1
|
Farhi J, Emenike B, Lee RS, Sad K, Fawwal DV, Beusch CM, Jones RB, Verma AK, Jones CY, Foroozani M, Reeves M, Parwani KK, Bagchi P, Deal RB, Katz DJ, Corbett AH, Gordon DE, Raj M, Spangle JM. Dynamic In Vivo Mapping of the Methylproteome Using a Chemoenzymatic Approach. J Am Chem Soc 2025; 147:7214-7230. [PMID: 39996454 PMCID: PMC11887452 DOI: 10.1021/jacs.4c08175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Dynamic protein post-translational methylation is essential for cellular function, highlighted by the essential role of methylation in transcriptional regulation and its aberrant dysregulation in diseases, including cancer. This underscores the importance of cataloging the cellular methylproteome. However, comprehensive analysis of the methylproteome remains elusive due to limitations in current enrichment and analysis pipelines. Here, we employ an l-methionine analogue, ProSeMet, that is chemoenzymatically converted to the SAM analogue ProSeAM in cells and in vivo to tag proteins with a biorthogonal alkyne that can be directly detected via liquid chromatography and tandem mass spectrometry (LC-MS/MS), or functionalized for subsequent selective enrichment and LC-MS/MS identification. Without enrichment, we identify known and novel lysine mono-, di-, and tripargylation, histidine propargylation, and arginine propargylation with site-specific resolution on proteins including heat shock protein HSPA8, the translational elongation factor eEF1A1, and the metabolic enzyme phosphoglycerate mutase 1, or PGAM1, for which methylation has been implicated in human disease. With enrichment, we identify 486 proteins known to be methylated and 221 proteins with novel propargylation sites encompassing diverse cellular functions. Systemic ProSeMet delivery in mice propargylates proteins across organ systems with blood-brain barrier penetrance and identifies site-specific propargylation in vivo with LC-MS/MS. Leveraging these pipelines to define the cellular methylproteome may have broad applications for understanding the methylproteome in the context of disease.
Collapse
Affiliation(s)
- Jonathan Farhi
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Cancer
Biology Program, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin Emenike
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Richard S. Lee
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kirti Sad
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Dorelle V. Fawwal
- Biochemistry,
Cell, and Developmental Biology Program, Emory University, Atlanta, Georgia 30322, United States
| | - Christian M. Beusch
- Department
of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Robert B. Jones
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ashish K. Verma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Celina Y. Jones
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Maryam Foroozani
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Monica Reeves
- Department
of Cell Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Kiran K. Parwani
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Cancer
Biology Program, Emory University, Atlanta, Georgia 30322, United States
| | - Pritha Bagchi
- Emory Integrated
Proteomics Core, Emory University, Atlanta, Georgia 30322, United States
| | - Roger B. Deal
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - David J. Katz
- Department
of Cell Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Anita H. Corbett
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - David E. Gordon
- Department
of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Spangle
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Zhang J, Hu D, Fang P, Qi M, Sun G. Deciphering key roles of B cells in prognostication and tailored therapeutic strategies for lung adenocarcinoma: a multi-omics and machine learning approach towards predictive, preventive, and personalized treatment strategies. EPMA J 2025; 16:127-163. [PMID: 39991096 PMCID: PMC11842682 DOI: 10.1007/s13167-024-00390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/24/2024] [Indexed: 02/25/2025]
Abstract
Background Lung adenocarcinoma (LUAD) remains a significant global health challenge, with an urgent need for innovative predictive, preventive, and personalized medicine (PPPM) strategies to improve patient outcomes. This study leveraged multi-omics and machine learning approaches to uncover the prognostic roles of B cells in LUAD, thereby reinforcing the PPPM approach. Methods We integrated multi-omics data, including bulk RNA, ATAC-seq, single-cell RNA, and spatial transcriptomics sequencing, to characterize the B cell landscape in LUAD within the PPPM framework. Subsequently, we developed an integrative machine learning program that generated the Scissor+ related B cell score (SRBS). This score was validated in the training and validation sets, and its prognostic value was assessed along with clinical features to develop predictive nomograms. This study further assessed the role of SRBS and SRBS genes in response to immunotherapy and identified personalized drug targets for distinct risk subgroups, with gene expression verified experimentally to ensure tailored medical interventions. Results Our analysis identified 79 Scissor+ B cell genes linked to LUAD prognosis, supporting the predictive aspect of PPPM. The SRBS model, which utilizes multiple machine learning algorithms, performed excellently in predicting prognosis and clinical transformation, embodying the preventive and personalized aspects of PPPM. Multifactorial analysis confirmed that SRBS was an independent prognostic factor. We observed varying biological functions and immune cell infiltration in the tumor immune microenvironment (TIME) between the high- and low-SRBS groups, underscoring personalized treatment approaches. Notably, patients with elevated SRBS may exhibit resistance to immunotherapy but show increased sensitivity to chemotherapy and targeted therapies. Additionally, we found that LDHA, as an SRBS gene with significant clinical implications, may regulate the sensitivity of LUAD cells to cisplatin. Conclusion This study presents a B cell-associated gene signature that serves as a prognostic marker to facilitate personalized treatment for patients with LUAD, adhering to the principles of PPPM. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00390-4.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Min Qi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| |
Collapse
|
3
|
Zhang D, Wang M, Wang W, Ma S, Yu W, Ren X, Sun Q. PGAM1 suppression remodels the tumor microenvironment in triple-negative breast cancer and synergizes with anti-PD-1 immunotherapy. J Leukoc Biol 2024; 116:579-588. [PMID: 38478709 DOI: 10.1093/jleuko/qiae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 09/03/2024] Open
Abstract
Triple-negative breast cancer is a high-risk form of breast cancer with a high metastatic potential and lack of effective therapies. Immunotherapy has shown encouraging clinical benefits, and its efficacy in triple-negative breast cancer is affected by immunocyte infiltration in the tumor microenvironment. PGAM1 is a key enzyme involved in cancer metabolism; however, its role in the tumor microenvironment remains unclear. In this study, we aimed to investigate the role of PGAM1 in triple-negative breast cancer and determine the potential of PGAM1 inhibition in combination with anti-PD-1 immunotherapy. Our results showed that PGAM1 is highly expressed in triple-negative breast cancer and is associated with poor prognosis. In vivo experiments demonstrated that PGAM1 inhibition synergizes with anti-PD-1 immunotherapy, significantly remodeling the tumor microenvironment and leading to an increase in antitumor immunocytes, such as CD8+ T cells and M1 macrophages, and a reduction in immunosuppressive cell infiltration, including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells. Functional and animal experiments showed that this synergistic mechanism inhibited tumor growth in vitro and in vivo. We identified PGAM1 as a novel target that exhibits an antitumor effect via the regulation of immunocyte infiltration. Our results show that PGAM1 can synergize with anti-PD-1 immunotherapy, providing a novel treatment strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Dong Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Min Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Wenying Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Shiya Ma
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
4
|
Ni J, Zhao J, Chen H, Liu W, Le M, Guo X, Dong X. 2,3-Diphosphoglyceric Acid Alleviating Hypoxic-Ischemic Brain Damage through p38 MAPK Modulation. Int J Mol Sci 2024; 25:8877. [PMID: 39201562 PMCID: PMC11354455 DOI: 10.3390/ijms25168877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition characterized by significant brain damage due to insufficient blood flow and oxygen delivery at birth, leading to high rates of neonatal mortality and long-term neurological deficits worldwide. 2,3-Diphosphoglyceric acid (2,3-DPG), a small molecule metabolite prevalent in erythrocytes, plays an important role in regulating oxygen delivery, but its potential neuroprotective role in hypoxic-ischemic brain damage (HIBD) has yet to be fully elucidated. Our research reveals that the administration of 2,3-DPG effectively reduces neuron damage caused by hypoxia-ischemia (HI) both in vitro and in vivo. We observed a notable decrease in HI-induced neuronal cell apoptosis, attributed to the downregulation of Bax and cleaved-caspase 3, alongside an upregulation of Bcl-2 expression. Furthermore, 2,3-DPG significantly alleviates oxidative stress and mitochondrial damage induced by oxygen-glucose deprivation/reperfusion (OGD/R). The administration of 2,3-DPG in rats subjected to HIBD resulted in a marked reduction in brain edema and infarct volume, achieved through the suppression of neuronal apoptosis and neuroinflammation. Using RNA-seq analysis, we validated that 2,3-DPG offers protection against neuronal apoptosis under HI conditions by modulating the p38 MAPK pathway. These insights indicated that 2,3-DPG might act as a promising novel therapeutic candidate for HIE.
Collapse
Affiliation(s)
| | | | | | | | | | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| |
Collapse
|
5
|
Yu Y, Jiang Y, Glandorff C, Sun M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cell Signal 2024; 120:111239. [PMID: 38815642 DOI: 10.1016/j.cellsig.2024.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Collapse
Affiliation(s)
- Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
7
|
Zhang D, Wang M, Ma S, Liu M, Yu W, Zhang X, Liu T, Liu S, Ren X, Sun Q. Phosphoglycerate mutase 1 promotes breast cancer progression through inducing immunosuppressive M2 macrophages. Cancer Gene Ther 2024; 31:1018-1033. [PMID: 38750301 DOI: 10.1038/s41417-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024]
Abstract
Immunosuppressive tumor microenvironment (TME) contributes to tumor progression and causes major obstacles for cancer therapy. Phosphoglycerate mutase 1 (PGAM1) is a key enzyme involved in cancer metabolism while its role in remodeling TME remains unclear. In this study, we reported that PGAM1 suppression in breast cancer (BC) cells led to a decrease in M2 polarization, migration, and interleukin-10 (IL-10) production of macrophages. PGAM1 regulation on CCL2 expression was essential to macrophage recruitment, which further mediated by activating JAK-STAT pathway. Additionally, the CCL2/CCR2 axis was observed to participate in PGAM1-mediated immunosuppression via regulating PD-1 expression in macrophages. Combined targeting of PGAM1 and the CCL2/CCR2 axis led to a reduction in tumor growth in vivo. Furthermore, clinical validation in BC tissues indicated a positive correlation between PGAM1, CCL2 and macrophage infiltration. Our study provides novel insights into the induction of immunosuppressive TME by PGAM1 and propose a new strategy for combination therapies targeting PGAM1 and macrophages in BC.
