1
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
2
|
Lim SY, Lin Y, Lee JH, Pedersen B, Stewart A, Scolyer RA, Long GV, Yang JYH, Rizos H. Single-cell RNA sequencing reveals melanoma cell state-dependent heterogeneity of response to MAPK inhibitors. EBioMedicine 2024; 107:105308. [PMID: 39216232 PMCID: PMC11402938 DOI: 10.1016/j.ebiom.2024.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Melanoma is a heterogeneous cancer influenced by the plasticity of melanoma cells and their dynamic adaptations to microenvironmental cues. Melanoma cells transition between well-defined transcriptional cell states that impact treatment response and resistance. METHODS In this study, we applied single-cell RNA sequencing to interrogate the molecular features of immunotherapy-naive and immunotherapy-resistant melanoma tumours in response to ex vivo BRAF/MEK inhibitor treatment. FINDINGS We confirm the presence of four distinct melanoma cell states - melanocytic, transitory, neural-crest like and undifferentiated, and identify enrichment of neural crest-like and undifferentiated melanoma cells in immunotherapy-resistant tumours. Furthermore, we introduce an integrated computational approach to identify subsets of responding and nonresponding melanoma cells within the transcriptional cell states. INTERPRETATION Nonresponding melanoma cells are identified in all transcriptional cell states and are predisposed to BRAF/MEK inhibitor resistance due to pro-inflammatory IL6 and TNFɑ signalling. Our study provides a framework to study treatment response within distinct melanoma cell states and indicate that tumour-intrinsic pro-inflammatory signalling contributes to BRAF/MEK inhibitor resistance. FUNDING This work was supported by Macquarie University, Melanoma Institute Australia, and the National Health and Medical Research Council of Australia (NHMRC; grant 2012860, 2028055).
Collapse
Affiliation(s)
- Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia.
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Jenny H Lee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, Australia; Charles Perkins Centre, The University of Sydney, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Georgina V Long
- Melanoma Institute Australia, Australia; Charles Perkins Centre, The University of Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Jean Y H Yang
- School of Mathematics and Statistics, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia
| |
Collapse
|
3
|
Mengoni M, Braun AD, Seedarala S, Bonifatius S, Kostenis E, Schanze D, Zenker M, Tüting T, Gaffal E. Transactivation of Met signaling by oncogenic Gnaq drives the evolution of melanoma in Hgf-Cdk4 mice. Cancer Gene Ther 2024; 31:884-893. [PMID: 38360887 PMCID: PMC11192630 DOI: 10.1038/s41417-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Recent pan-cancer genomic analyses have identified numerous oncogenic driver mutations that occur in a cell-type and tissue-specific distribution. For example, oncogenic mutations in Braf and Nras genes arise predominantly in melanocytic neoplasms of the epidermis, while oncogenic mutations in Gnaq/11 genes arise mostly in melanocytic lesions of the dermis or the uvea. The mechanisms promoting cell-type and tissue-specific oncogenic events currently remain poorly understood. Here, we report that Gnaq/11 hotspot mutations occur as early oncogenic drivers during the evolution of primary melanomas in Hgf-Cdk4 mice. Additional single base substitutions in the Trp53 gene and structural chromosomal aberrations favoring amplifications of the chromosomal region containing the Met receptor gene accumulate during serial tumor transplantation and in cell lines established in vitro. Mechanistically, we found that the GnaqQ209L mutation transactivates the Met receptor. Overexpression of oncogenic GnaqQ209L in the immortalized melanocyte cell line promoted in vivo growth that was enhanced by transgenic Hgf expression in the tumor microenvironment. This cross-signaling mechanism explains the selection of oncogenic Gnaq/11 in primary Hgf-Cdk4 melanomas and provides an example of how oncogenic driver mutations, intracellular signaling cascades, and microenvironmental cues cooperate to drive cancer development in a tissue-specific fashion.
Collapse
Affiliation(s)
- Miriam Mengoni
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Andreas Dominik Braun
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Sahithi Seedarala
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Susanne Bonifatius
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany.
| |
Collapse
|
4
|
Beigi YZ, Lanjanian H, Fayazi R, Salimi M, Hoseyni BHM, Noroozizadeh MH, Masoudi-Nejad A. Heterogeneity and molecular landscape of melanoma: implications for targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:17. [PMID: 38724687 PMCID: PMC11082128 DOI: 10.1186/s43556-024-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".
