatment of 3D cell cultures derived from three unique clinically annotated heavily pretreated patient-derived PC xenografts (PDX) mice models with increasing doses of MT-1 demonstrated the lowest IC50 in tumors with c-Myc amplification and clinically resistant to Docetaxel, Cabazitaxel, Abiraterone, and Enzalutamide. An intraperitoneal injection of either MT-1 or in combination with 3jc48-3, an inhibitor of obligate heterodimerization with MYC-associated protein X (MAX), in mice implanted with orthotopic PC PDX, decreased tumor growth. This is the first pre-clinical study demonstrating potential utility of MT-1 in the treatment of PC with c-Myc dysregulation.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
| | - Carlos Riveros
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
| | - Mohammed Al-Toubat
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
| | - Jonathan Chardon-Robles
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
- Department of Neurological Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Teruko Osumi
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
| | - Samuel Serrano
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
| | - Adam M. Kase
- Department of Hematology Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Joachim L. Petit
- Department of Hematology Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nathalie Meurice
- Department of Hematology Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justyna Gleba
- Cancer Biology Department, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John A. Copland
- Cancer Biology Department, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - K. C. Balaji
- Department of Urology, University of Florida Health, Jacksonville, FL 32209, USA
| |
Collapse
|
7
|
Karadkhelkar NM, Lin M, Eubanks LM, Janda KD. Demystifying the Druggability of the MYC Family of Oncogenes. J Am Chem Soc 2023; 145:3259-3269. [PMID: 36734615 PMCID: PMC10182829 DOI: 10.1021/jacs.2c12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MYC family of oncogenes (MYC, MYCN, and MYCL) encodes a basic helix-loop-helix leucine zipper (bHLHLZ) transcriptional regulator that is responsible for moving the cell through the restriction point. Through the HLHZIP domain, MYC heterodimerizes with the bHLHLZ protein MAX, which enables this MYC-MAX complex to bind to E-box regulatory DNA elements thereby controlling transcription of a large group of genes and their proteins. Translationally, MYC is one of the foremost oncogenic targets, and deregulation of expression of the MYC family gene/proteins occurs in over half of all human tumors and is recognized as a hallmark of cancer initiation and maintenance. Additionally, unexpected roles for this oncoprotein have been found in cancers that nominally have a non-MYC etiology. Although MYC is rarely mutated, its gain of function in cancer results from overexpression or from amplification. Moreover, MYC is a pleiotropic transcription factor possessing broad pathogenic prominence making it a coveted cancer target. A widely held notion within the biomedical research community is that the reliable modulation of MYC represents a tremendous therapeutic opportunity given its role in directly potentiating oncogenesis. However, the MYC-MAX heterodimer interaction contains a large surface area with a lack of well-defined binding sites creating the perception that targeting of MYC-MAX is forbidding. Here, we discuss the biochemistry behind MYC and MYC-MAX as it relates to cancer progression associated with these transcription factors. We also discuss the notion that MYC should no longer be regarded as undruggable, providing examples that a therapeutic window is achievable despite global MYC inhibition.
Collapse
Affiliation(s)
- Nishant M. Karadkhelkar
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|