1
|
Chang SS, Cheng CC, Chen YR, Chen FW, Cheng YM, Wang JM. Epithelial CEBPD activates fibronectin and enhances macrophage adhesion in renal ischemia-reperfusion injury. Cell Death Discov 2024; 10:328. [PMID: 39025831 PMCID: PMC11258324 DOI: 10.1038/s41420-024-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a cause of acute kidney injury in patients after renal transplantation and leads to high morbidity and mortality. Damaged kidney resident cells release cytokines and chemokines, which rapidly recruit leukocytes. Fibronectin (FN-1) contributes to immune cell migration, adhesion and growth in inflamed tissues. CCAAT/enhancer-binding protein delta is responsive to inflammatory cytokines and stresses and plays functional roles in cell motility, extracellular matrix production and immune responses. We found that the expression of CCAAT/enhancer-binding protein delta was increased in renal epithelial cells in IRI mice compared with sham mice. Following IRI, the colocalization of FN-1 with the macrophage marker F4/80 was increased in renal injury model wild-type mice but was significantly attenuated in Cebpd-deficient mice. Inactivation of CEBPD can repress hypoxia-induced FN-1 expression in HK-2 cells. Moreover, the inactivation of CEBPD and FN-1 also reduces macrophage accumulation in HK-2 cells. These findings suggest that the involvement of CEBPD in macrophage accumulation through the activation of FN-1 expression and the inhibition of CEBPD can protect against renal IRI.
Collapse
Affiliation(s)
- Shen-Shin Chang
- Division of Transplantation, Department of Surgery, National Chung Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Ren Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, 700, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Xiang S, Wang M, Li Q, Yang Z. Unveiling the role of HACE1 in cervical cancer: implications for human papillomavirus infection and prognosis. Transl Cancer Res 2024; 13:2175-2186. [PMID: 38881936 PMCID: PMC11170517 DOI: 10.21037/tcr-23-2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024]
Abstract
Background Cervical cancer, one of the prevalent malignancies among females, is closely associated with human papillomavirus (HPV) infection. Homologous to the E6-AP carboxyl terminus (HECT) domain and ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1) plays pivotal roles in various cancers. This study aimed to elucidate the expression of HACE1 in cervical cancer and its correlation with clinical features. Methods From The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) and Gene Expression Omnibus (GEO, GSE6791) datasets, we obtained RNA-Seq profiles and associated clinical information. Differential gene analysis was conducted using the R "limma" package. Implications for HPV infection and the overall survival (OS) of cervical cancer were determined by performing differential expression analysis and the Cox proportional hazards regression model. Immunohistochemical analyses were used to validate the expression in cervical cancer and normal cervical tissue. Further, nomogram was constructed to predict OS in cervical cancer. Whether the model was credible was evaluated according to receiver operating characteristic (ROC) curves and concordance curves. To further evaluate the potential functions of HACE1, we conducted functional enrichment analysis. Finally, we assessed methylation levels in HPV+ and HPV- patients in the TCGA-CESC dataset. Results Utilizing TCGA and GSE6791 datasets, we observed significant upregulation of HACE1 in cervical cancer patients, particularly linked to HPV infection. Immunohistochemical staining revealed enhanced HACE1 expression in tumor tissues. Further analysis demonstrated a significant positive correlation between elevated HACE1 and HPV-associated proteins (E1, E6, and E7). Moreover, high HACE1 expression was associated with adverse prognosis in cervical cancer patients. Multivariate Cox analysis indicated that HACE1 could serve as an independent prognostic factor. We developed a prognostic model integrating HPV subtypes, the International Federation of Gynecology and Obstetrics (FIGO) staging, and HACE1, exhibiting strong predictive efficacy for cervical cancer prognosis. Gene enrichment analysis indicated HACE1's potential involvement in multiple signaling pathways during cervical cancer progression, while the demethylation of cg03002526 in HPV-positive patients might contribute to HACE1 upregulation. Conclusions Our study reveals that HACE1 upregulation is associated with cervical cancer, particularly in HPV-positive patients. HACE1 emerges as an independent prognostic factor, linked to unfavorable outcomes.