Collapse
Affiliation(s)
- Dong Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Min Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shiya Ma
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Min Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiying Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ting Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shaochuan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
8
|
Wang Y, Shu H, Qu Y, Jin X, Liu J, Peng W, Wang L, Hao M, Xia M, Zhao Z, Dong K, Di Y, Tian M, Hao F, Xia C, Zhang W, Ba X, Feng Y, Wei M. PKM2 functions as a histidine kinase to phosphorylate PGAM1 and increase glycolysis shunts in cancer. EMBO J 2024; 43:2368-2396. [PMID: 38750259 PMCID: PMC11183095 DOI: 10.1038/s44318-024-00110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Hengyao Shu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yanzhao Qu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wanting Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Lihua Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miao Hao
- Science Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, 130033, Changchun, Jilin, China
| | - Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yao Di
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wenxia Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| |
Collapse
|
9
|
Luo J, Yang Y, Zhang G, Fang D, Liu K, Mei Y, Wang F. Energy stress-induced circDDX21 promotes glycolysis and facilitates hepatocellular carcinogenesis. Cell Death Dis 2024; 15:354. [PMID: 38773094 PMCID: PMC11109331 DOI: 10.1038/s41419-024-06743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Cancer cells undergo metabolic reprogramming in response to hostile microenvironments, such as energy stress; however, the underlying mechanisms remain largely unclear. It is also unknown whether energy stress-responsive circular RNA (circRNA) is involved in the regulation of glucose metabolism. Here we report that circDDX21 is upregulated in response to glucose deprivation by the transcription factor c-Myc. Functionally, circDDX21 is shown to promote glycolysis by increasing PGAM1 expression. Mechanistically, circDDX21 interacts with the RNA binding protein PABPC1, disrupting its association with the ubiquitin E3 ligase MKRN3. This disassociation attenuates MKRN3-mediated PABPC1 ubiquitination and enhances the binding of PABPC1 to PGAM1 mRNA, thereby leading to PGAM1 mRNA stabilization. The ability of the circDDX21-PGAM1 axis to promote hepatocellular carcinogenesis is validated in a xenograft mouse model. Additionally, in clinical hepatocellular carcinoma tissues, there is a positive correlation between circDDX21 and PGAM1 expression. These findings establish circDDX21 as an important regulator of glycolysis and suggest circDDX21 as a potential therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jingjing Luo
- The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Yang
- The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guang Zhang
- The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Debao Fang
- The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiyue Liu
- The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Fang Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
10
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
11
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
13
|
Niu W, Yang Y, Teng Y, Zhang N, Li X, Qin Y. Pan-Cancer Analysis of PGAM1 and Its Experimental Validation in Uveal Melanoma Progression. J Cancer 2024; 15:2074-2094. [PMID: 38434965 PMCID: PMC10905406 DOI: 10.7150/jca.93398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a key enzyme regulating cancer glycolysis. However, the expression and function of PGAM1 in uveal melanoma (UVM) are unknown and systematic analysis is lacking. This study performed a comprehensive analysis of PGAM1 expression across 33 cancer types in multiple public databases. Results demonstrated PGAM1 is aberrantly overexpressed in most tumors compared to normal tissues, and this overexpression is associated with poor prognosis, advanced tumor staging, and aggressive clinical phenotypes in multiple cancers including UVM, lung, breast and bladder carcinomas. In addition, PGAM1 expression positively correlated with infiltration levels of tumor-promoting immune cells including macrophages, NK cells, myeloid dendritic cells, etc. Further experiments showed that PGAM1 was overexpressed in UVM cell lines and tissues, and it was positively associated with a poor prognosis of UVM patients. And knockdown of PGAM1 inhibited migration/invasion and induced apoptosis in UVM cells, followed by decreased levels of PD-L1, Snail, and BCl-2 and increased levels of E-cadherin. Additionally, the correlation analysis and molecular docking results suggest that PGAM1 could interact with PD-L1, Snail and BCl-2. Thus, PGAM1 may promote UVM pathogenesis via modulating immune checkpoint signaling, EMT and apoptosis. Collectively, this study reveals PGAM1 as a valuable prognostic biomarker and potential therapeutic target in aggressive cancers including UVM.
Collapse
Affiliation(s)
- Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, Henan, China
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, Henan, China
| | - Yan Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, Henan, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan 250102, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Xu Li
- Institute of Chemistry Henan Academy of Sciences, No. 56 Hongzhuan Road, Jinshui District, Zhengzhou 450002, China
| | - Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
14
|
Tabaei S, Haghshenas MR, Ariafar A, Gilany K, Stensballe A, Farjadian S, Ghaderi A. Comparative proteomics analysis in different stages of urothelial bladder cancer for identification of potential biomarkers: highlighted role for antioxidant activity. Clin Proteomics 2023; 20:28. [PMID: 37501157 PMCID: PMC10373361 DOI: 10.1186/s12014-023-09419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate and muscle-invasive bladder cancer (MIBC) has unfavorable outcomes in urothelial bladder cancer (UBC) patients. Complex UBC-related protein biomarkers for outcome prediction may provide a more efficient management approach with an improved clinical outcome. The aim of this study is to recognize tumor-associated proteins, which are differentially expressed in different stages of UBC patients compared non-cancerous tissues. METHODS The proteome of tissue samples of 42 UBC patients (NMIBC n = 25 and MIBC n = 17) was subjected to two-dimensional electrophoresis (2-DE) combined with Liquid chromatography-mass spectrometry (LC-MS) system to identify differentially expressed proteins. The intensity of protein spots was quantified and compared with Prodigy SameSpots software. Functional, pathway, and interaction analyses of identified proteins were performed using geneontology (GO), PANTHER, Reactome, Gene MANIA, and STRING databases. RESULTS Twelve proteins identified by LC-MS showed differential expression (over 1.5-fold, p < 0.05) by LC-MS, including 9 up-regulated in NMIBC and 3 up-regulated in MIBC patients. Proteins involved in the detoxification of reactive oxygen species and cellular responses to oxidative stress showed the most significant changes in UBC patients. Additionally, the most potential functions related to these detected proteins were associated with peroxidase, oxidoreductase, and antioxidant activity. CONCLUSION We identified several alterations in protein expression involved in canonical pathways which were correlated with the clinical outcomes suggested might be useful as promising biomarkers for early detection, monitoring, and prognosis of UBC.
Collapse
Affiliation(s)
- Samira Tabaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Gistrup, 9260, Denmark
- Clinical Cancer Research Center, Aalborg University hospital, Gistrup, 9260, Denmark
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Weng Y, Duan W, Yu X, Wu F, Yang D, Jiang Y, Wu J, Wang M, Wang X, Shen Y, Zhang Y, Xu H. MicroRNA-324-3p inhibits osteosarcoma progression by suppressing PGAM1-mediated aerobic glycolysis. Cancer Sci 2023. [PMID: 36880587 DOI: 10.1111/cas.15779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant neoplasm of the bone. Recent studies have indicated that the inhibitory effects of microRNA (miR)-324-3p could affect the development of numerous cancers. However, its biological roles and underlying mechanisms in OS progression remain unexplored. In this study, miR-324-3p expression was markedly reduced in OS cell lines and tissues. Functionally, miR-324-3p overexpression suppressed OS progression and was involved in the Warburg effect. Mechanistically, miR-324-3p negatively regulated phosphoglycerate mutase 1 (PGAM1) expression by targeting its 3'-UTR. Moreover, high expression of PGAM1 promoted OS progression and aerobic glycolysis, which were associated with inferior overall survival in patients with OS. Notably, the tumor suppressor functions of miR-324-3p were partially recovered by PGAM1 overexpression. In summary, the miR-324-3p/PGAM1 axis plays an important role in regulating OS progression by controlling the Warburg effect. Our results provide mechanistic insights into the function of miR-324-3p in glucose metabolism and subsequently on the progression of OS. Targeting the miR-324-3p/PGAM1 axis could be a promising molecular strategy for the treatment of OS.
