1
|
Latchford LP, Perez LS, Conage-Pough JE, Turk R, Cusimano MA, Vargas VI, Arora S, Shienvold SR, Kulp RR, Belverio HM, White FM, Thévenin AF. Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward Connexin 43. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573692. [PMID: 38234737 PMCID: PMC10793482 DOI: 10.1101/2023.12.30.573692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ~140 amino acid-long C terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators. Phosphorylation of these sites by JNK and p38, on the other hand, is not well-established. Indeed, ERK is a kinase activated by growth factors and is upregulated in diseases, such as cancer. JNK and p38, however, have a largely tumor-suppressive function due to their stress-activated and apoptotic role. We investigated substrate specificity of all three MAPKs toward Cx43CT, first by using purified proteins, and then in two cell lines (MDCK: non-cancerous, epithelial cells and porcine PAECs: pulmonary artery endothelial cells). Cx43 phosphorylation was monitored through gel-shift assays on an SDS-PAGE, immunodetection with phospho-Cx43 antibodies, and LC-MS/MS phosphoproteomic analyses. Our results demonstrate that p38 and JNK specificity differ from each other and from ERK. JNK has a strong preference for S255, S262, and S279, while p38 readily phosphorylates S262, S279, and S282. While we confirmed that ERK can phosphorylate all four serines (255, 262, 279, and 282), we also identified T290 as a novel ERK phosphorylation site. In addition, we assessed Cx43 GJ function upon activation or inhibition of each MAPK in PAECs. This work underscores the importance of delineating the effects of ERK, JNK, and p38 signaling on Cx43 and GJ function.
Collapse
|
2
|
Wang J, Gu Y, Sun Y, Qiao Q, Huang X, Yang K, Bai Y. Adipogenic differentiation effect of human periodontal ligament stem cell initial cell density on autologous cells and human bone marrow stromal cells. Cell Biochem Funct 2024; 42:e4069. [PMID: 38940455 DOI: 10.1002/cbf.4069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 μg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yingzhi Gu
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yaxi Sun
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qingchen Qiao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kai Yang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Huang Y, Wei C, Li P, Shao Y, Wang M, Wang F, Niu G, Sun K, Zhang Q, Gou Z, Yan X. FGF21 protects against doxorubicin-induced cardiotoxicity by inhibiting connexin 43 ubiquitination. Free Radic Biol Med 2023; 208:748-758. [PMID: 37774805 DOI: 10.1016/j.freeradbiomed.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) regulates glycolipid metabolism and insulin homeostasis and acts as a cardioprotective factor by protecting against myocardial ischemia/reperfusion injury, hypertension, and vascular dysfunction. FGF21 has been reported to prevent Doxorubicin (Dox)-induced cardiotoxicity, and the related signaling pathway is worthy of further study. Connexin43 (Cx43) protein was reduced by Dox treatment, especially low phosphorylated form of Cx43. Thus the aim of study is to explore the protection effect of FGF21 on Dox induced cardiotoxicity by improving the expression of Cx43 and the involved signaling pathway. METHODS AND RESULTS FGF21 inhibited apoptosis in Dox-treated mice and cardiomyocytes. FGF21 increased the levels of connexin43 phosphorylated at serine (S) 282 (p-Cx43 S282) and total Cx43 to inhibit Dox-induced apoptosis. By RNA sequencing, we found that deubiquitinase monocyte chemoattractant protein-induced protein 1 (MCPIP1) expression was increased by FGF21. We further found that FGF21 induced the phosphorylation of fibroblast growth factor receptor 1 (FGFR1), extracellular signal-regulated kinase 1 and 2 (Erk1/2), and Elk. Phosphorylated Elk translocated to the nucleus and increased the expression of MCPIP1. Then, MCPIP1 bound neural precursor cell expressed developmentally downregulated protein 4 (Nedd4), an E3 ubiquitination ligase, as shown by co-immunoprecipitation (Co-IP), and suppressed Cx43 ubiquitination and degradation, competitively inhibiting the binding of Cx43 with Nedd4. Thus Nedd4 could not bind and ubiquitinate Cx43, leading to the up-regulation of Cx43 and phosphorylation of Cx43 at S282. CONCLUSIONS FGF21 inhibited the effects of Dox on cardiomyocytes by elevating the phosphorylation of Cx43 at S282 and total Cx43 expression. This study suggests a previously unknown mechanism for the FGF21-mediated enhancement of cardiomyocyte survival and provides an effective approach to protect against the adverse cardiac effects of Dox.
Collapse
Affiliation(s)
- Ying Huang
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Chenchen Wei
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Ping Li
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Yaqing Shao
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Min Wang
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Feng Wang
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Guanghao Niu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Kangyun Sun
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China
| | - Qian Zhang
- Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China.
| | - Zhongshan Gou
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China.
| | - Xinxin Yan
- Center for Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, PR China.