Collapse
Affiliation(s)
- Siyang Xiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingqiong Wang
- Department of Nuclear Medicine, The People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Qinke Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Hu Y, Zhu Z, Xu Y, Zaman MF, Ge Y, Hu J, Tang X. Inhibition of esophageal cancer progression through HACE1-TRIP12 interaction and associated RAC1 ubiquitination and degradation. J Cancer 2024; 15:3114-3127. [PMID: 38706891 PMCID: PMC11064264 DOI: 10.7150/jca.93833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: This study investigated the significance of HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) in esophageal cancer (ESCA) and its underlying mechanism in ESCA regulation through the induction of RAC1 ubiquitination and degradation. Methods: Characterization studies of HACE1 in ESCA clinical tissues and cell lines were performed. Next, the effects of HACE1 on the biological behavior of ESCA cells were examined by silencing and overexpressing HACE1. Protein-protein interactions (PPIs) involving HACE1 were analyzed using data from the String website. The function of HACE1 in RAC1 protein ubiquitination was validated using the proteasome inhibitor MG132. The effects of HACE1 on ESCA cells through RAC1 were elucidated by applying the RAC1 inhibitor EHop-016 in a tumor-bearing nude mouse model. To establish the relationship between HACE1 and TRIP12, rescue experiments were conducted, mainly to evaluate the effect of TRIP12 silencing on HACE1-mediated RAC1 regulation in vitro and in vivo. The PPI between HACE1 and TRIP12 and their subcellular localization were further characterized through co-immunoprecipitation and immunofluorescence staining assays, respectively. Results: HACE1 protein expression was notably diminished in ESCA cells but upregulated in normal tissues. HACE1 overexpression inhibited the malignant biological behavior of ESCA cells, leading to restrained tumor growth in mice. This effect was coupled with the promotion of RAC1 protein ubiquitination and subsequent degradation. Conversely, silencing HACE1 exhibited contrasting results. PPI existed between HACE1 and TRIP12, compounded by their similar subcellular localization. Intriguingly, TRIP12 inhibition blocked HACE1-driven RAC1 ubiquitination and mitigated the inhibitory effects of HACE1 on ESCA cells, alleviating tumor growth in the tumor-bearing nude mouse model. Conclusion: HACE1 expression was downregulated in ESCA cells, suggesting that it curbs ESCA progression by inducing RAC1 protein degradation through TRIP12-mediated ubiquitination.
Collapse
Affiliation(s)
- Ya Hu
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Ziyi Zhu
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Yanhua Xu
- Department of Oncology, Jingzhou Central Hospital, Jingzhou City, Hubei Province, China, 434020
| | - Muhammad Fakhar Zaman
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Yuxuan Ge
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Jinming Hu
- Health Science Center, Yangtze University, Jingzhou City, Hubei Province, China, 434023
| | - Xi Tang
- Department of Oncology, Jingzhou Central Hospital, Jingzhou City, Hubei Province, China, 434020
| |
Collapse
|
4
|
Düring J, Wolter M, Toplak JJ, Torres C, Dybkov O, Fokkens TJ, Bohnsack KE, Urlaub H, Steinchen W, Dienemann C, Lorenz S. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat Struct Mol Biol 2024; 31:364-377. [PMID: 38332367 PMCID: PMC10873202 DOI: 10.1038/s41594-023-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.