Collapse
Affiliation(s)
- Yiping Weng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Weihao Duan
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xuecheng Yu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Furen Wu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Daibin Yang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jingbin Wu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Muyi Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xin Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yifei Shen
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yunkun Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hua Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Li Q, Miao J, Shi N, Lin C, Hu X, Shen Y. The lncRNA XIST/miR-29b-3p/COL3A1 axis regulates central carbon metabolism in head and neck squamous cell carcinoma and is associated with poor tumor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:165. [PMID: 36923098 PMCID: PMC10009572 DOI: 10.21037/atm-23-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Background Recent evidence shows that COL3A1 promotes the progression of many types of cancer. The purpose of our study is to explore the correlation between COL3A1 and the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and its potential mechanism. Methods We initially screened the differentially expressed gene COL3A1 in The Cancer Genome Atlas (TCGA) database, and the association between the expression level of COL3A1, prognosis, and the clinical parameters of HNSCC patients was verified. A nomogram was constructed according to the multivariate analysis results. Next, a heatmap of COL3A1 co-expressed genes was constructed in TCGA database. The TargetScan database is used to explore the microRNAs (miRNA) related to COL3A1. The starBase database was used to explore and predict the long non-coding RNAs (lncRNAs) that the candidate miRNAs might bind to. Finally, the potential mechanism of action was investigated using Gene Set Enrichment Analysis (GSEA). Results COL3A1 expression is elevated in HNSCC tumor tissues, and HNSCC patients with high COL3A1 expression have worse prognostic factors. COL3A1 was positively correlated with the central carbon metabolism-related proteins: epidermal growth factor receptor (EGFR), phosphoglycerate mutase 1 (PGAM1), hexokinase 3 (HK3), and phosphofructokinase, platelet (PFKP). The TargetScan database showed that the best candidate miRNA for binding to the three prime untranslated region (3'UTR) end of COL3A1 mRNA was hsa-miR-29b-3p, which was negatively correlated with COL3A1. The starBase database showed that the lncRNA X Inactive Specific Transcript (lncRNA XIST) was the best candidate upstream non-coding RNA for regulating hsa-miR-29b-3p. GSEA showed that COL3A1 may be involved in the poor prognosis of HNSCC by participating in carbon metabolism, glucose metabolism, oxidative stress, and the Wingless-Type MMTV Integration Site Family (Wnt) and vascular endothelial growth factor A-vascular endothelial growth factor receptor 2 (VEGFA-VEGFR2) pathways. Conclusions Low COL3A1 expression can be employed as a new HNSCC predictive biomarker, and the prognosis of HNSCC patients with lower COL3A1 expression can be greatly improved. At the same time, we found that the lncRNA XIST/miR-29b-3p/COL3A1 axis may regulate the central carbon metabolism of HNSCC and is associated with poor prognosis. These findings point to a potential target for developing HNSCC anticancer therapies.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jie Miao
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Shi
- Department of Stomatology, Shanghai Jiao Tong University School of Medicine St. Luke’s Hospital, Shanghai, China
| | - Chaosheng Lin
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Hu
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Lin J, Wang S, Lan W, Ji M, Li M. Pien Tze Huang regulates phosphorylation of metabolic enzymes in mice of hepatocellular carcinoma. Sci Rep 2023; 13:1897. [PMID: 36732657 PMCID: PMC9894829 DOI: 10.1038/s41598-023-29116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The Chinese medicine formula Pien Tze Huang (PZH) has been applied to the treatment of various diseases, the reported anti-tumor mechanisms included regulation of inflammation-associated cytokine secretion and cancer growth pathways. However, the potential influence of PZH on tumor metabolism remains unclear. This study aimed to investigate the global effect of PZH on hepatocellular carcinoma (HCC) compared with the anti-tumor agent sorafenib based on tandem mass tag (TMT) label proteomic and phosphoproteomic analysis in addition to parallel reaction monitoring (PRM) verification. It was observed that PZH could inhibit tumor weight by 59-69% in different concentrations. TMT proteomic studies indicated that fructose/mannose metabolism and glucagon signaling pathway in PZH group, and arachidonic acid metabolism and PPAR signaling pathway in sorafenib group, were significantly enriched, while glycolysis/gluconeogenesis pathway was found to be enriched remarkably both in PZH and sorafenib groups in TMT phosphoproteomic study. PRM verification further indicated that both PZH and sorafenib could down-regulate phosphorylations of the glycolytic enzymes phosphofructokinases 1, fructose-bisphosphate Aldolase A, phosphoglycerate mutase 2 and lactate dehydrogenase A chain, while phosphorylations of long chain fatty acid CoA ligase in fatty acid activation and acetyl-coenzyme A synthetase in glycolysis were significantly inhibited by PZH and sorafenib, respectively. This study proposed that PZH shared a similar anti-tumor mechanism of metabolic regulation to sorafenib, but differed in the regulation of some metabolic nodes. This is the first time to uncover the relationship between the anti-tumor effect of PZH and metabolic related enzymes, which distinguished from the known mechanisms of PZH. These data provided the potential molecular basis for PZH acting as a therapeutic drug for HCC, and offered cues of manipulation on Warburg effect under the treatment of PZH.
Collapse
Affiliation(s)
- Jinxia Lin
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China. .,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China.
| | - Shicong Wang
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China.,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China
| | - Wenliang Lan
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China.,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Mei Li
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Wang J, Chen S, Xiang W, Zhu Q, Ren N. NRF1 Alleviated Oxidative Stress of Glioblastoma Cells by Regulating NOR1. Folia Biol (Praha) 2023; 69:13-21. [PMID: 37962027 DOI: 10.14712/fb2023069010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oxidored-nitro domain-containing protein 1 (NOR1) is a critical tumour suppressor gene, though its regulatory mechanism in oxidative stress of glioblastoma (GBM) remains unclear. Hence, further study is needed to unravel the function of NOR1 in the progression of oxidative stress in GBM. In this study, we evaluated the expression of NOR1 and nuclear respiratory factor 1 (NRF1) in GBM tissue and normal brain tissue (NBT) using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB), and investigated their relationship. We then induced oxidative stress in U251 cells through H2O2 treatment and conducted Cell Count-ing Kit-8, Transwell and wound healing assays to analyse cell proliferation, invasion and migration. Cell apoptosis was assessed by flow cytometry and TUNEL staining. We also measured the activities of superoxide dismutase and catalase, as well as the level of reactive oxygen species (ROS) using biochemical techniques. Via qRT-PCR and WB, the mRNA and protein expression levels of NOR1 and NRF1 were determined. Chromatin immunoprecipitation (ChIP) assays were applied to validate NRF1's interaction with NOR1. Our results showed that the expression of NOR1 and NRF1 was low in GBM, and their expression levels were positively correlated. H2O2-induced oxidative stress reduced NRF1 and NOR1 expression levels and increased the ROS level. The ChIP assay confirmed the binding of NRF1 to NOR1. Over-expression of NRF1 attenuated the inhibitory effect of oxidative stress on the proliferation, migration and invasion of U251 cells, which was reversed by knockdown of NOR1.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Colon and Rectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Shuai Chen
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Wang Xiang
- Radiologic Diagnosis Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Qing Zhu
- Department of Pharmacy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.
| | - Nianjun Ren
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
19
|
Yang GJ, Tao F, Zhong HJ, Yang C, Chen J. Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem 2022; 244:114798. [DOI: 10.1016/j.ejmech.2022.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
|
20
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
21
|
Kiseleva OI, Kurbatov IY, Arzumanian VA, Ilgisonis EV, Vakhrushev IV, Lupatov AY, Ponomarenko EA, Poverennaya EV. Exploring Dynamic Metabolome of the HepG2 Cell Line: Rise and Fall. Cells 2022; 11:cells11223548. [PMID: 36428976 PMCID: PMC9688728 DOI: 10.3390/cells11223548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings have implications for interpreting metabolomic results obtained from immortal cells, especially in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics variability and many potential areas for future targeted and panoramic research. However, we suggest that the metabolome of cell lines is unstable and may undergo significant transformation over time, even if the culture conditions remain the same. Considering metabolomics variability on a relatively long-term basis, careful experimentation with particular attention to control samples is required to ensure reproducibility and relevance of the research results when testing both fundamentally and practically significant hypotheses.
Collapse
|
22
|
Kim D, Khin PP, Lim OK, Jun HS. LPA/LPAR1 signaling induces PGAM1 expression via AKT/mTOR/HIF-1α pathway and increases aerobic glycolysis, contributing to keratinocyte proliferation. Life Sci 2022; 311:121201. [DOI: 10.1016/j.lfs.2022.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
|
23
|
Wei C, Xie J, Yuan X, Luo Y, Xiao Y, Liao W, Jiang Z. Phosphoglycerate mutase 1 that is essential for glycolysis may act as a novel metabolic target for predicating poor prognosis for patients with gastric cancer. J Clin Lab Anal 2022; 36:e24718. [PMID: 36181311 DOI: 10.1002/jcla.24718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To identify a novel marker for gastric cancer, we examined the usefulness of phosphoglycerate mutase 1 (PGAM1) as a potential diagnostic marker using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics and evaluated its clinical significance. METHODS Proteins from a discovery group of four paired gastric cancer tissues and adjacent gastric tissues were labeled with iTRAQ reagents and then identified and quantified using LC-MS/MS. The expression of PGAM1 was further validated in 139 gastric cancer patients using immunohistochemistry. Furthermore, the correlation of PGAM1 expression with clinical parameters was analyzed. Gene set enrichment analysis (GSEA) was performed to identify gene sets that were activated in PGAM1-overexpressing patients with gastric cancer. RESULTS PGAM1 was significantly overexpressed in most cancers but particularly so in gastric cancer, with a sensitivity of 82.01% (95% confidence interval [CI]: 75.5%-88.5%) and specificity of 79.13% (95% CI: 72.3%-86%). Its expression was significantly associated with histological grade II and III tumors (p = 0.033), lymph node metastasis (p = 0.031), and TNM III-IV staging (p = 0.025). The area under the receiver operating characteristic (ROC) curve for the detection of PGAM1 overexpression in gastric cancer was 0.718 (p < 0.01). Furthermore, GSEA revealed that several important pathways such as glycolysis pathway and immune pathways were significantly enriched in patients with gastric cancer with PGAM1 overexpression. CONCLUSIONS This study provided a sensitive method for detecting PGAM1, which may serve as a novel indicator for poor prognosis of gastric cancer, as well as a potent drug target for gastric cancer.
Collapse
Affiliation(s)
- Chen Wei
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiebin Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxia Yuan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yaomin Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yang Xiao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Weiliang Liao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhen Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
24
|
Yu T, Liu Y, Xue J, Sun X, Zhu D, Ma L, Guo Y, Jin T, Cao H, Chen Y, Zhu T, Li X, Liang H, Du Z, Shan H. Gankyrin modulated non-small cell lung cancer progression via glycolysis metabolism in a YAP1-dependent manner. Cell Death Dis 2022; 8:312. [PMID: 35810157 PMCID: PMC9271063 DOI: 10.1038/s41420-022-01104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is highly malignant and heterogeneous form of lung cancer and involves various oncogene alterations. Glycolysis, an important step in tumor metabolism, is closely related to cancer progression. In this study, we investigated the biological function and mechanism of action of Gankyrin in glycolysis and its association with NSCLC. Analyzed of data from The Cancer Genome Atlas as well as NSCLC specimens and adjacent tissues demonstrated that Gankyrin expression was upregulated in NSCLC tissues compared to adjacent normal tissues. Gankyrin was found to significantly aggravate cancer-related phenotypes, including cell viability, migration, invasion, and epithelial mesenchymal transition (EMT), whereas Gankyrin silencing alleviated the malignant phenotype of NSCLC cells. Our results reveal that Gankyrin exerted its function by regulating YAP1 expression and increasing its nuclear translocation. Importantly, YAP1 actuates glycolysis, which involves glucose uptake, lactic acid production, and ATP generation and thus might contribute to the tumorigenic effect of Gankyrin. Furthermore, the Gankyrin-accelerated glycolysis in NSCLC cells was reversed by YAP1 deficiency. Gankyrin knockdown reduced A549 cell tumorigenesis and EMT and decreased YAP1 expression in a subcutaneous xenograft nude mouse model. In conclusion, both Gankyrin and YAP1 play important roles in tumor metabolism, and Gankyrin-targeted inhibition may be a potential anti-cancer therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China
| | - Yanyan Liu
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P. R. China
| | - Junwen Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xiang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Di Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lu Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Huiying Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Yingzhun Chen
- Department of Pathology, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Tong Zhu
- Department of General Surgery, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China
| | - Zhimin Du
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P. R. China. .,Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China. .,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China.