| |
Collapse
|
4
|
Zhu J, Li Q, Sun Y, Zhang S, Pan R, Xie Y, Chen J, Shi L, Chen Y, Sun Z, Zhang L. Insulin-Like Growth Factor 1 Receptor Deficiency Alleviates Angiotensin II-Induced Cardiac Fibrosis Through the Protein Kinase B/Extracellular Signal-Regulated Kinase/Nuclear Factor-κB Pathway. J Am Heart Assoc 2023; 12:e029631. [PMID: 37721135 PMCID: PMC10547288 DOI: 10.1161/jaha.123.029631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Background The renin-angiotensin system plays a crucial role in the development of heart failure, and Ang II (angiotensin II) acts as the critical effector of the renin-angiotensin system in regulating cardiac fibrosis. However, the mechanisms of cardiac fibrosis are complex and still not fully understood. IGF1R (insulin-like growth factor 1 receptor) has multiple functions in maintaining cardiovascular homeostasis, and low-dose IGF1 treatment is effective in relieving Ang II-induced cardiac fibrosis. Here, we aimed to investigate the molecular mechanism of IGF1R in Ang II-induced cardiac fibrosis. Methods and Results Using primary mouse cardiac microvascular endothelial cells and fibroblasts, in vitro experiments were performed. Using C57BL/6J mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated IGF1R heterozygous knockout (Igf1r+/-) mice, cardiac fibrosis mouse models were induced by Ang II for 2 weeks. The expression of IGF1R was examined by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Mice heart histologic changes were evaluated using Masson and picro sirius red staining. Fibrotic markers and signal molecules indicating the function of the Akt (protein kinase B)/ERK (extracellular signal-regulated kinase)/nuclear factor-κB pathway were detected using quantitative reverse transcription polymerase chain reaction and Western blot. RNA sequencing was used to explore IGF1R-mediated target genes in the hearts of mice, and the association of IGF1R and G-protein-coupled receptor kinase 5 was identified by coimmunoprecipitation. More important, blocking IGF1R signaling significantly suppressed endothelial-mesenchymal transition in primary mouse cardiac microvascular endothelial cells and mice in response to transforming growth factor-β1 or Ang II, respectively. Deficiency or inhibition of IGF1R signaling remarkably attenuated Ang II-induced cardiac fibrosis in primary mouse cardiac fibroblasts and mice. We further observed that the patients with heart failure exhibited higher blood levels of IGF1 and IGF1R than healthy individuals. Moreover, Ang II treatment significantly increased cardiac IGF1R in wild type mice but led to a slight downregulation in Igf1r+/- mice. Interestingly, IGF1R deficiency significantly alleviated cardiac fibrosis in Ang II-treated mice. Mechanistically, the phosphorylation level of Akt and ERK was upregulated in Ang II-treated mice, whereas blocking IGF1R signaling in mice inhibited these changes of Akt and ERK phosphorylation. Concurrently, phosphorylated p65 of nuclear factor-κB exhibited similar alterations in the corresponding group of mice. Intriguingly, IGF1R directly interacted with G-protein-coupled receptor kinase 5, and this association decreased ≈50% in Igf1r+/- mice. In addition, Grk5 deletion downregulated expression of the Akt/ERK/nuclear factor-κB signaling pathway in primary mouse cardiac fibroblasts. Conclusions IGF1R signaling deficiency alleviates Ang II-induced cardiac fibrosis, at least partially through inhibiting endothelial-mesenchymal transition via the Akt/ERK/nuclear factor-κB pathway. Interestingly, G-protein-coupled receptor kinase 5 associates with IGF1R signaling directly, and it concurrently acts as an IGF1R downstream effector. This study suggests the promising potential of IGF1R as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Jiafeng Zhu
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Qian Li
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Yan Sun
- Department of StomatologyWeifang Medical UniversityWeifangChina
| | - Shiyu Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Ruiyan Pan
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Yanguang Xie
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Jinyan Chen
- Department of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Lihong Shi
- Department of Rehabilitation MedicineWeifang Medical UniversityWeifangChina
| | - Yanbo Chen
- Department of Cardiology, The First Affiliated HospitalWeifang Medical UniversityWeifangChina
| | - Zhipeng Sun
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Lane Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| |
Collapse
|
5
|
Wu L, Jiang T, Fu Z, Wang L, You H, Xue J, Luo D. Connexin 43 dephosphorylation at serine 282 induces spontaneous arrhythmia and increases susceptibility to ischemia/reperfusion injury. Heliyon 2023; 9:e15879. [PMID: 37215881 PMCID: PMC10196788 DOI: 10.1016/j.heliyon.2023.e15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background Connexin 43 (Cx43), the predominant gap junction protein in hearts, is modified by specific (de)phosphorylation events under physiological and pathological states to affect myocardium function and structure. Previously we found that deficiency in Cx43 S282 phosphorylation could impair intercellular communication and contribute to cardiomyocyte apoptosis by activating p38 mitogen-activated protein kinase (p38 MAPK)/factor-associated suicide (Fas)/Fas-associating protein with a novel death domain (FADD) pathway, which is involved in myocardium injury in ischemia/reperfusion (I/R) heart. In addition, mutant at Cx43 S282 substituted with alanine heterozygous mice (S282A+/-) exhibited different degrees of ventricular arrhythmias and only some underwent myocardium apoptosis. In this study, we aimed to investigate the role of Cx43 pS282 in different cardiac pathological phenotypes. Methods We examined cardiac function, structure, and relevant protein expression in S282A+/- mice (aged 2, 10 and 30 weeks) by electrocardiograph, echocardiography, histological staining, and co-immunoprecipitation followed by Western blot. Intraperitoneal isoprenaline injection and I/R surgery were applied in S282A+/- mice as external stimulus. 2,3,5-triphenyltetrazolium chloride staining was used for myocardium infarction evaluation. Results Adult S282A+/- mice (aged 10 and 30 weeks) still exhibited spontaneous arrhythmia. Unlike neonatal stage (aged around 2 weeks), no apoptosis-related manifestations and the activation of p38 MAPK-Fas-FADD apoptotic pathway were observed in adult S282A+/- hearts. S282A+/- neonatal mice with cardiomyocytes apoptosis exhibited more than 60% dephosphorylation at Cx43 S282 than WT mice, while less than 40% S282 dephosphorylation were found in adult S282A+/- mice. In addition, although S282A+/- mice displayed normal cardiac function, they were highly susceptible to isoproterenol-induced ECG alternans and prone to cardiac injury and deaths upon I/R attack. Conclusions These results reinforce that Cx43 S282 dephosphorylation acts as a susceptibility factor in regulating cardiomyocyte survival and cardiac electrical homeostasis in basal conditions and contributes to myocardium injury in the setting of I/R. Cx43 S282 phosphorylation was competent to induce spontaneous arrhythmias, cardiomyocyte apoptosis and deaths based on the degree of S282 dephosphorylation.