Collapse
Affiliation(s)
- Jonas Düring
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Madita Wolter
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia J Toplak
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Camilo Torres
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- 'Bioanalytics', Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Göttingen, Göttingen, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
5
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Singh S, Machida S, Tulsian NK, Choong YK, Ng J, Shankar S, Liu Y, Chandiramani KV, Shi J, Sivaraman J. Structural Basis for the Enzymatic Activity of the HACE1 HECT-Type E3 Ligase Through N-Terminal Helix Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207672. [PMID: 37537642 PMCID: PMC10520629 DOI: 10.1002/advs.202207672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/15/2023] [Indexed: 08/05/2023]
Abstract
HACE1 is an ankyrin repeat (AKR) containing HECT-type E3 ubiquitin ligase that interacts with and ubiquitinates multiple substrates. While HACE1 is a well-known tumor suppressor, its structure and mode of ubiquitination are not understood. The authors present the cryo-EM structures of human HACE1 along with in vitro functional studies that provide insights into how the enzymatic activity of HACE1 is regulated. HACE1 comprises of an N-terminal AKR domain, a middle (MID) domain, and a C-terminal HECT domain. Its unique G-shaped architecture interacts as a homodimer, with monomers arranged in an antiparallel manner. In this dimeric arrangement, HACE1 ubiquitination activity is hampered, as the N-terminal helix of one monomer restricts access to the C-terminal domain of the other. The in vitro ubiquitination assays, hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis, mutagenesis, and in silico modeling suggest that the HACE1 MID domain plays a crucial role along with the AKRs in RAC1 substrate recognition.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Satoru Machida
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
- Department of BiochemistryNational University of Singapore28 Medical DriveSingapore117546Singapore
| | - Yeu Khai Choong
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Joel Ng
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Srihari Shankar
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Yaochen Liu
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | | | - Jian Shi
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - J Sivaraman
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| |
Collapse
|
7
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
8
|
Jiang H, Chen Y, Xu X, Li C, Chen Y, Li D, Zeng X, Gao H. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. Clin Transl Med 2022; 12:e770. [PMID: 35343092 PMCID: PMC8958351 DOI: 10.1002/ctm2.770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclin C (CCNC) was reported to take part in regulating mitochondria-derived oxidative stress under cisplatin stimulation. However, its effect in gastric cancer is unknown. This study aimed to investigate the role of cyclin C and its ubiquitylation in regulating cisplatin resistance in gastric cancer. METHODS The interaction between HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1 (HACE1) and cyclin C was investigated by GST pull-down assay, co-immunoprecipitation and ubiquitylation assay. Mitochondria-derived oxidative stress was studied by MitoSOX Red assay, seahorse assay and mitochondrial membrane potential measurement. Cyclin C-associated cisplatin resistance was studied in vivo via xenograft. RESULTS HACE1 catalysed the ubiquitylation of cyclin C by adding Lys11-linked ubiquitin chains when cyclin C translocates to cytoplasm induced by cisplatin treatment. The ubiquitin-modified cyclin C then anchor at mitochondira, which induced mitochondrial fission and ROS synthesis. Depleting CCNC or mutation on the ubiquitylation sites decreased mitochondrial ROS production and reduced cell apoptosis under cisplatin treatment. Xenograft study showed that disrupting cyclin C ubiquitylation by HACE1 conferred impairing cell apoptosis response upon cisplatin administration. CONCLUSIONS Cyclin C is a newly identified substrate of HACE1 E3 ligase. HACE1-mediated ubiquitylation of cyclin C sheds light on a better understanding of cisplatin-associated resistance in gastric cancer patients. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. With cisplatin-induced nuclear-mitochondrial translocation of cyclin C, its ubiquitylation by HACE1 increased mitochondrial fission and mitochondrial-derived oxidative stress, leading to cell apoptosis.
Collapse
Affiliation(s)
- Hong‐yue Jiang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Ying‐ling Chen
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xing‐xing Xu
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Chuan‐yin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceInnovation Center for Cell Signaling NetworkShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yun Chen
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Dong‐ping Li
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiao‐qing Zeng
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Hong Gao
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghaiChina
- Evidence‐based Medicine Center of Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Najem A, Wouters J, Krayem M, Rambow F, Sabbah M, Sales F, Awada A, Aerts S, Journe F, Marine JC, Ghanem GE. Tyrosine-Dependent Phenotype Switching Occurs Early in Many Primary Melanoma Cultures Limiting Their Translational Value. Front Oncol 2021; 11:780654. [PMID: 34869032 PMCID: PMC8635994 DOI: 10.3389/fonc.2021.780654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023] Open
Abstract
The use of patient-derived primary cell cultures in cancer preclinical assays, including drug screens and genotoxic studies, has increased in recent years. However, their translational value is constrained by several limitations, including variability that can be caused by the culture conditions. Here, we show that the medium composition commonly used to propagate primary melanoma cultures has limited their representability of their tumor of origin and their cellular plasticity, and modified their sensitivity to therapy. Indeed, we established and compared cultures from different melanoma patients propagated in parallel in low-tyrosine (Ham's F10) or in high-tyrosine (Ham's F10 supplemented with tyrosine or RPMI1640 or DMEM) media. Tyrosine is the precursor of melanin biosynthesis, a process particularly active in differentiated melanocytes and melanoma cells. Unexpectedly, we found that the high tyrosine concentrations promoted an early phenotypic drift towards either a mesenchymal-like or senescence-like phenotype, and prevented the establishment of cultures of melanoma cells harboring differentiated features, which we show are frequently present in human clinical biopsies. Moreover, the invasive phenotype emerging in these culture conditions appeared irreversible and, as expected, associated with intrinsic resistance to MAPKi. In sharp contrast, differentiated melanoma cell cultures retained their phenotypes upon propagation in low-tyrosine medium, and importantly their phenotypic plasticity, a key hallmark of melanoma cells. Altogether, our findings underline the importance of culturing melanoma cells in low-tyrosine-containing medium in order to preserve their phenotypic identity of origin and cellular plasticity.