| |
Collapse
|
25
|
Liu M, Li R, Wang M, Liu T, Zhou Q, Zhang D, Wang J, Shen M, Ren X, Sun Q. PGAM1 regulation of ASS1 contributes to the progression of breast cancer through the cAMP/AMPK/CEBPB pathway. Mol Oncol 2022; 16:2843-2860. [PMID: 35674458 PMCID: PMC9348593 DOI: 10.1002/1878-0261.13259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a crucial glycolytic enzyme, and its expression status has been confirmed to be associated with tumor progression and metastasis. However, the precise role and other biological functions of PGAM1 remain unclear. Here, we report that PGAM1 expression is upregulated and related to poor prognosis in patients with breast cancer (BC). Functional experiments showed that knockdown of PGAM1 could suppress the proliferation, invasion, migration, and epithelial–mesenchymal transition of BC cells. Through RNA sequencing, we found that argininosuccinate synthase 1 (ASS1) expression was markedly upregulated in BC cells following PGAM1 knockdown, and it is required to suppress the malignant biological behavior of BC cells. Importantly, we demonstrated that PGAM1 negatively regulates ASS1 expression through the cAMP/AMPK/CEBPB axis. In vivo experiments further validated that PGAM1 promoted tumor growth in BC by altering ASS1 expression. Finally, immunohistochemical analysis showed that downregulated ASS1 levels were associated with PGAM1 expression and poor prognosis in patients with BC. Our study provides new insight into the regulatory mechanism of PGAM1‐mediated BC progression that might shed new light on potential targets and combination therapeutic strategies for BC treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Runmei Li
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Min Wang
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Ting Liu
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Qiuru Zhou
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Dong Zhang
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Jian Wang
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Meng Shen
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Xiubao Ren
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Qian Sun
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| |
Collapse
|
26
|
Plasma Proteomic Analysis Identified Proteins Associated with Faulty Neutrophils Functionality in Decompensated Cirrhosis Patients with Sepsis. Cells 2022; 11:cells11111745. [PMID: 35681439 PMCID: PMC9179303 DOI: 10.3390/cells11111745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Decompensated cirrhosis (DC) is susceptible to infections and sepsis. Neutrophils and monocytes provide the first line of defense to encounter infection. We aimed to evaluate proteins related to neutrophils functionality in sepsis. 70 (DC), 40 with sepsis, 30 without (w/o) sepsis and 15 healthy controls (HC) plasma was analyzed for proteomic analysis, cytokine bead array, endotoxin, cell free DNA and whole blood cells were analyzed for nCD64-mHLADR index, neutrophils-monocytes, functionality and QRT-PCR. nCD64-mHLADR index was significantly increased (p < 0.0001) with decreased HLA-DR expression on total monocytes in sepsis (p = 0.045). Phagocytic activity of both neutrophils and monocytes were significantly decreased in sepsis (p = 0.002 and p = 0.0003). Sepsis plasma stimulated healthy neutrophils, showed significant increase in NETs (neutrophil extracellular traps) and cell free DNA (p = 0.049 and p = 0.04) compared to w/o sepsis and HC. Proteomic analysis revealed upregulated- DNAJC13, TMSB4X, GPI, GSTP1, PNP, ANPEP, COTL1, GCA, APOA1 and PGAM1 while downregulated- AHSG, DEFA1,SERPINA3, MPO, MMRN1and PROS1 proteins (FC > 1.5; p < 0.05) associated to neutrophil activation and autophagy in sepsis. Proteins such as DNAJC13, GPI, GSTP1, PNP, ANPEP, COTL1, PGAM1, PROS1, MPO, SERPINA3 and MMRN1 showed positive correlation with neutrophils activity and number, oxidative burst activity and clinical parameters such as MELD, MELD Na and Bilirubin. Proteomic analysis revealed that faulty functionality of neutrophils may be due to the autophagy proteins i.e., DNAJC13, AHSG, TMSB4X, PROS1 and SERPINA3, which can be used as therapeutic targets in decompensated cirrhosis patients with sepsis.
Collapse
|
27
|
Liu W, Wang Q, Chang J, Bhetuwal A, Bhattarai N, Zhang F, Tang J. Serum proteomics unveil characteristic protein diagnostic biomarkers and signaling pathways in patients with esophageal squamous cell carcinoma. Clin Proteomics 2022; 19:18. [PMID: 35610567 PMCID: PMC9128263 DOI: 10.1186/s12014-022-09357-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a common digestive tract malignant tumor with high incidence and dismal prognosis worldwide. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of ESCC are not unequivocally understood yet. The serum proteome may provide valuable clues for the early diagnosis of ESCC and the discovery of novel molecular insights. Methods In the current study, an optimized proteomics approach was employed to discover novel serum-based biomarkers for ESCC, and unveil abnormal signal pathways. Gene ontology (GO) enrichment analysis was done by Gene Set Enrichment Analysis (GSEA) and Metascape database, respectively. Pathway analysis was accomplished by GeneCards database. The correlation coefficient was assessed using Pearson and distance correlation analyses. Prioritized candidates were further verified in two independent validation sets by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) staining. Results A total of 633 non-redundant proteins were identified in the serum of patients with ESCC, of which 59 and 10 proteins displayed a more than 1.5-fold increase or decrease compared with healthy controls. Verification was performed for six candidate biomarkers, including S100A8/A9, SAA1, ENO1, TPI1 and PGAM1. Receiver operating characteristics (ROC) curve plotting showed the high diagnostic sensitivity and specificity of these six protein molecules as a biomarker panel: the area under characteristic curve (AUC) is up to 0.945. Differentially expressed proteins were subjected to functional enrichment analysis, which revealed the dysregulation of signaling pathways mainly involved in glycolysis, TLR4, HIF-1α, Cori cycle, TCA cycle, folate metabolism, and platelet degranulation. The latter finding was all the more noteworthy as a strong positive correlation was discovered between activated glycolysis and TLR4 pathways and unfavorable clinicopathological TNM stages in ESCC. Conclusions Our findings propose a potential serum biomarker panel for the early detection and diagnosis of ESCC, which could potentially broaden insights into the characteristics of ESCC from the proteomic perspective. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09357-x.
Collapse
Affiliation(s)
- Wenhu Liu
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Qiang Wang
- Department of Clinical Laboratory, Translational Medicine Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinxia Chang
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Nisha Bhattarai
- Department of Neurology, North Sichuan Medical College, Nanchong, China
| | - Fan Zhang
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China.
| | - Jiancai Tang
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
28
|
Identifying metabolic reprogramming phenotypes with glycolysis-lipid metabolism discoordination and intercellular communication for lung adenocarcinoma metastasis. Commun Biol 2022; 5:198. [PMID: 35301413 PMCID: PMC8931047 DOI: 10.1038/s42003-022-03135-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Tumor metastasis imposes metabolic requirements for escaping from primary tissues, producing vulnerability in treatment. This study aimed to explore the metabolic reprogramming relevant to lung adenocarcinoma (LUAD) metastasis and decode the underlying intercellular alterations. Using the gene expression profiles of 394 LUAD samples derived from The Cancer Genome Atlas (TCGA), we identified 11 metastasis-related metabolic genes involved in glycolysis and lipid metabolism, and defined three metabolic reprogramming phenotypes (MP-I, -II, and -III) using unsupervised clustering. MP-III with the highest glycolytic and lowest lipid metabolic levels exhibited the highest metastatic potency and poorest survival in TCGA and six independent cohorts totaling 1,235 samples. Genomic analyses showed that mutations in TP53 and KEAP1, and deletions in SETD2 and PBRM1 might drive metabolic reprogramming in MP-III. Single-cell RNA-sequencing data from LUAD validated a metabolic evolutionary trajectory from normal to MP-II and MP-III, through MP-I. The further intercellular communications revealed that MP-III interacted uniquely with endothelial cells and fibroblasts in the ANGPTL pathway, and had stronger interactions with endothelial cells in the VEGF pathway. Herein, glycolysis-lipid dysregulation patterns suggested metabolic reprogramming phenotypes relevant to metastasis. Further insights into the oncogenic drivers and microenvironmental interactions would facilitate the treatment of LUAD metastasis in the future. Transcriptomic analysis from lung adenocarcinoma identified an 11-gene signature that could classify metabolic reprogramming phenotypes in patients.
Collapse
|
29
|
Zheng C, Yu X, Liang Y, Zhu Y, He Y, Liao L, Wang D, Yang Y, Yin X, Li A, He Q, Li B. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B 2022; 12:1271-1287. [PMID: 35530161 PMCID: PMC9069409 DOI: 10.1016/j.apsb.2021.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the hallmarks of cancer, metabolic reprogramming leads to cancer progression, and targeting glycolytic enzymes could be useful strategies for cancer therapy. By screening a small molecule library consisting of 1320 FDA-approved drugs, we found that penfluridol, an antipsychotic drug used to treat schizophrenia, could inhibit glycolysis and induce apoptosis in esophageal squamous cell carcinoma (ESCC). Gene profiling and Ingenuity Pathway Analysis suggested the important role of AMPK in action mechanism of penfluridol. By using drug affinity responsive target stability (DARTS) technology and proteomics, we identified phosphofructokinase, liver type (PFKL), a key enzyme in glycolysis, as a direct target of penfluridol. Penfluridol could not exhibit its anticancer property in PFKL-deficient cancer cells, illustrating that PFKL is essential for the bioactivity of penfluridol. High PFKL expression is correlated with advanced stages and poor survival of ESCC patients, and silencing of PFKL significantly suppressed tumor growth. Mechanistically, direct binding of penfluridol and PFKL inhibits glucose consumption, lactate and ATP production, leads to nuclear translocation of FOXO3a and subsequent transcriptional activation of BIM in an AMPK-dependent manner. Taken together, PFKL is a potential prognostic biomarker and therapeutic target in ESCC, and penfluridol may be a new therapeutic option for management of this lethal disease.