Collapse
Affiliation(s)
- Lulin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Tianhui Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Zhiping Fu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Luqi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Hongjie You
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Jingyi Xue
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Dali Luo
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
6
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
7
|
Kwek XY, Hall AR, Lim WW, Katwadi K, Soong PL, Grishina E, Lin KH, Crespo-Avilan G, Yap EP, Ismail NI, Chinda K, Chung YY, Wei H, Shim W, Montaigne D, Tinker A, Ong SB, Hausenloy DJ. Role of cardiac mitofusins in cardiac conduction following simulated ischemia-reperfusion. Sci Rep 2022; 12:21049. [PMID: 36473917 PMCID: PMC9727036 DOI: 10.1038/s41598-022-25625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.
Collapse
Affiliation(s)
- Xiu-Yi Kwek
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Andrew R. Hall
- grid.83440.3b0000000121901201The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Wei-Wen Lim
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Khairunnisa Katwadi
- grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Poh Loong Soong
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Cardiovascular Translational Program, Cardiovascular Research Institute (CVRI), National University of Singapore, Singapore, Singapore ,grid.412106.00000 0004 0621 9599Department of Medicine, National University Hospital of Singapore (NUHS), Singapore, Singapore ,Ternion Biosciences, Singapore, Singapore
| | | | | | - Gustavo Crespo-Avilan
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore ,grid.8664.c0000 0001 2165 8627Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany
| | - En Ping Yap
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Nur Izzah Ismail
- grid.10784.3a0000 0004 1937 0482Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong, SAR China
| | - Kroekkiat Chinda
- grid.412029.c0000 0000 9211 2704Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ,grid.412029.c0000 0000 9211 2704Integrative Cardiovascular Research Unit, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ying Ying Chung
- grid.428397.30000 0004 0385 0924Centre for Vision Research, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Heming Wei
- grid.414963.d0000 0000 8958 3388Research Laboratory, KK Women’s & Children’s Hospital, Singapore, Singapore
| | - Winston Shim
- grid.486188.b0000 0004 1790 4399Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - David Montaigne
- grid.503422.20000 0001 2242 6780Inserm, CHU Lille, Institut Pasteur Lille, U1011-European Genomic Institute for Diabetes (EGID), University of Lille, 59000 Lille, France
| | - Andrew Tinker
- grid.4868.20000 0001 2171 1133Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Sang-Bing Ong
- grid.10784.3a0000 0004 1937 0482Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong, SAR China ,grid.9227.e0000000119573309Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK), Chinese Academy of Sciences, Kunming, Yunnan China ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute (SZRI), Chinese University of Hong Kong (CUHK), Shenzhen, China
| | - Derek J. Hausenloy
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.83440.3b0000000121901201The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Contraction Band Necrosis with Dephosphorylated Connexin 43 in Rat Myocardium after Daily Cocaine Administration. Int J Mol Sci 2022; 23:ijms231911978. [PMID: 36233284 PMCID: PMC9570416 DOI: 10.3390/ijms231911978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
Contraction band necrosis (CBN) is a common abnormality found in the myocardium of cocaine abusers, but is rarely reported in experimental models of cocaine abuse. Connexin 43 (Cx43) is essential for cardiac intercellular communication and the propagation of CBN. Under stress or injury, cardiac Cx43 is dephosphorylated, which is related to cardiomyocyte dysfunction and pathogenesis, whereas adiponectin exerts beneficial effects in the myocardium. In this study, we explore the effects of cocaine on cardiac Cx43 in vivo. Rats were administered cocaine via the tail vein at 20 mg/kg/day for 14 days, and showed widespread CBN, microfocal myocarditis and myocardial fibrosis, corresponding to a dysfunction of cardiac mitochondria under increased oxidative stress. The increase in dephosphorylated cardiac Cx43 and its negative correlation with the myocardial distribution of CBN after cocaine administration were determined. In addition, apoptosis and necroptosis, as well as increased adiponectin levels, were observed in the myocardium after cocaine exposure. Accordingly, we found altered profiles of cardiac Cx43, CBN and its negative correlation with dephosphorylated cardiac Cx43, and the possible involvement of adiponectin in the myocardium after 14 days of cocaine administration. The latter might play a protective role in the cardiotoxicity of cocaine. The current findings would be beneficial for establishing novel therapeutic strategies in cocaine-induced cardiac consequences.