Collapse
Affiliation(s)
- Ahmad Najem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jasper Wouters
- Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics KU Leuven, Leuven, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Rambow
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology KU Leuven, Leuven, Belgium
| | - Malak Sabbah
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - François Sales
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stein Aerts
- Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics KU Leuven, Leuven, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Human Anatomy and Experimental Oncology, Université de Mons, Mons, Belgium
| | - Jean-Christophe Marine
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology KU Leuven, Leuven, Belgium
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
HACE1-mediated NRF2 activation causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells. Signal Transduct Target Ther 2021; 6:399. [PMID: 34815381 PMCID: PMC8611003 DOI: 10.1038/s41392-021-00793-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
HACE1, an E3 ubiquitin-protein ligase, is frequently inactivated and has been evidenced as a putative tumor suppressor in different types of cancer. However, its role in glioma remains elusive. Here, we observed increased expression of HACE1 in gliomas related to control subjects, and found a strong correlation of high HACE1 expression with poor prognosis in patients with WHO grade III and IV as well as low-grade glioma (LGG) patients receiving radiotherapy. HACE1 knockdown obviously suppressed malignant behaviors of glioma cells, while ectopic expression of HACE1 enhanced cell growth in vitro and in vivo. Further studies revealed that HACE1 enhanced protein stability of nuclear factor erythroid 2-related factor 2 (NRF2) by competitively binding to NRF2 with another E3 ligase KEAP1. Besides, HACE1 also promoted internal ribosome entry site (IRES)-mediated mRNA translation of NRF2. These effects did not depend on its E3 ligase activity. Finally, we demonstrated that HACE1 dramatically reduced cellular ROS levels by activating NRF2, thereby decreasing the response of glioma cells to radiation. Altogether, our data demonstrate that HACE1 causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells by activating NRF2, and indicate that it may act as the role of prognostic factor and potential therapeutic target in glioma.
Collapse
|
11
|
Nurzat Y, Su W, Min P, Li K, Xu H, Zhang Y. Identification of Therapeutic Targets and Prognostic Biomarkers Among Integrin Subunits in the Skin Cutaneous Melanoma Microenvironment. Front Oncol 2021; 11:751875. [PMID: 34660316 PMCID: PMC8514842 DOI: 10.3389/fonc.2021.751875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The roles of different integrin alpha/beta (ITGA/ITGB) subunits in skin cutaneous melanoma (SKCM) and their underlying mechanisms of action remain unclear. Oncomine, UALCAN, GEPIA, STRING, GeneMANIA, cBioPortal, TIMER, TRRUST, and Webgestalt analysis tools were used. The expression levels of ITGA3, ITGA4, ITGA6, ITGA10, ITGB1, ITGB2, ITGB3, ITGB4, and ITGB7 were significantly increased in SKCM tissues. The expression levels of ITGA1, ITGA4, ITGA5, ITGA8, ITGA9, ITGA10, ITGB1, ITGB2, ITGB3, ITGB5, ITGB6 and ITGB7 were closely associated with SKCM metastasis. The expression levels of ITGA1, ITGA4, ITGB1, ITGB2, ITGB6, and ITGB7 were closely associated with the pathological stage of SKCM. The expression levels of ITGA6 and ITGB7 were closely associated with disease-free survival time in SKCM, and the expression levels of ITGA6, ITGA10, ITGB2, ITGB3, ITGB6, ITGB7, and ITGB8 were markedly associated with overall survival in SKCM. We also found significant correlations between the expression of integrin subunits and the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells). Finally, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and protein-protein interaction (PPI) networks were constructed. We have identified abnormally-expressed genes and gene regulatory networks associated with SKCM, improving understanding of the underlying pathogenesis of SKCM.