Collapse
Affiliation(s)
- Yasaman Zohrab Beigi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Lanjanian
- Software Engineering Department, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| | - Reyhane Fayazi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Behnaz Haji Molla Hoseyni
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Salim N, Loyko I, Tumanova K, Stolbovoy A, Levkina O, Prokofev I. Stereotactic radiotherapy for uveal melanoma: A case report. Mol Clin Oncol 2024; 20:23. [PMID: 38357672 PMCID: PMC10865074 DOI: 10.3892/mco.2024.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy worldwide. Surgical intervention and radiation therapy (RT) are the primary treatment options. Given the complexity and cosmetic discomfort associated with eye enucleation, this method is less frequently used. As a result, RT, including photon therapy, proton therapy and brachytherapy, has become the treatment of choice. Traditionally, plaque brachytherapy has been the most commonly used in clinical practice. However, the question of which type of radiation therapy is the most effective, safe, commonly available and cost-effective remains open. The present study provided a follow-up analysis of a patient with UM who was treated using the image-guided volumetric modulated arc therapy (IG-VMAT) technique. A complete response without complications and symptom relief were noted one and a half years after treatment. The present findings suggest that photon external beam radiotherapy using the IG-VMAT technique may offer a viable and safe alternative for the management of UM. This approach potentially sidesteps the complex and morbid aspects of surgical intervention and plaque brachytherapy. Owing to the limited sample size, a more robust understanding of the efficacy and safety of this treatment will require the analysis of additional cases. Further research with a larger cohort is essential to validate these preliminary observations.
Collapse
Affiliation(s)
- Nidal Salim
- Institute of Oncology, European Medical Center, Moscow 129090, Russia
- Radiation Therapy Department, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
| | - Ilya Loyko
- Institute of Oncology, European Medical Center, Moscow 129090, Russia
| | - Kristina Tumanova
- Institute of Oncology, European Medical Center, Moscow 129090, Russia
| | - Aleksander Stolbovoy
- Institute of Oncology, European Medical Center, Moscow 129090, Russia
- Radiation Therapy Department, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
| | - Oksana Levkina
- Ophthalmology Department, European Medical Center, Moscow 129090, Russia
| | - Igor Prokofev
- Institute of Oncology, European Medical Center, Moscow 129090, Russia
| |
Collapse
|
6
|
Park JJ, Hamad SA, Stewart A, Carlino MS, Lim SY, Rizos H. PKC-independent PI3K signalling diminishes PKC inhibitor sensitivity in uveal melanoma. Oncogenesis 2024; 13:9. [PMID: 38418838 PMCID: PMC10902289 DOI: 10.1038/s41389-024-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Protein kinase C (PKC) is activated downstream of gain-of-function GNAQ or GNA11 (GNAQ/GNA11) mutations in over 90% of uveal melanoma (UM). Phase I clinical trials of PKC inhibitors have shown modest response rates with no survival benefit in metastatic UM. Although PKC inhibitors actively suppress mitogen-activated protein kinase (MAPK) signalling in UM, the effect on other UM signalling cascades is not well understood. We examined the transcriptome of UM biopsies collected pre- and post-PKC inhibitor therapy and confirmed that MAPK, but not PI3K/AKT signalling, was inhibited early during treatment with the second-generation PKC inhibitor IDE196. Similarly, in GNAQ/GNA11-mutant UM cell models, PKC inhibitor monotherapy effectively suppressed MAPK activity, but PI3K/AKT signalling remained active, and thus, concurrent inhibition of PKC and PI3K/AKT signalling was required to synergistically induce cell death in a panel of GNAQ/GNA11-mutant UM cell lines. We also show that re-activation of MAPK signalling has a dominant role in regulating PKC inhibitor responses in UM and that PI3K/AKT signalling diminishes UM cell sensitivity to PKC inhibitor monotherapy. Thus, combination therapies targeting PKC and PKC-independent signalling nodes, including PI3K/AKT activity, are required to improve responses in patients with metastatic UM.
Collapse
Affiliation(s)
- John J Park
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Sabine Abou Hamad
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Arang N, Lubrano S, Ceribelli M, Rigiracciolo DC, Saddawi-Konefka R, Faraji F, Ramirez SI, Kim D, Tosto FA, Stevenson E, Zhou Y, Wang Z, Bogomolovas J, Molinolo AA, Swaney DL, Krogan NJ, Yang J, Coma S, Pachter JA, Aplin AE, Alessi DR, Thomas CJ, Gutkind JS. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma. Cell Rep Med 2023; 4:101244. [PMID: 37858338 PMCID: PMC10694608 DOI: 10.1016/j.xcrm.2023.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.