Collapse
|
9
|
Huang W, Wang Y, He T, Zhu J, Li J, Zhang S, Zhu Y, Xu Y, Xu L, Wang H, Yu R, Song L. Arteannuin B Enhances the Effectiveness of Cisplatin in Non-Small Cell Lung Cancer by Regulating Connexin 43 and MAPK Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1963-1992. [PMID: 36040035 DOI: 10.1142/s0192415x22500847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cisplatin (DDP)-based chemotherapy is the first-line regimen for advanced non-small cell lung cancer (NSCLC) patients. However, advanced NSCLC patients may have innate resistance to DDP or develop resistance during DDP treatment. We investigated a natural compound, arteannuin B (Art B), for its potential effects on DDP resistance in NSCLC. Art B was isolated from Artemisia annua by chromatographic purification and spectral elucidation. The activities of Art B on DDP-mediated effects were examined using in vitro and in vivo assays. We observed significant correlations in T stage, clinical stage, chemotherapy resistance and poor survival of NSCLC patients with low Cx43 expression. Art B enhanced the effectiveness of cisplatin by increasing Cx43 expression in normal and DDP-resistant NSCLC cells. Art B also increased DDP uptake through up-regulating Cx43. The combination of DDP and Art B showed better therapeutic effect than individual treatments both in vitro and in vivo. Art B increased intracellular Fe[Formula: see text] level, promoted calcium influx, and activated gap junction and MAPK pathways, which might contribute to Art B-mediated effects. Art B may serve as a new drug candidate to enhance the antitumor effect of DDP on NSCLC.
Collapse
Affiliation(s)
- Weijuan Huang
- Department of Pharmacology, College of Pharmacy, P. R. China
| | - Yanqing Wang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Tingsha He
- Department of Pharmacology, College of Pharmacy, P. R. China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Jianhuan Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Sirui Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Yong Zhu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230002, P. R. China
| | - Yafang Xu
- Department of Pharmacology, College of Pharmacy, P. R. China
| | - Lv Xu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Haoran Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, P. R. China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, P. R. China
| |
Collapse
|
10
|
Fu ZP, Wu LL, Xue JY, Zhang LE, Li C, You HJ, Luo DL. Connexin 43 hyper-phosphorylation at serine 282 triggers apoptosis in rat cardiomyocytes via activation of mitochondrial apoptotic pathway. Acta Pharmacol Sin 2022; 43:1970-1978. [PMID: 34931018 PMCID: PMC9343349 DOI: 10.1038/s41401-021-00824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cx43 is the major connexin in ventricular gap junctions, and plays a pivotal role in control of electrical and metabolic communication among adjacent cardiomyocytes. We previously found that Cx43 dephosphorylation at serine 282 (pS282) caused cardiomyocyte apoptosis, which is involved in cardiac ischemia/reperfusion injury. In this study we investigated whether Cx43-S282 hyper-phosphorylation could protect cardiomyocytes against apoptosis. Adenovirus carrying rat full length Cx43 gene (Cx43-wt) or a mutant gene at S282 substituted with aspartic acid (S282D) were transfected into neonatal rat ventricular myocytes (NRVMs) or injected into rat ventricular wall. Rat abdominal aorta constriction model (AAC) was used to assess Cx43-S282 phosphorylation status. We showed that Cx43 phosphorylation at S282 was increased over 2-times compared to Cx43-wt cells at 24 h after transfection, while pS262 and pS368 were unaltered. S282D-transfected cells displayed enhanced gap junctional communication, and increased basal intracellular Ca2+ concentration and spontaneous Ca2+ transients compared to Cx43-wt cells. However, spontaneous apoptosis appeared in NRVMs transfected with S282D for 34 h. Rat ventricular myocardium transfected with S282D in vivo also exhibited apoptotic responses, including increased Bax/Bcl-xL ratio, cytochrome c release as well as caspase-3 and caspase-9 activities, while factor-associated suicide (Fas)/Fas-associated death domain expression and caspase-8 activity remained unaltered. In addition, AAC-induced hypertrophic ventricles had apoptotic injury with Cx43-S282 hyper-phosphorylation compared with Sham ventricles. In conclusion, Cx43 hyper-phosphorylation at S282, as dephosphorylation, also triggers cardiomyocyte apoptosis, but through activation of mitochondrial apoptosis pathway, providing a fine-tuned Cx43-S282 phosphorylation range required for the maintenance of cardiomyocyte function and survival.