Collapse
|
30
|
Luo L, Santos A, Konganti K, Hillhouse A, Lambertz IU, Zheng Y, Gunaratna RT, Threadgill DW, Fuchs-Young RS. Overexpression of IGF-1 During Early Development Expands the Number of Mammary Stem Cells and Primes them for Transformation. Stem Cells 2022; 40:273-289. [DOI: 10.1093/stmcls/sxab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Insulin-like growth factor I (IGF-1) has been implicated in breast cancer due to its mitogenic and anti-apoptotic effects. Despite substantial research on the role of IGF-1 in tumor progression, the relationship of IGF-1 to tissue stem cells, particularly in mammary tissue, and the resulting tumor susceptibility has not been elucidated. Previous studies with the BK5.IGF-1 transgenic (Tg) mouse model reveals that IGF-1 does not act as a classical, post-carcinogen tumor promoter in the mammary gland. Pre-pubertal Tg mammary glands display increased numbers and enlarged sizes of terminal end buds, a niche for mammary stem cells (MaSCs). Here we show that MaSCs from both wild type (WT) and Tg mice expressed IGF-1R and that overexpression of Tg IGF-1 increased numbers of MaSCs by undergoing symmetric division, resulting in an expansion of the MaSC and luminal progenitor (LP) compartments in pre-pubertal female mice. This expansion was maintained post-pubertally and validated by mammosphere assays in vitro and transplantation assays in vivo. The addition of recombinant IGF-1 promoted, and IGF-1R downstream inhibitors decreased mammosphere formation. Single-cell transcriptomic profiles generated from two related platforms reveal that IGF-1 stimulated quiescent MaSCs to enter the cell cycle and increased their expression of genes involved in proliferation, plasticity, tumorigenesis, invasion, and metastasis. This study identifies a novel, pro-tumorigenic mechanism, where IGF-1 increases the number of transformation-susceptible carcinogen targets during the early stages of mammary tissue development, and “primes” their gene expression profiles for transformation.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Anatomic Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Isabel U Lambertz
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Yuanning Zheng
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ramesh T Gunaratna
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Robin S Fuchs-Young
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
31
|
Huang W, Xiao Y, Wang H, Chen G, Li K. Identification of risk model based on glycolysis-related genes in the metastasis of osteosarcoma. Front Endocrinol (Lausanne) 2022; 13:1047433. [PMID: 36387908 PMCID: PMC9646859 DOI: 10.3389/fendo.2022.1047433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Glycolytic metabolic pathway has been confirmed to play a vital role in the proliferation, survival, and migration of malignant tumors, but the relationship between glycolytic pathway-related genes and osteosarcoma (OS) metastasis and prognosis remain unclear. METHODS We performed Gene set enrichment analysis (GSEA) on the osteosarcoma dataset in the TARGET database to explore differences in glycolysis-related pathway gene sets between primary osteosarcoma (without other organ metastases) and metastatic osteosarcoma patient samples, as well as glycolytic pathway gene set gene difference analysis. Then, we extracted OS data from the TCGA database and used Cox proportional risk regression to identify prognosis-associated glycolytic genes to establish a risk model. Further, the validity of the risk model was confirmed using the GEO database dataset. Finally, we further screened OS metastasis-related genes based on machine learning. We selected the genes with the highest clinical metastasis-related importance as representative genes for in vitro experimental validation. RESULTS Using the TARGET osteosarcoma dataset, we identified 5 glycolysis-related pathway gene sets that were significantly different in metastatic and non-metastatic osteosarcoma patient samples and identified 29 prognostically relevant genes. Next, we used multivariate Cox regression to determine the inclusion of 13 genes (ADH5, DCN, G6PD, etc.) to construct a prognostic risk score model to predict 1- (AUC=0.959), 3- (AUC=0.899), and 5-year (AUC=0.895) survival under the curve. Ultimately, the KM curves pooled into the datasets GSE21257 and GSE39055 also confirmed the validity of the prognostic risk model, with a statistically significant difference in overall survival between the low- and high-risk groups (P<0.05). In addition, machine learning identified INSR as the gene with the highest importance for OS metastasis, and the transwell assay verified that INSR significantly promoted OS cell metastasis. CONCLUSIONS A risk model based on seven glycolytic genes (INSR, FAM162A, GLCE, ADH5, G6PD, SDC3, HS2ST1) can effectively evaluate the prognosis of osteosarcoma, and in vitro experiments also confirmed the important role of INSR in promoting OS migration.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Yingqi Xiao
- Department of Pulmonary and Critical Care Medicine, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
- *Correspondence: Yingqi Xiao,
| | - Hongwei Wang
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Guanghui Chen
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Kaixiang Li
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| |
Collapse
|
32
|
Wang Y, Guo Y, Qiang S, Jin R, Li Z, Tang Y, Leung ELH, Guo H, Yao X. 3D-QSAR, Molecular Docking, and MD Simulations of Anthraquinone Derivatives as PGAM1 Inhibitors. Front Pharmacol 2021; 12:764351. [PMID: 34899321 PMCID: PMC8656170 DOI: 10.3389/fphar.2021.764351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a series of inhibitors with various structures targeting PGAM1 have been reported, particularly anthraquinone derivatives. In present study, the structure–activity relationships and binding mode of a series of anthraquinone derivatives were probed using three-dimensional quantitative structure–activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, r2 = 0.97, q2 = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2 = 0.96, q2 = 0.82) techniques were performed to produce 3D-QSAR models, which demonstrated satisfactory results, especially for the good predictive abilities. In addition, molecular dynamics (MD) simulations technology was employed to understand the key residues and the dominated interaction between PGAM1 and inhibitors. The decomposition of binding free energy indicated that the residues of F22, K100, V112, W115, and R116 play a vital role during the ligand binding process. The hydrogen bond analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1 inhibitors. Based on the above results, 7 anthraquinone compounds were designed and exhibited the expected predictive activity. The study explored the structure–activity relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics simulations and provided theoretical guidance for the rational design of new anthraquinone derivatives as PGAM1 inhibitors.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yifan Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shaojia Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Elaine Lai Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
33
|
Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. J Nanobiotechnology 2021; 19:339. [PMID: 34689761 PMCID: PMC8543810 DOI: 10.1186/s12951-021-01085-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Biomimetic nanotechnology-based RNA interference (RNAi) has been successful in improving theranostic efficacy in malignant tumors. Its integration with hybrid biomimetic membranes made of natural cell membranes fused with liposomal membranes is mutually beneficial and extends their biofunctions. However, limited research has focused on engineering such biomimetics to endow them with unique properties and functions, in particular, those essential for a "smart" drug delivery system, such as a tumor microenvironment (TME)-activated multifunctional biomimetic nanoplatform. RESULTS Herein, we utilized an integrated hybrid nanovesicle composed of cancer cell membranes (Cm) and matrix metallopeptidase 9 (MMP-9)-switchable peptide-based charge-reversal liposome membranes (Lipm) to coat lipoic acid-modified polypeptides (LC) co-loaded with phosphoglycerate mutase 1 (PGAM1) siRNA (siPGAM1) and DTX. The nanovesicle presented a negatively charged coating (citraconic anhydride-grafted poly-L-lysine, PC) in the middle layer for pH-triggered charge conversion functionalization. The established chemotherapeutic drug (DTX) co-delivery system CLip-PC@CO-LC nanoparticles (NPs) have a particle size of ~ 193 nm and present the same surface proteins as the Cm. Confocal microscopy and flow cytometry results indicated a greater uptake of MMP-9-treated CLip-PC@CO-LC NPs compared with that of the CLip-PC@CO-LC NPs without MMP-9 pretreatment. The exposure to MMP-9 activated positively charged cell-penetrating peptides on the surface of the hybrid nanovesicles. Moreover, pH triggered membrane disruption, and redox triggered DTX and siRNA release, leading to highly potent target-gene silencing in glycolysis and chemotherapy with enhanced antiproliferation ability. The biodistribution results demonstrated that the CLip-PC@LC-DiR NPs accumulated in the tumor owing to a combination of long blood retention time, homologous targeting ability, and TME-activated characteristics. The CLip-PC@CO-LC NPs led to more effective tumor growth inhibition than the DTX and free siPGAM1 formulations. CONCLUSIONS TME-activated cancer cell membrane-liposome integrated hybrid NPs provide an encouraging nanoplatform that combines RNAi with chemotherapy for precise treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Ziqiang Chen
- Department of Orthopaedic, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ming Li
- Department of Orthopaedic, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuping Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
34
|
Li M, Gao X, Wang H, Zhang M, Li X, Wang S, Wang S, Cao C, Li Y, Su G. Phosphoglycerate mutase 2 is elevated in serum of patients with heart failure and correlates with the disease severity and patient's prognosis. Open Med (Wars) 2021; 16:1134-1142. [PMID: 34435138 PMCID: PMC8359905 DOI: 10.1515/med-2021-0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background Heart failure (HF) is a serious and advanced stage of various cardiac diseases with high mortality and rehospitalization rates. Phosphoglycerate mutase 2 (PGAM2) overexpression was identified in the serum of patients with HF. Material/methods One hundred and fifty-three cases of HF were included in the present work. According to New York Heart Association (NYHA) classification, 22 were grade II, 84 were grade III, and 47 were grade IV. Serum PGAM2, NT-proBNP, B-type natriuretic peptide (BNP), troponin T (TNT), and Cys-C of HF patients were detected using ELISA assay. Left ventricular ejection fraction, left ventricular end-diastolic inner diameter, and left atrium (LA) inner diameter of the included cases were also detected by the cardiac color Doppler. Results The number of patients with atrial fibrillation was significantly higher in NYHA IV group than in groups II and III with statistical difference (p < 0.05). The serum PGAM2, NT-proBNP, and Cys-C were significantly higher in NYHA IV group than in NYHA II and NYHA III groups (p all < 0.05). NT-proBNP had the highest prediction efficacy of HF severity and PGAM2 was also a potential biomarker for HF severity evaluation with relatively high sensitivity, specificity, and area under the ROC. The overall survival among NYHA II, III, and IV groups were statistically different (p = 0.04) with the median survival time of 25 months for NYHA III and IV groups. Conclusion PGAM2 is a new promising biomarker for evaluation of the severity of HF. Combination detection using multiple serum factors such as PGAM2, NT-proBNP, BNP, TNT, and Cys-C can improve the HF severity differential diagnosis performance.