Collapse
Affiliation(s)
- Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney I Ramirez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Daehwan Kim
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Frances A Tosto
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Julius Bogomolovas
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jing Yang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Onken MD, Erdmann-Gilmore P, Zhang Q, Thapa K, King E, Kaltenbronn KM, Noda SE, Makepeace CM, Goldfarb D, Babur Ö, Townsend RR, Blumer KJ. Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics 2023; 22:100649. [PMID: 37730182 PMCID: PMC10616553 DOI: 10.1016/j.mcpro.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri, USA.
| | | | - Qiang Zhang
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kisan Thapa
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Emily King
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sarah E Noda
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Carol M Makepeace
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - R Reid Townsend
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
9
|
Cervantes-Villagrana RD, Color-Aparicio VM, Castillo-Kauil A, García-Jiménez I, Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. Oncogenic Gαq activates RhoJ through PDZ-RhoGEF. Int J Mol Sci 2023; 24:15734. [PMID: 37958718 PMCID: PMC10647656 DOI: 10.3390/ijms242115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known as ARHGEF11), a canonical Gα12/13 effector, is enabled by Gαs Q227L to activate CdcIn addition, and we demonstrated that constitutively active Gαq interacts with the PDZ-RhoGEF DH-PH catalytic module, but does not affect its binding to RhoA or Cdc. This suggests that it guides this RhoGEF to gain affinity for other GTPases. Since RhoJ, a small GTPase of the Cdc42 subfamily, has been involved in tumor-induced angiogenesis and the metastatic dissemination of cancer cells, we hypothesized that it might be a target of oncogenic Gαq signaling via PDZ-RhoGEF. Consistent with this possibility, we found that Gαq Q209L drives full-length PDZ-RhoGEF and a DH-PH construct to interact with nucleotide-free RhoJ-G33A, a mutant with affinity for active RhoJ-GEFs. Gαq Q209L binding to PDZ-RhoGEF was mapped to the PH domain, which, as an isolated construct, attenuated the interaction of this mutant GTPase with PDZ-RhoGEF's catalytic module (DH-PH domains). Expression of these catalytic domains caused contraction of endothelial cells and generated fine cell sprouts that were inhibited by co-expression of dominant negative RhoJ. Using relational data mining of uveal melanoma patient TCGA datasets, we got an insight into the signaling landscape that accompanies the Gαq/PDZ-RhoGEF/RhoJ axis. We identified three transcriptional signatures statistically linked with shorter patient survival, including GPCRs and signaling effectors that are recognized as vulnerabilities in cancer cell synthetic lethality datasets. In conclusion, we demonstrated that an oncogenic Gαq mutant enables the PDZ-RhoGEF DH-PH module to recognize RhoJ, suggesting an allosteric mechanism by which this constitutively active GTPase stimulates RhoJ via PDZ-RhoGEF. These findings highlight PDZ-RhoGEF and RhoJ as potential targets in tumors driven by mutant Gαq.
Collapse
Affiliation(s)
- Rodolfo Daniel Cervantes-Villagrana
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Víctor Manuel Color-Aparicio
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Alejandro Castillo-Kauil
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Irving García-Jiménez
- Department of Cell Biology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Yarely Mabell Beltrán-Navarro
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| |
Collapse
|
10
|
Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer 2023; 129:1212-1224. [PMID: 37454231 PMCID: PMC10575907 DOI: 10.1038/s41416-023-02361-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Immune checkpoint therapies (ICT) can reinvigorate the effector functions of anti-tumour T cells, improving cancer patient outcomes. Anti-tumour T cells are initially formed during their first contact (priming) with tumour antigens by antigen-presenting cells (APCs). Unfortunately, many patients are refractory to ICT because their tumours are considered to be 'cold' tumours-i.e., they do not allow the generation of T cells (so-called 'desert' tumours) or the infiltration of existing anti-tumour T cells (T-cell-excluded tumours). Desert tumours disturb antigen processing and priming of T cells by targeting APCs with suppressive tumour factors derived from their genetic instabilities. In contrast, T-cell-excluded tumours are characterised by blocking effective anti-tumour T lymphocytes infiltrating cancer masses by obstacles, such as fibrosis and tumour-cell-induced immunosuppression. This review delves into critical mechanisms by which cancer cells induce T-cell 'desertification' and 'exclusion' in ICT refractory tumours. Filling the gaps in our knowledge regarding these pro-tumoral mechanisms will aid researchers in developing novel class immunotherapies that aim at restoring T-cell generation with more efficient priming by APCs and leukocyte tumour trafficking. Such developments are expected to unleash the clinical benefit of ICT in refractory patients.