Collapse
Affiliation(s)
- Zhi-ping Fu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Lu-lin Wu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Jing-yi Xue
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Lan-e Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Chen Li
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Hong-jie You
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Da-li Luo
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
11
|
Xia Y, He F, Moukeila Yacouba MB, Zhou H, Li J, Xiong Y, Zhang J, Li H, Wang Y, Ke J. Adenosine A2a Receptor Regulates Autophagy Flux and Apoptosis to Alleviate Ischemia-Reperfusion Injury via the cAMP/PKA Signaling Pathway. Front Cardiovasc Med 2022; 9:755619. [PMID: 35571159 PMCID: PMC9099415 DOI: 10.3389/fcvm.2022.755619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Exploring effective methods to lessen myocardial ischemia-reperfusion injury still has positive significance. The adenosine A2a receptor (A2aR) has played a crucial part in cardiac ischemia-reperfusion injury. Previous studies revealed that the adenosine A2a receptor regulated autophagy, but the specific mechanism in myocardial ischemia-reperfusion injury was still unclear. We established an ischemia-reperfusion model (30 min of ischemia and 2 h of reperfusion) in vivo and a model with oxygen-glucose deprivation for 6 h and reoxygenation for 18 h (OGDR) in vitro. The ischemia-reperfusion injury resulted in prolonged QTc interval, left ventricular systolic dysfunction, and myocardial infarction. In vitro model, we found that the OGDR-induced autophagosomes and apoptosis caused myocardial cell death, as evidenced by a significant increase in the generation of lactate dehydrogenase and creatine kinase-MB. Furthermore, overactivated autophagy with rapamycin showed an anti-apoptotic effect. The interaction between autophagy and apoptosis in myocardial ischemia-reperfusion injury was complex and variable. We discovered that the activation of adenosine A2a receptor could promote the expression of Bcl-2 to inhibit the levels of Beclin-1 and LC3II. The number of autophagosomes exceeded that of autolysosomes under OGDR, but the result reversed after A2aR activation. Activated A2aR with its agonist CGS21680 before reperfusion saved cellular survival through anti-apoptosis and anti-autophagy effect, thus improving ventricular contraction disorders, and visibly reducing myocardial infarction size. The myocardial protection of adenosine A2a receptor after ischemia may involve the cAMP-PKA signaling pathway and the interaction of Bcl-2-Beclin-1.
Collapse
|
12
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
13
|
Thu VT, Kim HK. Majonoside-R2 Postconditioning Protects Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Attenuating the Expression of HIF1 α and Activating RISK Pathway. J Med Food 2021; 24:1222-1229. [PMID: 34714126 DOI: 10.1089/jmf.2021.k.0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reoxygenation of hypoxic cardiac myocytes can paradoxically induce myocardial injury and affect the recovery processes. Pharmacological postconditioning is an efficient strategy used in clinical practice that protects cardiomyocytes from hypoxia/reoxygenation (HR) injury. Natural products or foods have been known to possess effective cardioprotective properties. Majonoside-R2 (MR2) is a dominant saponin component of Vietnamese ginseng that has several biological effects. In this study, we evaluated the protective effect of MR2 on HR-stimulated cardiomyocytes and investigated the related molecular mechanisms. H9C2 cardiomyocytes were exposed to HR conditions with or without MR2 supplementation. Samples from experimental groups were used to analyze the expression of apoptosis- and activating reperfusion injury salvage kinase (RISK)-related factors in response to HR injury by using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Post-treatment, MR2 enhanced cell viability under HR conditions. We found that MR2 suppressed the expression of hypoxia-inducible factor 1-alpha (HIF1α) and transforming growth factor beta 1 (TGFβ1), modulated Akt/GSK3ß/cAMP response element-binding signaling, and regulated gene expression related to apoptosis (B cell lymphoma-extra-large [Bcl-xl], Bcl-2 homologous killer [Bak], Bcl-2 associated X [Bax], and connexin 43 [Cnx43]). Thus, the present findings demonstrate that MR2 protects cardiomyocytes against HR injury by suppressing the expression of HIF1α and activating the RISK pathway.
Collapse
Affiliation(s)
- Vu Thi Thu
- Center for Life Science Research, Faculty of Biology, and VNU University of Science, Vietnam National Univeristy, Hanoi, Vietnam.,The Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National Univeristy, Hanoi, Vietnam
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Research Center and Inje University, Busan, Korea.,Smart Marine Therapeutic Center, Inje University, Busan, Korea
| |
Collapse
|
14
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
15
|
Sun Z, Wang L, Han L, Wang Y, Zhou Y, Li Q, Wu Y, Talabieke S, Hou Y, Wu L, Liu R, Fu Z, You H, Li BY, Zheng Y, Luo D. Functional Calsequestrin-1 Is Expressed in the Heart and Its Deficiency Is Causally Related to Malignant Hyperthermia-Like Arrhythmia. Circulation 2021; 144:788-804. [PMID: 34162222 DOI: 10.1161/circulationaha.121.053255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca2+ and regulate its release in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often suffer from arrhythmia for which the underlying mechanism remains unknown. Methods: Working hearts from conventional (Casq1-KO) and cardiac-specific (Casq1-CKO) Casq1 knockout mice were monitored in vivo and ex vivo by electrocardiogram and electrical mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes (NRVMs) with knockdown, over-expression or truncation of the Casq1 gene. Conformational change in both Casqs was determined by crosslinking Western blot analysis. Results: Like MH/EHS patients, Casq1-KO and Casq1-CKO mice had faster basal heart rate, and ventricular tachycardia upon exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electrical triggering also occurred in Casq1-KO hearts ex vivo. Accordingly, the ventricular cardiomyocytes from Casq1-CKO mice displayed dantrolene-sensitive increased Ca2+ waves and diastole premature Ca2+ transients/oscillations upon isoflurane. NRVMs with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients upon isoflurane, while cells over-expressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C-terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with RyR2 in the ventricular SR. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41ºC induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/RyR2 interaction and increased RyR2 activity in the ventricle. Conclusions: Casq1 is expressed in the heart, where it regulates SR Ca2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on RyR2-mediated Ca2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.