Collapse
Affiliation(s)
- Min Li
- Department of Emergency, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Xiaoyuan Gao
- Department of Cardiovascular Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Huiyun Wang
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Mingli Zhang
- Department of Emergency, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Xiaoying Li
- Department of Emergency, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Shaoqin Wang
- Department of Emergency, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Chongfeng Cao
- Department of Intensive Care Unit, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Lixia District, Shandong Province, Jinan 250100, China
| | - Guohai Su
- Department of Cardiovascular Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105 Jiefang Road, Lixia District, Shandong Province, Jinan 250100, China
| |
Collapse
|
35
|
Expression and Gene Regulation Network of Metabolic Enzyme Phosphoglycerate Mutase Enzyme 1 in Breast Cancer Based on Data Mining. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6670384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The metabolic enzyme phosphoglycerate mutase enzyme 1 (PGAM1) is a key enzyme in the glycolysis pathway, and glycolysis is closely related to cancer progression, suggesting that PGAM1 may have important functions in breast cancer. We used sequencing data from the Oncomine database and UALCAN database to analyze the expression of PGAM1 and its influence on the clinicopathological characteristics of breast cancer. LinkedOmics was used to identify genes related to PGAM1 expression, kinases, miRNAs, and transcription factors that were significantly related to PGAM1 through GSEA. cBioPortal was used to identify the alternation frequency and form of PGAM1 in breast cancer. The expression level of PGAM1 in breast cancer was significantly higher than that in normal tissues. Moreover, the expression level of PGAM1 is closely related to the molecular subtype and TP53 mutation status. The expression level of PGAM1 in HER2-positive and triple-negative tumors was significantly higher than that of luminal type. The expression level of PGAM1 in TP53-mutant tumors was higher than that in non-TP53-mutant tumors. In addition, the overall survival of patients with high PGAM1 expression was significantly worse than that of patients with low expression (
). Through GSEA analysis, we found multiple kinases, miRNAs, and transcription factors significantly related to PFKFB4. cBioPortal analysis showed that the mutation rate of PGAM1 in breast cancer was relatively low (4%), and the main form of mutation was high mRNA expression. This study suggests that PGAM1 is a potential diagnostic and prognostic marker in breast cancer. Through data mining, we revealed the potential regulatory network information of PGAM1, laying a foundation for further research on the role of PGAM1 in breast cancer.
Collapse
|
36
|
Wu Y, Chen S, Wen P, Wu M, Wu Y, Mai M, Huang J. PGAM1 deficiency ameliorates myocardial infarction remodeling by targeting TGF-β via the suppression of inflammation, apoptosis and fibrosis. Biochem Biophys Res Commun 2021; 534:933-940. [PMID: 33168191 DOI: 10.1016/j.bbrc.2020.10.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
Myocardial ischemia-reperfusion (MIR) represents critical challenge for the treatment of acute myocardial infarction diseases. Presently, identifying the molecular basis revealing MIR progression is scientifically essential and may provide effective therapeutic strategies. Phosphoglycerate mutase 1 (PGAM1) is a key aerobic glycolysis enzyme, and exhibits critical role in mediating several biological events, such as energy production and inflammation. However, whether PGAM1 can affect MIR is unknown. Here we showed that PGAM1 levels were increased in murine ischemic hearts. Mice with cardiac knockout of PGAM1 were resistant to MIR-induced heart injury, evidenced by the markedly reduced infarct volume, improved cardiac function and histological alterations in cardiac sections. In addition, inflammatory response, apoptosis and fibrosis in hearts of mice with MIR operation were significantly alleviated by the cardiac deletion of PGAM1. Mechanistically, the activation of nuclear transcription factor κB (NF-κB), p38, c-Jun NH2-terminal kinase (JNK) and transforming growth factor β (TGF-β) signaling pathways were effectively abrogated in MI-operated mice with specific knockout of PGAM1 in hearts. The potential of PGAM1 suppression to inhibit inflammatory response, apoptosis and fibrosis were verified in the isolated cardiomyocytes and fibroblasts treated with oxygen-glucose deprivation reperfusion (OGDR) and TGF-β, respectively. Importantly, PGAM1 directly interacted with TGF-β to subsequently mediate inflammation, apoptosis and collagen accumulation, thereby achieving its anti-MIR action. Collectively, these findings demonstrated that PGAM1 was a positive regulator of myocardial infarction remodeling due to its promotional modulation of TGF-β signaling, indicating that PGAM1 may be a promising therapeutic target for MIR treatment.
Collapse
Affiliation(s)
- Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China.
| | - Shaoxian Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Pengju Wen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Min Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Yijing Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Mingjie Mai
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Jingsong Huang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| |
Collapse
|
37
|
Liang Q, Gu WM, Huang K, Luo MY, Zou JH, Zhuang GL, Lei HM, Chen HZ, Zhu L, Zhou L, Shen Y. HKB99, an allosteric inhibitor of phosphoglycerate mutase 1, suppresses invasive pseudopodia formation and upregulates plasminogen activator inhibitor-2 in erlotinib-resistant non-small cell lung cancer cells. Acta Pharmacol Sin 2021; 42:115-119. [PMID: 32404981 DOI: 10.1038/s41401-020-0399-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/15/2020] [Indexed: 12/23/2022]
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib, remains a major challenge in the targeted therapy of non-small cell lung cancer (NSCLC). HKB99 is a novel allosteric inhibitor of phosphoglycerate mutase 1 (PGAM1) that preferentially suppresses cell proliferation and induces more apoptosis in acquired erlotinib-resistant HCC827ER cells compared with its parental HCC827 cells. In this study we identified the molecular biomarkers for HKB99 response in erlotinib-resistant HCC827ER cells. We showed that HCC827ER cells displayed enhanced invasive pseudopodia structures as well as downregulated plasminogen activator inhibitor-2 (PAI-2). Meanwhile, PAI-2 knockdown by siPAI-2 candidates decreased the sensitivity of HCC827 parental cells to erlotinib. Moreover, HKB99 (5 μM) preferentially inhibited the invasive pseudopodia formation and increased the level of PAI-2 in HCC827ER cells. Collectively, this study provides new insight into the role of PAI-2 in regulating the sensitivity of erlotinib resistant NSCLC cells to PGAM1 inhibitor. Furthermore, PAI-2 level might be considered as a potential biomarker for predicting the efficacy of the PGAM1 allosteric inhibitor on the erlotinib resistant NSCLC cells.
Collapse
|
38
|
KLF5-mediated COX2 upregulation contributes to tumorigenesis driven by PTEN deficiency. Cell Signal 2020; 75:109767. [PMID: 32890667 DOI: 10.1016/j.cellsig.2020.109767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Tumor suppressor gene PTEN is frequently mutated in a wide variety of cancers. However, the downstream targets or signal transduction pathways of PTEN remain not fully understood. By analyzing Pten-null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts, we showed that loss of PTEN led to increased cyclooxygenase2 (COX2) expression in an AKT-independent manner. Moreover, we demonstrated that PTEN deficiency promotes the transcription of COX2 via upregulation of the transcription factor Krüppel-like factor 5 (KLF5). Knocked down the expression of COX2 suppressed proliferation, migration and tumoral growth of Pten-null cells. Further experiments revealed that COX2 enhanced Pten-null MEFs growth and migration through upregulation of NADPH oxidase 4 (NOX4). In addition, MK-2206, a specific inhibitor of AKT, in combination with celecoxib, a COX2 inhibitor, strongly inhibited Pten-deficient cell growth. We concluded that KLF5/COX2/NOX4 signaling pathway is critical for cell growth and migration caused by the loss of PTEN, and the combination of MK-2206 and celecoxib may be an effective new approach to treating PTEN deficiency related tumors.
Collapse
|
39
|
Li F, Yang H, Kong T, Chen S, Li P, Chen L, Cheng J, Cui G, Zhang G. PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-β (TGF-β) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis 2020; 11:710. [PMID: 32855383 PMCID: PMC7453026 DOI: 10.1038/s41419-020-02900-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023]
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a recently identified key catalytic enzyme in aerobic glycolysis. Recent literature has documented that dysregulated PGAM1 expression is associated with tumorigenesis in various cancers. However, the expression status and biological function of PGAM1 in non-small-cell lung cancer (NSCLC) are poorly elucidated. In this study, we found that PGAM1 was overexpressed in NSCLC tissues and that high expression of PGAM1 was associated with poor prognosis in NSCLC patients. Functionally, gain- and loss-of-function analysis showed that PGAM1 promoted proliferation and invasion in vitro, and facilitated tumor growth in vivo. Mechanistically, the transforming growth factor-β (TGF-β) signaling pathway was also markedly impaired in response to PGAM1 silencing. Additionally, we verified that PGAM1 was inhibited by miR-3614-5p via direct targeting of its 3’-untranslated regions in a hypoxia-independent manner. Furthermore, overexpression of miR-3614-5p attenuated NSCLC cell proliferation and invasion, and these effects could be partially reversed by reintroduction of PGAM1. Conclusively, our results suggest that the miR-3614-5p/PGAM1 axis plays a critical role during the progression of NSCLC, and these findings may provide a potential target for the development of therapeutic strategies for NSCLC patients.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiandong Kong
- Department of Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Chen
- Department of Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
40
|
E2F1-induced ferritin heavy chain 1 pseudogene 3 (FTH1P3) accelerates non-small cell lung cancer gefitinib resistance. Biochem Biophys Res Commun 2020; 530:624-631. [PMID: 32762943 DOI: 10.1016/j.bbrc.2020.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been identified to be critical regulator for various human diseases and emerging evidence illustrate the essential function of lncRNAs in the non-small cell lung cancer (NSCLC). Here, our research team tried to identify the roles of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) in the NSCLC, as well as its molecular mechanism. LncRNA microarray analysis revealed that ferritin heavy chain 1 pseudogene 3 (FTH1P3) was up-regulated in the gefitinib-resistant cells (PC9/GR). Clinically, lncRNA FTH1P3 high-expression was closely correlated with NSCLC patients' unfavorable prognosis. Gain and loss of functional experiments revealed that FTH1P3 promoted the proliferation and invasion of NSCLC cells in vitro, and FTH1P3 knockdown repressed the tumor growth in vivo. Mechanistically, transcription factor E2F1 accelerated the transcription of FTH1P3. RNA immunoprecipitation and chromatin immunoprecipitation experiments showed that FTH1P3 can recruit lysine-specific demethylase 1 (LSD1) and epigenetically repress the TIMP3, thereby accelerating the tumorigenesis of NSCLC. In summary, these findings suggest that FTH1P3 plays a critical role in the gefitinib resistance and progression of NSCLC, providing a potential novel prognostic marker for NSCLC.