Collapse
Affiliation(s)
- Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weijie Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ke Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhou Q, Zhang J. K27-linked noncanonic ubiquitination in immune regulation. J Leukoc Biol 2021; 111:223-235. [PMID: 33857334 DOI: 10.1002/jlb.4ru0620-397rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a common form of posttranslational modification that has been implicated in regulating considerable immune signaling pathways. The functions of canonic K48- and K63-linked ubiquitination have been well studied. However, the roles of noncanonic ubiquitination remain largely unexplored and require further investigations. There is increasing evidence suggesting that K27-linked noncanonic ubiquitination turns out to be indispensable to both innate immune signaling and T cell signaling. In this review, we provide an overview of the latest findings related to K27-linked ubiquitination, and highlight the crucial roles of K27-linked ubiquitination in regulating antimicrobial response, cytokine signaling and response, as well as T cell activation and differentiation. We also propose interesting areas for better understanding how K27-linked ubiquitination regulates immunity.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
13
|
Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C, Ballotti R. An Update on the Role of Ubiquitination in Melanoma Development and Therapies. J Clin Med 2021; 10:jcm10051133. [PMID: 33800394 PMCID: PMC7962844 DOI: 10.3390/jcm10051133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.
Collapse
Affiliation(s)
- Frédéric Soysouvanh
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Serena Giuliano
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Nadia Habel
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Najla El-Hachem
- Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium;
| | - Céline Pisibon
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Corine Bertolotto
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Fondation ARC 2019, 06200 Nice, France
| | - Robert Ballotti
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France
- Correspondence: ; Tel.: +33-4-89-06-43-32
| |
Collapse
|
14
|
LC-MS/MS-Based Quantitative Proteomics Analysis of Different Stages of Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5561569. [PMID: 33728331 PMCID: PMC7937045 DOI: 10.1155/2021/5561569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has a higher incidence rate and mortality rate than all other cancers. Early diagnosis and treatment of lung cancer remain a major challenge, and the 5-year survival rate of its patients is only 15%. Basic and clinical research, especially the discovery of biomarkers, is crucial for improving the diagnosis and treatment of lung cancer patients. To identify novel biomarkers for lung cancer, we used the iTRAQ8-plex labeling technology combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the serum and urine of patients with different stages of lung adenocarcinoma and healthy individuals. A total of 441 proteins were identified in the serum, and 1,161 proteins were identified in the urine. The levels of elongation factor 1-alpha 2, proteasome subunit alpha type, and spermatogenesis-associated protein increased significantly in the serum of patients with lung cancer compared with those in healthy controls. The levels of transmembrane protein 143, cadherin 5, fibronectin 1, and collectin-11 decreased significantly in the serum of patients with metastases compared with those of nonmetastatic lung cancer patients. In the urine of stage III and IV lung cancer patients, the prostate-specific antigen and prostatic acid phosphatase decreased significantly, whereas neutrophil defensin 1 increased significantly. The results of LC-MS/MS were confirmed by enzyme-linked immunosorbent assay (ELISA) for transmembrane protein 143, cadherin 5, fibronectin 1, and collectin-11 in the serum. These proteins may be a potential early diagnosis and metastasis biomarkers for lung adenocarcinoma. Furthermore, the relative content of these markers in the serum and urine could be used to determine the progression of lung adenocarcinoma and achieve accurate staging and diagnosis.