Collapse
Affiliation(s)
- Zhipeng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Luqi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Lu Han
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Yue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Yuan Zhou
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Shaletanati Talabieke
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine; National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang 050200, P. R. China
| | - Lulin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Ronghua Liu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Zhiping Fu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Hongjie You
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Dali Luo
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
16
|
Chen Y, Pan R, Zhang J, Liang T, Guo J, Sun T, Fu X, Wang L, Zhang L. Pinoresinol diglucoside (PDG) attenuates cardiac hypertrophy via AKT/mTOR/NF-κB signaling in pressure overload-induced rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113920. [PMID: 33607200 DOI: 10.1016/j.jep.2021.113920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinoresinol diglucoside (PDG), the active compound extracted from Eucommia ulmoides, Styrax sp. and Forsythia suspensa, plays the roles in regulating hypertension, inflammation and oxidative stress. AIMS Considering that hypertension and inflammation has been proved to contribute to cardiac remodeling, we tested the effects of PDG on cardiac hypertrophy (CM). METHODS Male Sprague Dawley (SD) rats were used to construct hypertrophic rats by partial abdominal aortic constriction (AAC)-surgery. PDG solution (2 mg/ml) was used to treat AAC-induced rats by intraperitoneal injection at low dose (L-PDG, 2.5 mg/kg per day), medium dose (M-PDG, 5 mg/kg per day), and high dose (H-PDG, 7.5 mg/kg per day) for 3 weeks post AAC-surgery. CM was evaluated by the ratio of left ventricular weight to body weight ratio (LVW/BW), left ventricular wall thickness by H&E staining, and collagen content deposit by Masson's staining. Further, isoproterenol (ISO) and phenylephrine (PE) were used to produce cellular models of CM in neonatal rat ventricular cardiomyocytes (NRVMs). PDG pre-treated NRVMs 2 h at low dose (L-PDG, 2.5 μg/ml), medium dose (M-PDG, 5 μg/ml), and high dose (H-PDG, 7.5 μg/ml) for 24 h with or without PE- and ISO-stimulation. CM was evaluated by the expressions of hypertrophic biomarkers. Next, the hypertrophic biomarkers and pro-inflammatory cytokines were measured using quantitative real-time PCR (qRT-PCR), the expressions of protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/transcription factor nuclear factor-kappa B (NF-kB) signaling pathway were determined by Western blotting. RESULTS PDG treatment prevented cardiac histomorphology damages, decreased upregulations of hypertrophic biomarkers, and prevented fibrosis and inflammation after pressure overload resulting from AAC-surgery. Consistently, PDG remarkably inhibited the changes of cardiomyocyte hypertrophic biomarkers and inflammatory responses in cellular models of CM. Interestingly, PDG administration inhibited the activation of AKT/mTOR/NF-kB signaling pathway both in vivo and in vitro. CONCLUSIONS PDG prevents AAC-induced CM in vivo, PE- and ISO-induced CM in vitro. The AKT/mTOR/NF-kB signaling pathway could be the potential therapeutic target involved in the protection of PDG. These findings provide novel evidence that PDG might be a promising therapeutic strategy for CM.
Collapse
Affiliation(s)
| | | | | | | | | | - Tai Sun
- School of Basic Medicine, PR China
| | | | - Ling Wang
- Medical Experiment and Training Center, Weifang Medical University, Weifang 261053, PR China
| | | |
Collapse
|
17
|
Liu L, Yan M, Yang R, Qin X, Chen L, Li L, Si J, Li X, Ma K. Adiponectin Attenuates Lipopolysaccharide-induced Apoptosis by Regulating the Cx43/PI3K/AKT Pathway. Front Pharmacol 2021; 12:644225. [PMID: 34084134 PMCID: PMC8167433 DOI: 10.3389/fphar.2021.644225] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiomyocyte apoptosis is a crucial factor leading to myocardial dysfunction. Adiponectin (APN) has a cardiomyocyte-protective impact. Studies have shown that the connexin43 (Cx43) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathways play an important role in the heart, but whether APN plays a protective role by regulating these pathways is unclear. Our study aimed to confirm whether APN protects against lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis and to explore whether it plays an important role through regulating the Cx43 and PI3K/AKT signaling pathways. In addition, our research aimed to explore the relationship between the Cx43 and PI3K/AKT signaling pathways. In vitro experiments: Before H9c2 cells were treated with LPS for 24 h, they were pre-treated with APN for 2 h. The cytotoxic effect of APN on H9c2 cells was evaluated by a CCK-8 assay. The protein levels of Bax, Bcl2, cleaved caspase-3, cleaved caspase-9, Cx43, PI3K, p-PI3K, AKT and p-AKT were evaluated by Western blot analysis, and the apoptosis rate was evaluated by flow cytometry. APN attenuated the cytotoxicity induced by LPS. LPS upregulated Bax, cleaved caspase-3 and cleaved