Collapse
|
41
|
Fan GH, Zhu TY, Huang J. FNDC5 promotes paclitaxel sensitivity of non-small cell lung cancers via inhibiting MDR1. Cell Signal 2020; 72:109665. [PMID: 32353410 DOI: 10.1016/j.cellsig.2020.109665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic benefits and clinical application of paclitaxel for treating non-small cell lung cancers (NSCLCs) are extremely hampered due to the chemoresistance. A recent study found that fibronectin type III domain-containing protein 5 (FNDC5) was downregulated in NSCLCs cells and negatively correlated with the clinicopathological characteristics in patients with NSCLCs. However, the role and potential molecular basis for FNDC5 in paclitaxel sensitivity of NSCLCs remain unclear. Paclitaxel-sensitive or resistant NSCLCs cell lines were exposed to small interfering RNA against FNDC5 (siFndc5) or recombinant irisin in the presence or absence of paclitaxel. NSCLCs cell lines have decreased FNDC5 expression compared with the normal human lung epithelial cells, which was further downregulated in paclitaxel-resistant cells. Irisin treatment suppressed, whereas Fndc5 silence promoted NSCLCs cells proliferation under basal conditions. Besides, we found that FNDC5 increased paclitaxel chemosensitivity in paclitaxel-sensitive or resistant NSCLCs cell lines via downregulating multidrug resistance protein 1 (MDR1). Further studies revealed that FNDC5 inhibited MDR1 expression via blocking nuclear factor-κB (NF-κB) activation. FNDC5 promotes paclitaxel sensitivity of NSCLCs cells via inhibiting NF-κB/MDR1 signaling, and FNDC5 might be a novel therapeutic target for the treatment of NSCLCs.
Collapse
Affiliation(s)
- Guo-Hua Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tie-Yuan Zhu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
42
|
Song J, Zhao W, Lu C, Shao X. Spliced X-box binding protein 1 induces liver cancer cell death via activating the Mst1-JNK-mROS signalling pathway. J Cell Physiol 2020; 235:9378-9387. [PMID: 32335916 DOI: 10.1002/jcp.29742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have found that the primary pathogenesis of liver cancer progression is linked to excessive cancer cell proliferation and rapid metastasis. Although therapeutic advances have been made for the treatment of liver cancer, the mechanism underlying the liver cancer progression has not been fully addressed. In the present study, we explored the role of spliced X-box binding protein 1 (XBP1) in regulating the viability and death of liver cancer cells in vitro. Our study demonstrated that XBP1 was upregulated in liver cancer cells when compared to the primary hepatocytes. Interestingly, the deletion of XBP1 could reduce the viability of liver cancer cells in vitro via inducing apoptotic response. Further, we found that XBP1 downregulation was also linked to proliferation arrest and migration inhibition. At the molecular levels, XBP1 inhibition is followed by activation of the Mst1 pathway which promoted the phosphorylation of c-Jun N-terminal kinase (JNK). Then, the active Mst1-JNK pathway mediated mitochondrial reactive oxygen species (mROS) overproduction and then excessive ROS induced cancer cell death. Therefore, our study demonstrated a novel role played by XBP1 in modulating the viability of liver cancer cells via the Mst1-JNK-mROS pathways.
Collapse
Affiliation(s)
- Jie Song
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Zhang C, Li Y, Zhao W, Liu G, Yang Q. Circ-PGAM1 promotes malignant progression of epithelial ovarian cancer through regulation of the miR-542-3p/CDC5L/PEAK1 pathway. Cancer Med 2020; 9:3500-3521. [PMID: 32167655 PMCID: PMC7221433 DOI: 10.1002/cam4.2929] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the most common ovarian malignant cancer. Circular RNA is a type of endogenous noncoding RNA and is considered as a novel regulatory molecule in the development and progression of tumors. This study investigated the expression and functions of a circular RNA, circular‐phosphoglycerate mutase 1 (circ‐PGAM1), in EOC tissues and cells. Methods The expression of circ‐PGAM1 and miR‐542‐3p in EOC was analyzed using quantitative RT‐PCR. Immunohistochemistry and western blot were performed to confirm the localization and expression of cell division cycle 5‐like (CDC5L) and pseudopodium enriched atypical kinase 1 (PEAK1) in EOC tissues. Cell lines (CAOV3 and OVCAR3) overexpressing or silencingcirc‐PGAM1 and miR‐542‐3p were established to explore the functions of circ‐PGAM1 and miR‐542‐3p in ovarian cancer cells. Furthermore, dual‐luciferase reporter assay was performed to study the interactions between circ‐PGAM1 and miR‐542‐3p and between miR‐542‐3p and CDC5L. CCK‐8, transwell, and flow cytometry were used to study the effect of circ‐PGAM1 and miR‐542‐3p on cell biological behaviors including proliferation, migration, invasion, and apoptosis. The interaction between CDC5L and the PEAK1 gene promoter was confirmed using chromatin immunoprecipitation (ChIP). Results Circ‐PGAM1 was upregulated in EOC tissues, whereas linear PGAM1 was not deregulated in EOC tissues. Silencing of circ‐PAGM1 inhibited proliferation, migration, and invasion of ovarian cancer cells and promoted cell apoptosis. MiR‐542‐3p was downregulated in EOC tissues, and miR‐542‐3p overexpression inhibited malignant progression of ovarian cancer cells. Circ‐PGAM1 directly interacted with miR‐542‐3p, with mutual negative feedback between them. CDC5L was a direct target of miR‐542‐3p and played an oncogenic role in ovarian cancer cells. Furthermore, the CDC5L protein binds directly to the PEAK1 promoter to promote its transcription. PEAK1 overexpression activated ERK1/2 and JAK2 signaling pathways and promoted malignant biological behaviors of ovarian cancer cells. Circ‐PAGM1 silencing combined with miR‐542‐3p overexpression played the greatest anticancer role in vivo. Conclusion The circ‐PGAM1/miR‐542‐3p/CDC5L/PEAK1 pathway played an important role in the progression of ovarian cancer and might be a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wancheng Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guipeng Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Li N, Liu X. Phosphoglycerate Mutase 1: Its Glycolytic and Non-Glycolytic Roles in Tumor Malignant Behaviors and Potential Therapeutic Significance. Onco Targets Ther 2020; 13:1787-1795. [PMID: 32161473 PMCID: PMC7051807 DOI: 10.2147/ott.s238920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is an important enzyme that catalyzes the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate during the process of glycolysis. Increasing evidence suggests that PGAM1 is widely overexpressed in various cancer tissues and plays a significant role in promoting cancer progression and metastasis. Although PGAM1 is a potential target in cancer therapy, the specific mechanisms of action remain unknown. This review introduces the basic structure and functions of PGAM1 and its family members and summarizes recent advances in the role of PGAM1 and various inhibitors of cancer cell proliferation and metastasis from a glycolytic and non-glycolytic perspective. Recent studies have highlighted a correlation between PGAM1 and clinical features and prognosis of cancer as well as the development of target drugs for PGAM1. The integrated information in this review will help better understand the specific roles of PGAM1 in cancer progression. Furthermore, the information highlights the non-glycolytic functions of PGAM1 in tumor metastasis, providing an innovative basis and direction for clinical drug research.
Collapse
Affiliation(s)
- Na Li
- 1st Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| | - Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| |
Collapse
|
45
|
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X, Xu Y. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis 2020; 11:145. [PMID: 32094325 PMCID: PMC7039970 DOI: 10.1038/s41419-020-2336-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023]
Abstract
Compelling evidence has demonstrated the potential functions of circular RNAs (circRNAs) in breast cancer (BC) tumorigenesis. Nevertheless, the underlying mechanism by which circRNAs regulate BC progression is still unclear. The purpose of present research was to investigate the novel circRNA circRNF20 (hsa_circ_0087784) and its role in BC. CircRNA microarray sequencing revealed that circRNF20 was one of the upregulated transcripts in BC samples. Increased circRNF20 level predicted the poor clinical outcome in BC specimens. Functionally, circRNF20 promoted the proliferation and Warburg effect (aerobic glycolysis) of BC cells. Mechanistically, circRNF20 harbor miR-487a, acting as miRNA sponge, and then miR-487a targeted the 3'-UTR of hypoxia-inducible factor-1α (HIF-1α). Moreover, HIF-1α could bind with the promoter of hexokinase II (HK2) and promoted its transcription. In conclusion, this finding illustrates the vital roles of circRNF20 via the circRNF20/ miR-487a/HIF-1α/HK2 axis in breast cancer progress and Warburg effect, providing an interesting insight for the BC tumorigenesis.