Collapse
|
15
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
16
|
Palicharla VR, Gupta D, Bhattacharya D, Maddika S. Ubiquitin-independent proteasomal degradation of Spindlin-1 by the E3 ligase HACE1 contributes to cell-cell adhesion. FEBS Lett 2021; 595:491-506. [PMID: 33421097 DOI: 10.1002/1873-3468.14031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
HECT-E3 ligases play an essential role in catalyzing the transfer of ubiquitin to protein substrates. The noncatalytic roles of HECT-E3 ligases in cells are unknown. Here, we report that a HECT-E3 ligase, HACE1, functions as an adaptor independent of its E3 ligase activity. We identified Spindlin-1, a histone reader, as a new HACE1-associated protein. Interestingly, we found that HACE1 promotes Spindlin-1 degradation via the proteasome in an ubiquitination-independent manner. Functionally, we demonstrated that the loss of HACE1 results in weak cell-cell adhesion due to Spindlin-1-mediated accumulation of GDNF, a negative regulator of cell adhesion. Together, our data suggest that HACE1 acts as a molecular adaptor and plays an important noncatalytic role in presenting selected substrates directly to the proteasome for degradation.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India
| | - Devanshi Gupta
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India.,Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Debjani Bhattacharya
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India
| |
Collapse
|
17
|
FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells. Cell Death Differ 2021; 28:1837-1848. [PMID: 33462405 PMCID: PMC8184796 DOI: 10.1038/s41418-020-00710-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ubiquitination by serving as a major degradation signal of proteins, but also by controlling protein functioning and localization, plays critical roles in most key cellular processes. Here, we show that MITF, the master transcription factor in melanocytes, controls ubiquitination in melanoma cells. We identified FBXO32, a component of the SCF E3 ligase complex as a new MITF target gene. FBXO32 favors melanoma cell migration, proliferation, and tumor development in vivo. Transcriptomic analysis shows that FBXO32 knockdown induces a global change in melanoma gene expression profile. These include the inhibition of CDK6 in agreement with an inhibition of cell proliferation and invasion upon FBXO32 silencing. Furthermore, proteomic analysis identifies SMARC4, a component of the chromatin remodeling complexes BAF/PBAF, as a FBXO32 partner. FBXO32 and SMARCA4 co-localize at loci regulated by FBXO32, such as CDK6 suggesting that FBXO32 controls transcription through the regulation of chromatin remodeling complex activity. FBXO32 and SMARCA4 are the components of a molecular cascade, linking MITF to epigenetics, in melanoma cells.
Collapse
|
18
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Li JC, Chang X, Chen Y, Li XZ, Zhang XL, Yang SM, Hu CJ, Zhang H. Loss of the Tumor Suppressor HACE1 Contributes to Cancer Progression. Curr Drug Targets 2020; 20:1018-1028. [PMID: 30827236 DOI: 10.2174/1389450120666190227184654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/20/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
HACE1 belongs to the family of HECT domain-containing E3 ligases, which plays an important role in the occurrence, invasion and metastatic process in many human malignancies. HACE1 is a tumor suppressor gene that is reduced in most cancer tissues compared to adjacent normal tissue. The loss or knocking out of HACE1 leads to enhanced tumor growth, invasion, and metastasis; in contrast, the overexpression of HACE1 can inhibit the development of tumors. Hypermethylation reduces the expression of HACE1, thereby promoting tumor development. HACE1 can inhibit the development of inflammation or tumors via the ubiquitination pathway. Therefore, HACE1 may be a potential therapeutic target, providing new strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Jun-Chen Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xing Chang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xin-Zhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiang-Lian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Hao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
20
|
Melino G, Cecconi F, Pelicci PG, Mak TW, Bernassola F. Emerging roles of HECT-type E3 ubiquitin ligases in autophagy regulation. Mol Oncol 2019; 13:2033-2048. [PMID: 31441992 PMCID: PMC6763782 DOI: 10.1002/1878-0261.12567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved self-eating process that delivers cytoplasmic material to the lysosome to allow degradation of intracellular components, including soluble, unfolded and aggregated proteins, damaged organelles, and invading microorganisms. Autophagy provides a homeostatic control mechanism and is essential for balancing sources of energy in response to nutrient stress. Autophagic dysfunction or dysregulation has been implicated in several human pathologies, including cancer and neurodegeneration, and its modulation has substantial potential as a therapeutic strategy. Given the relevant clinical and therapeutic implications of autophagy, there is emerging intense interest in the identification of the key factors regulating the components of the autophagic machinery. Various post-translational modifications, including ubiquitylation, have been implicated in autophagy control. The list of the E3 ubiquitin protein ligases involved in the regulation of several steps of the autophagic process is continuously growing. In this review, we will focus on recent advances in the understanding of the role of the homologous to the E6AP carboxyl terminus-type E3 ubiquitin ligases in autophagy control.