caspase-9 and downregulated Bcl2 in H9c2 cells; however, these effects were attenuated by APN. In addition, LPS upregulated Cx43 expression, and APN downregulated Cx43 expression and activated the PI3K/AKT signaling pathway. LPS induced apoptosis and inhibited PI3K/AKT signaling pathway in H9c2 cells, and these effects were attenuated by Gap26 (a Cx43 inhibitor). Moreover, the preservation of APN expression was reversed by LY294002 (a PI3K/AKT signaling pathway inhibitor). In vivo experiments: In C57BL/6J mice, a sepsis model was established by intraperitoneal injection of LPS, and APN was injected into enterocoelia. The protein levels of Bax, Bcl2, cleaved caspase-3, and Cx43 were evaluated by Western blot analysis, and immunohistochemistry was used to detect Cx43 expression and localization in myocardial tissue. LPS upregulated Bax and cleaved caspase-3 and downregulated Bcl2 in sepsis; however, these effects were attenuated by APN. In addition, the expression of Cx43 was upregulated in septic myocardial tissue, and APN downregulated Cx43 expression in septic myocardial tissue. In conclusion, both in vitro and in vivo, the data demonstrated that APN can protect against LPS-induced apoptosis during sepsis by modifying the Cx43 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuqing Qin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Ling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
18
|
Katturajan R, Evan Prince S. A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. Life Sci 2021; 280:119629. [PMID: 34004253 DOI: 10.1016/j.lfs.2021.119629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
Drug-induced organ toxicity/injury, especially in the liver, kidney, and gastrointestinal tract, is a systematic disorder that causes oxidative stress formation and inflammation resulting in cell death and organ failure. Current therapies target reactive oxygen species (ROS) scavenging and inhibit inflammatory factors in organ injury to restore the functions and temporary relief. Organ cell function and tissue homeostasis are maintained through gap junction intercellular communication, regulating connexin hemichannels. Mis-regulation of such connexin, especially connexin (Cx) 43, affects a comprehensive process, including cell differentiation, inflammation, and cell death. Aim to describe knowledge about the importance of connexin role and insights therapeutic targeting. Cx43 misregulation has been implicated in recent decades in various diseases. Moreover, in recent years there is increasing evidence that Cx43 is involved in the toxicity process, including hepatic, renal, and gastrointestinal disorders. Cx43 has the potential to initiate the immune system to cause cell death, which has been activated in the acceleration of apoptosis, necroptosis, and autophagy signaling pathway. So far, therapies targeting Cx43 have been under inspection and are subjected to clinical trial phases. This review elucidates the role of Cx43 in drug-induced vital organ injury, and recent reports compromise its function in the major signaling pathways.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Yawer A, Sychrová E, Labohá P, Raška J, Jambor T, Babica P, Sovadinová I. Endocrine-disrupting chemicals rapidly affect intercellular signaling in Leydig cells. Toxicol Appl Pharmacol 2020; 404:115177. [PMID: 32739526 DOI: 10.1016/j.taap.2020.115177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023]
Abstract
A decline in male fertility possibly caused by environmental contaminants, namely endocrine-disrupting chemicals (EDCs), is a topic of public concern and scientific interest. This study addresses a specific role of testicular gap junctional intercellular communication (GJIC) between adjacent prepubertal Leydig cells in endocrine disruption and male reproductive toxicity. Organochlorine pesticides (lindane, methoxychlor, DDT), industrial chemicals (PCB153, bisphenol A, nonylphenol and octylphenol) as well as personal care product components (triclosan, triclocarban) rapidly dysregulated GJIC in murine Leydig TM3 cells. The selected GJIC-inhibiting EDCs (methoxychlor, triclosan, triclocarban, lindane, DDT) caused the immediate GJIC disruption by the relocation of gap junctional protein connexin 43 (Cx43) from the plasma membrane and the alternation of Cx43 phosphorylation pattern (Ser368, Ser279, Ser282) of its full-length and two N-truncated isoforms. After more prolonged exposure (24 h), EDCs decreased steady-state levels of full-length Cx43 protein and its two N-truncated isoforms, and eventually (triclosan, triclocarban) also tight junction protein Tjp-1. The disturbance of GJIC was accompanied by altered activity of mitogen-activated protein kinases MAPK-Erk1/2 and MAPK-p38, and a decrease in stimulated progesterone production. Our results indicate that EDCs might disrupt testicular homeostasis and development via disruption of testicular GJIC, a dysregulation of junctional and non-junctional functions of Cx43, activation of MAPKs, and disruption of an early stage of steroidogenesis in prepubertal Leydig cells. These critical disturbances of Leydig cell development and functions during a prepubertal period might be contributing to impaired male reproduction health later on.