Collapse
Affiliation(s)
- Mona Meng Wang
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore
| | - Sarah E Coupland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Liverpool Ocular Oncology Research Group (LOORG), Institute of Systems Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tero Aittokallio
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku, Turku, Finland.
| |
Collapse
|
11
|
Cao L, Chen S, Sun R, Ashby CR, Wei L, Huang Z, Chen ZS. Darovasertib, a novel treatment for metastatic uveal melanoma. Front Pharmacol 2023; 14:1232787. [PMID: 37576814 PMCID: PMC10419210 DOI: 10.3389/fphar.2023.1232787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
The FDA granted orphan drug designation to darovasertib, a first-in-class oral, small molecular inhibitor of protein kinase C (PKC), for the treatment of uveal melanoma, on 2 May 2022. Primary uveal melanoma has a high risk of progressing to metastatic uveal melanoma, with a poor prognosis. The activation of the PKC and mitogen-activated protein kinase pathways play an essential role in the pathogenesis of uveal melanoma, and mutations in the G protein subunit alpha q (GNAQ), and G protein subunit alpha11 (GNA11) genes are considered early events in the development of uveal melanoma. Compared to other PKC inhibitors, such as sotrastaurin and enzastaurin, darovasertib is significantly more potent in inhibiting conventional (α, β) and novel (δ, ϵ, η, θ) PKC proteins and has a better tolerability and safety profile. Current Phase I/II clinical trials indicated that darovasertib, combined with the Mitogen-activated protein kinase/Extracellular (MEK) inhibitors, binimetinib or crizotinib, produced a synergistic effect of uveal melanoma. In this article, we summarize the development of drugs for treating uveal melanomas and discuss problems associated with current treatments. We also discuss the mechanism of action, pharmacokinetic profile, adverse effects, and clinical trial for darovasertib, and future research directions for treating uveal melanoma.
Collapse
Affiliation(s)
- Lei Cao
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Shuzhen Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Rainie Sun
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
- Stuyvesant High School, New York, NY, United States
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
12
|
Rodrigues A, Cosman R, Joshua AM. LXS196 for Metastatic Uveal Melanoma - finally some progress. Br J Cancer 2023; 128:1791-1793. [PMID: 36859685 PMCID: PMC10147608 DOI: 10.1038/s41416-023-02199-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Affiliation(s)
- A Rodrigues
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincents Hospital Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - R Cosman
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincents Hospital Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - A M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincents Hospital Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Ramos R, Cabré E, Vinyals A, Lorenzo D, Ferreres JR, Varela M, Gomá M, Paules MJ, Gutierrez C, Piulats JM, Fabra À, Caminal JM. Orthotopic murine xenograft model of uveal melanoma with spontaneous liver metastasis. Melanoma Res 2023; 33:1-11. [PMID: 36302215 DOI: 10.1097/cmr.0000000000000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma is the most common intraocular malignancy in adults. Despite the effective primary treatment, up to 50% of patients with uveal melanoma will develop metastatic lesions mainly in the liver, which are resistant to conventional chemotherapy and lead to patient's death. To date, no orthotopic murine models of uveal melanoma which can develop spontaneous metastasis are available for preclinical studies. Here, we describe a spontaneous metastatic model of uveal melanoma based on the orthotopic injection of human uveal melanoma cells into the suprachoroidal space of immunodeficient NSG mice. All mice injected with bioluminescent OMM2.5 ( n = 23) or MP41 ( n = 19) cells developed a primary tumor. After eye enucleation, additional bioluminescence signals were detected in the lungs and in the liver. At necropsy, histopathological studies confirmed the presence of lung metastases in 100% of the mice. Liver metastases were assessed in 87 and in 100% of the mice that received OMM2.5 or MP41 cells, respectively. All tumors and metastatic lesions expressed melanoma markers and the signaling molecules insulin-like growth factor type I receptor and myristoylated alanine-rich C-kinase substrate, commonly activated in uveal melanoma. The novelty of this orthotopic mouse xenograft model is the development of spontaneous metastases in the liver from the primary site, reproducing the organoespecificity of metastasis observed in uveal melanoma patients. The faster growth and the high metastatic incidence may be attributed at least in part, to the severe immunodeficiency of NSG mice. This model may be useful for preclinical testing of targeted therapies with potential uveal melanoma antimetastatic activity and to study the mechanisms involved in liver metastasis.