Collapse
Affiliation(s)
- Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome “Tor Vergata”Italy
- Medical Research Council, Toxicology UnitUniversity of CambridgeUK
| | - Francesco Cecconi
- Cell Stress and Survival UnitDanish Cancer Society Research CenterCopenhagenDenmark
- Department of BiologyTor Vergata University of RomeItaly
- Department of Pediatric Hematology and OncologyIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Pier Giuseppe Pelicci
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Haemato‐OncologyMilan UniversityItaly
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstitutePrincess Margaret HospitalTorontoONCanada
| | - Francesca Bernassola
- Department of Experimental MedicineTORUniversity of Rome “Tor Vergata”Italy
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
21
|
Yu Z, Li Y, Han T, Liu Z. Demethylation of the HACE1 gene promoter inhibits the proliferation of human liver cancer cells. Oncol Lett 2019; 17:4361-4368. [PMID: 30988809 DOI: 10.3892/ol.2019.10139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) is frequently downregulated or lost in numerous types of cancer, including liver cancer. The aim of the present study was to examine whether demethylation of the HACE1 gene could inhibit tumour progression. The expression of HACE1 was detected in liver cancer cell lines. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas)-based demethylation single guide RNAs for the HACE1 gene promoter were designed and transfected into liver cancer cells. Subsequently, proliferation was detected by MTT and colony formation assays, and optineurin (OPTN) ubiquitination and microtubule-associated proteins 1A/1B light chain 3B protein levels were detected by immunoblotting. The levels of HACE1 were significantly reduced in liver cancer cell lines compared with in a normal liver cell line. Demethylation of the HACE1 gene promoter increased HACE1 expression, inhibited the proliferation of liver cancer cells, and promoted OPTN ubiquitination and autophagy activity in liver cancer cells. In conclusion, activation of HACE1 expression by promoter demethylation may provide a suitable approach for anticancer therapy.
Collapse
Affiliation(s)
- Zhijun Yu
- Department of 2016 Levels of Integrated Traditional Chinese and Western Medicine Clinical Oncology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, Liaoning 110847, P.R. China.,Oncology Diagnosis and Treatment Center, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yinyin Li
- Department of Oncology, Shenyang Tenth People's Hospital, Shenyang, Liaoning 110849, P.R. China
| | - Tao Han
- Oncology Diagnosis and Treatment Center, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Zhaozhe Liu
- Department of 2016 Levels of Integrated Traditional Chinese and Western Medicine Clinical Oncology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, Liaoning 110847, P.R. China.,Oncology Diagnosis and Treatment Center, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
22
|
Zhou Z, Zhang HS, Zhang ZG, Sun HL, Liu HY, Gou XM, Yu XY, Huang YH. Loss of HACE1 promotes colorectal cancer cell migration via upregulation of YAP1. J Cell Physiol 2018; 234:9663-9672. [PMID: 30362561 DOI: 10.1002/jcp.27653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third-leading cause of cancer mortality worldwide. HACE1 function as a tumor-suppressor gene and is downregulated in several kinds of cancers. However, the distribution and clinical significance of HACE1 in CRC is still not clarified. In this study, we found that the HACE1 expression is greatly downregulated in CRC tissues and cell lines. Moreover, the HACE1 expression was significantly associated with inhibition of CRC cell proliferation, metastasis, and invasion. HACE1 inhibited epithelial-mesenchymal transition in CRC cells. Furthermore, we found that HACE1 altered the protein expression of the Hippo pathway by downregulation of YAP1. HACE1 suppresses the invasive ability of CRC cells by negatively regulating the YAP1 pathway. Our data indicates that HACE1 directly targets YAP1 and induces downregulation of YAP1, thereby increasing the activity of the Hippo pathway. In summary, these findings demonstrated that HACE1-YAP1 axis had an important part in the CRC development and progression.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Hong-Sheng Zhang
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Zhong-Guo Zhang
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Hong-Liang Sun
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Hui-Yun Liu
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Xiao-Meng Gou
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Xiao-Ying Yu
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ying-Hui Huang
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|