Collapse
Affiliation(s)
- Lili Cao
- Department of Oncology, Zibo Central Hospital, Zibo, 255020, China
| | - Min Wang
- Department of Oncology, Zibo Central Hospital, Zibo, 255020, China
| | - Yujin Dong
- Department of Oncology, Zibo Central Hospital, Zibo, 255020, China
| | - Bo Xu
- Department of Oncology, Zibo Central Hospital, Zibo, 255020, China
| | - Ju Chen
- Department of Ultrasound, Zibo Central Hospital, Zibo, 255020, China
| | - Yu Ding
- Department of Breast and Thyroid Surgery, Zibo Key laboratory of Breast cancer Individualized diagnosis, treatment and transformation, Zibo Central Hospital, Zibo, 255020, China
| | - Shusheng Qiu
- Department of Breast and Thyroid Surgery, Zibo Key laboratory of Breast cancer Individualized diagnosis, treatment and transformation, Zibo Central Hospital, Zibo, 255020, China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Key laboratory of Breast cancer Individualized diagnosis, treatment and transformation, Zibo Central Hospital, Zibo, 255020, China
| | - Elena Karamfilova Zaharieva
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Xinwen Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Yanbin Xu
- Department of Breast and Thyroid Surgery, Zibo Key laboratory of Breast cancer Individualized diagnosis, treatment and transformation, Zibo Central Hospital, Zibo, 255020, China.
| |
Collapse
|
46
|
Zhang Y, Zhang H, Shi W, Wang W. Mief1 augments thyroid cell dysfunction and apoptosis through inhibiting AMPK-PTEN signaling pathway. J Recept Signal Transduct Res 2020; 40:15-23. [PMID: 31960779 DOI: 10.1080/10799893.2020.1716799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Inflammation-mediated thyroid cell dysfunction and apoptosis increases the like-hood of hypothyroidism.Aim: Our aim in the present study is to explore the role of mitochondrial elongation factor 1 (Mief1) in thyroid cell dysfunction induced by TNFα.Materials and methods: Different doses of TNFα were used to incubate with thyroid cells in vitro. The survival rate, apoptotic index and proliferation capacity of thyroid cells were measured. Cellular energy metabolism and endoplasmic reticulum function related to protein synthesis were detected.Results: In response to TNFα treatment, the levels of Mief1 were increased, coinciding with a drop in the viability of thyroid cells in vitro. Loss of Mief1 attenuates TNFα-induced cell death through reducing the ratio of cell apoptosis. Further, we found that Mief1 deletion reversed cell energy metabolism and this effect was attributable to mitochondrial protection. Mief1 knockdown sustained mitochondrial membrane potential and reduced mitochondrial ROS overproduction. In addition, Mief1 knockdown also reduced endoplasmic reticulum stress, as evidenced by decreased levels of Chop and Caspase-12. Finally, our data verified that TNFα treatment inhibited the activity of AMPK-PTEN pathway whereas Mief1 deletion reversed the activity of AMPK and thus promoted the upregulation of PTEN. However, inhibition of AMPK-PTEN pathways could abolish the beneficial effects exerted by Mief1 deletion on thyroid cells damage and dysfunction.Conclusions: Altogether, our data indicate that immune abnormality-mediated thyroid cell dysfunction and death are alleviated by Mief1 deletion possible driven through reversing the activity of AMPK-PTEN pathways.
Collapse
Affiliation(s)
- Yonglan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Haichao Zhang
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, Tianjin, People's Republic of China
| | - Wenjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| |
Collapse
|
47
|
N 6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene 2020; 731:144348. [PMID: 31927006 DOI: 10.1016/j.gene.2020.144348] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Mounting evidence demonstrates that N6-methyladenosine (m6A) play critical roles of m6A in the epigenetic regulation, especially for human cancer. The m6A modification is installed by methyltransferase and erased demethylases, leading to the significant modification for gene expression and cell fate. Here, we investigated the biological roles and mechanism of demethylase alkylation repair homolog protein 5 (ALKBH5) in the non-small cell lung cancer (NSCLC). Results revealed that ALKBH5 was ectopically up-regulated in the NSCLC tissue and cells, and closely correlated with the poor prognosis. Functionally, ALKBH5 promoted the proliferation and reduced apoptosis of NSCLC cells in vitro, and knockdown of ALKBH5 repressed the tumor growth in vivo. Mechanistically, RNA immunoprecipitation sequencing (RIP-Seq) revealed that ALKBH5 targeted the TIMP3. Moreover, ALKBH5 repressed TIMP3 mRNA stability and protein production. In conclusion, the present research confirmed the ALKBH5/TIMP3 pathway in the NSCLC oncogenesis progress, providing a novel insight for the epitranscriptome and potential therapeutic target for NSCLC.
Collapse
|
48
|
Tian Y, Lv W, Lu C, Zhao X, Zhang C, Song H. LATS2 promotes cardiomyocyte H9C2 cells apoptosis via the Prx3-Mfn2-mitophagy pathways. J Recept Signal Transduct Res 2019; 39:470-478. [PMID: 31829064 DOI: 10.1080/10799893.2019.1701031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: The pathogenesis of cardiomyocyte death is closely associated with mitochondrial homeostasis via poorly understood mechanisms.Objective: The aim of our study is to explore the contribution of large tumor suppressor kinase 2 (LATS2) to the apoptosis of cardiomyocyte H9C2 cells.Materials and Methods: Adenovirus-mediated LATS2 overexpression was carried out in H9C2 cells. The cell viability and apoptosis rate were measured via an MTT assay, TUNEL staining, western blotting, an ELISA, and an LDH release assay. Mitophagy was quantified using immunofluorescence and western blotting.Results: The overexpression of LATS2 in H9C2 cells drastically promoted cell death. Molecular investigations showed that LATS2 overexpression was associated with mitochondrial injury, as evidenced by increased mitochondrial ROS production, reduced antioxidant factor levels, increased cyt-c liberation into the nucleus and activated mitochondrial caspase-9-dependent apoptotic pathway activity. Furthermore, our results demonstrated that LATS2-mediated mitochondrial malfunction by repressing mitophagy and that the reactivation of mitophagy could sustain mitochondrial integrity and homeostasis in response to LATS2 overexpression. Furthermore, we found that LATS2 inhibited mitophagy by inactivating the Prx3-Mfn2 axis. The reactivation of Prx3-Mfn2 pathways abrogated the LATS2-mediated inhibition of mitochondrial apoptosis in H9C2 cells.Conclusions: The overexpression of LATS2 induces mitochondrial stress by repressing protective mitophagy in a manner dependent on Prx3-Mfn2 pathways, thus reducing the survival of H9C2 cells.
Collapse
Affiliation(s)
| | - Wei Lv
- Tianjin First Central Hospital, Tianjin, China
| | - Chengzhi Lu
- Tianjin First Central Hospital, Tianjin, China
| | | | - Chunguang Zhang
- North District Maternal and Child Health Family Planning Service Center, Qingdao, China
| | - Haoming Song
- Department of Cardiology, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|
49
|
Huang K, Liang Q, Zhou Y, Jiang LL, Gu WM, Luo MY, Tang YB, Wang Y, Lu W, Huang M, Zhang SZ, Zhuang GL, Dai Q, Shen QC, Zhang J, Lei HM, Zhu L, Ye DY, Chen HZ, Zhou L, Shen Y. A Novel Allosteric Inhibitor of Phosphoglycerate Mutase 1 Suppresses Growth and Metastasis of Non-Small-Cell Lung Cancer. Cell Metab 2019; 30:1107-1119.e8. [PMID: 31607564 DOI: 10.1016/j.cmet.2019.09.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/30/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
Phosphoglycerate mutase 1 (PGAM1) plays a pivotal role in cancer metabolism and tumor progression via its metabolic activity and interaction with other proteins like α-smooth muscle actin (ACTA2). Allosteric regulation is considered to be an innovative strategy to discover a highly selective and potent inhibitor targeting PGAM1. Here, we identified a novel PGAM1 allosteric inhibitor, HKB99, via structure-based optimization. HKB99 acted to allosterically block conformational change of PGAM1 during catalytic process and PGAM1-ACTA2 interaction. HKB99 suppressed tumor growth and metastasis and overcame erlotinib resistance in non-small-cell lung cancer (NSCLC). Mechanistically, HKB99 enhanced the oxidative stress and altered multiple signaling pathways including the activation of JNK/c-Jun and suppression of AKT and ERK. Collectively, the study highlights the potential of PGAM1 as a therapeutic target in NSCLC and reveals a distinct mechanism by which HKB99 inhibits both metabolic activity and nonmetabolic function of PGAM1 by allosteric regulation.
Collapse
Affiliation(s)
- Ke Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qian Liang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Ye Zhou
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Lu-Lu Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Ming Gu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Ming-Yu Luo
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sheng-Zhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Guang-Lei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Qing Dai
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Qian-Cheng Shen
- State Key Laboratory of Oncogenes and Related Genes, Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China
| | - De-Yong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai 200025, China.
| |
Collapse
|
50
|
Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 2019; 39:383-391. [PMID: 31782334 DOI: 10.1080/10799893.2019.1698050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Context: Cell death and inflammation response have been found to the primary features of acute kidney injury.Objective: The aim of our study is to figure out the molecular mechanism by which hypoxia-reoxygenation injury affects the viability of tubular cell death.Materials and methods: HK2 cells were treated with hypoxia-reoxygenation injury in vitro. Pathway agonist was added into the medium of HK2 cell to activate MAPK-EEK-CREB axis.Results: Hypoxia-reoxygenation injury reduced HK2 cell viability and increased cell apoptosis rate in vitro. Besides, inflammation response has been found to be induced by hypoxia-reoxygenation injury in HK2 cells in vitro. In addition, MAPK-ERK-CREB pathway was deactivated during hypoxia-reoxygenation injury. Interestingly, activation of MAPK-ERK-CREB pathway could attenuate hypoxia-reoxygenation injury-mediated HK2 cell apoptosis and inflammation. Mechanistically, MAPK-ERK-CREB pathway activation upregulated the transcription of anti-apoptotic genes and reduced the levels of pro-apoptotic factors under hypoxia-reoxygenation injury.Conclusions: Our results report a novel signaling pathway responsible for acute kidney injury-related tubular cell death. Activation of MAPK-ERK-CREB signaling could protect tubular cell against hypoxia-reoxygenation-related cell apoptosis and inflammation response.
Collapse
Affiliation(s)
- Qi Dong
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| | - Yingxin Jie
- Department of Emergency, Tianjin Hospital, Tianjin, P.R. China
| | - Jian Ma
- Tianjin Women's and Children's Health Center, Tianjin Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R.China
| |
Collapse
|