Collapse
Affiliation(s)
- Raquel Ramos
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Eduard Cabré
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Antònia Vinyals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| | - Daniel Lorenzo
- Ophthalmology Department, Spanish Ocular Oncology National referal center (CSUR) and Ocular Translational Eye Research Unit, Hospital Universitari de Bellvitge (HUB)-IDIBELL
| | | | - Mar Varela
- Pathology Department, Hospital Universitari de Bellvitge
| | - Montse Gomá
- Pathology Department, Hospital Universitari de Bellvitge
| | | | - Cristina Gutierrez
- Radiotherapy Department, Institut Catalá d'Oncologia (ICO), Hospital Duran Reynals
| | - Josep M Piulats
- Medical Oncology, Institut Catalá d'Oncologia (ICO), Hospital Duran Reynals, Barcelona, Spain
| | - Àngels Fabra
- Ophthalmology Department, Spanish Ocular Oncology National referal center (CSUR) and Ocular Translational Eye Research Unit, Hospital Universitari de Bellvitge (HUB)-IDIBELL
| | - José M Caminal
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)
| |
Collapse
|
14
|
Zhang H, Liu X, Chen Y, Xu R, He S. KDOAM-25 Overcomes Resistance to MEK Inhibitors by Targeting KDM5B in Uveal Melanoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1556485. [PMID: 36212716 PMCID: PMC9534647 DOI: 10.1155/2022/1556485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Background Uveal Melanoma (UM) is a potentially lethal cancer, and epigenetics may participate in the regulation of MEK resistance. This study is aimed at targeting the epigenetic kinase to overcome the resistance to MEK inhibitor. Method We developed the 92.1 and OMM1 MEK-inhibitor resistant cell lines by culturing them in the trametinib (Tra) mixed medium. We utilized CCK8 analysis for detecting the viability of the cell. Western blot was used to determine the ERK1/2 and Akt phosphorylation. Small compound library screening assays were carried out by CCK8 analysis. To test the apoptosis, we employed flow cytometric analysis with Annexin-V/PI. Western blot and CCK8 were used to explore the epigenetic regulation of KDM5B in MEK-resistance cell lines. To knock out the expression level of KDM5B, we used the CRISPR/Cas9 by lentivirus delivering well-validated shRNAs in pLKO.1 vector. The directly binding affinity of KDOAM-25 to KDM5B was determined by drug affinity responsive target stability (DARTS) and microscale thermophoresis (MST). Results The phosphorylation of ERK1/2 and Akt (T308) was inhibited in OMM1 cell lines. However, inhibition of Tra was abolished in OMM1-R cell lines. From a compound screening assay, we identified that KDOAM-25 robustly inhibited the viability and colony formation of MEK-resistance cell lines. Furthermore, KDOAM-25 significantly promoted cell death in OMM1-R cells. H3K4me3 (tri-methylation of lysine 4 on histone H3) and H3K27ac (acetyl of lysine 27 on histone H3) were both upregulated in OMM1-R cells. Tra significantly inhibited the expression of KDM5B in OMM1-P cells. However, the effect on KDM5B was abolished in OMM1-R cells. Knockdown of KDM5B robustly suppressed the cell viability in OMM1-R cells. KDOAM-25 directly interacted with KDM5B. Conclusion KDOAM-25 inhibited the viability and colony formation and promoted cell death of MEK-resistance cell lines through H3K4me3 and H3K27ac, indicating that KDOAM-25 may be a potential therapeutic agent for MEK resistance in UM patients.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Ophthalmology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangnan Liu
- Department of Ophthalmology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Yong'an Chen
- Department of Oncology, Naval Medical Center of Chinese People's Liberation Army, Naval Military Medical University, Shanghai, China
| | - Rui Xu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, 106 Ruili Road, Minhang District, Shanghai, China
| |
Collapse
|