Collapse
Affiliation(s)
- Affiefa Yawer
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Petra Labohá
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Jan Raška
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovac Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Chen K, Chen L, Ouyang Y, Zhang L, Li X, Li L, Si J, Wang L, Ma K. Pirfenidone attenuates homocysteine‑induced apoptosis by regulating the connexin 43 pathway in H9C2 cells. Int J Mol Med 2020; 45:1081-1090. [PMID: 32124965 PMCID: PMC7053877 DOI: 10.3892/ijmm.2020.4497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pirfenidone (PFD) is an anti-fibrotic agent that is clinically used in the treatment of idiopathic pulmonary fibrosis. PFD has been shown to exert protective effects against damage to orbital fibroblasts, endothelial cells, liver cells and renal proximal tubular cells; however, its effect on myocardial cell apoptosis remains unclear. The present study aimed to characterize the effects of PFD on homocysteine (Hcy)-induced cardiomyocyte apoptosis and investigated the underlying mechanisms. H9C2 rat cardiomyocytes were pre-treated with PFD for 30 min followed by Hcy exposure for 24 h. The effects of PFD on cell cytotoxicity were evaluated by CCK-8 assay. The apoptosis rate of each group was determined by flow cytometry. The protein and mRNA levels of connexin 43 (Cx43), Bax, B-cell lymphoma-2 (Bcl-2) and caspase-3 were measured by western blot analysis and reverse transcription-quantitative PCR, respectively. The present results demonstrated that the apoptotic rate increased following Hcy exposure, whereas the apoptotic rate significantly decreased following PFD pre-treatment. Furthermore, the ratio of Bax/Bcl2 was upregulated following Hcy exposure, and Hcy upregulated the expression levels of cleaved caspase-3 and Cx43. Notably, these effects were prevented by PFD. Additionally, the effects of PFD were inhibited by the Cx43 agonist, AAP10. In summary, the findings of the present study demonstrate that PFD protects H9C2 rat cardiomyocytes against Hcy-induced apoptosis by modulating the Cx43 signaling pathway.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yuanshuo Ouyang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Li Wang
- The Third Department of Cardiology, The First Affiliated Hospital of The Medical College, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
21
|
Liu T, Wang Q, Yao K. Huoxue Wentong Formula ameliorates myocardial infarction in rats through inhibiting CaMKII oxidation and phosphorylation. Chin Med 2020; 15:3. [PMID: 31938036 PMCID: PMC6954496 DOI: 10.1186/s13020-020-0285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Chinese medicine Huoxue Wentong Formula (HXWTF) was used to treat thoracic obstruction and angina pectoris in clinic, which has not been investigated in myocardial ischemia-induced apoptosis and angiogenic function. Here we aimed to investigate the roles of HXWTF in rats with myocardial ischemia-induced apoptosis and angiogenesis disorders, as well as to reveal the potential mechanisms. Methods Male SD rats were subjected to coronary artery ligation followed by HXWTF (420, 840 and 1680 mg/kg/day, p.o.) or isosorbide mononitrate (6.3 mg/kg/day, p.o.) treatment for 4 weeks. Electrocardiogram (ECG) and Echocardiography (ECHO) were used to measure cardiac function. Hematoxylin and eosin (H&E) staining and CD34/α-SMA immunohistochemical staining were performed to observe the ischemic heart sections pathological changes and angiogenesis. Then, the effects on cardiomyocyte apoptosis of H9c2 and tube formation of HCMECs were observed, as well as the changes in the levels of total calmodulin dependent protein kinase II (t-CaMKII), phosphorylated CaMKII (p-CaMKII), oxidized CaMKII (ox-CaMKII), CD34, and Bcl-2/Bax ratio were detected. Results Rats with coronary artery ligation exhibited abnormal cardiac function, enlarged myocardial space, disorderly arranged myocardial fibers, inflammatory cells infiltrated, and aggravated myocardial cell apoptosis, along with angiogenesis dysfunction. The expressions of CD34, p-CaMKII, and ox-CaMKII were elevated and Bcl-2/Bax ratio was diminished in ischemic hearts and H/SD-treated H9c2 or HCMECs, while HXWTF treatment completely rescued angiogenic dysfunction, inhibited cardiomyocyte apoptosis, and down-regulated cardiac CaMKII oxidation and phosphorylation activities. Conclusion Our study demonstrates that HXWTF improves myocardial infarction possibly through inhibiting CaMKII oxidation and phosphorylation levels, facilitating angiogenic function and alleviating cardiomyocyte apoptosis. Thus, therapeutics targeting CaMKII activities may be a promising strategy for rescuing ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| | - Qingqing Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| | - Kuiwu Yao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| |
Collapse
|
22
|
Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H, Zhao H. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem 2019; 121:2994-3004. [PMID: 31709615 DOI: 10.1002/jcb.29556] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/08/2019] [Indexed: 01/20/2023]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) causes high mortality in seriously ill patients. Ginsenoside Rg1 has been proven to have effective anti-inflammatory and antiapoptotic properties. However, the specific role of Rg1 in SIMD and the molecular mechanism remain unclear. Hence, we aimed to investigate the latent effects of ginsenoside Rg1 against SIMD and explore its underlying mechanisms. Male C57BL/6J mice and neonatal rat cardiomyocytes (NRCMs) were used as in vivo and in vitro models, respectively. Western blot analysis was used to detect the level of protein expression, and reverse transcription polymerase chain reaction was conducted to determine the messenger RNA expression of inflammatory factors. The terminal deoxynucleotidyl transferase-mediated nick end labeling assay and flow cytometry were used to determine the apoptosis rate. Echocardiography was performed to assess cardiac function. The results showed that Rg1 improved cardiac function and attenuated lipopolysaccharide (LPS)-induced apoptosis and inflammation in mice. In addition, in NRCMs, Rg1 downregulated the expression of LPS-induced inflammatory cytokines and reversed the increased expression of Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), and NOD-like receptor 3 (NLRP3). In addition, treatment with TLR4 small interfering RNA (siRNA), a p-NF-κB inhibitor, or NLRP3 siRNA suppressed LPS-induced apoptosis and inflammation. In conclusion, Rg1 can attenuate LPS-induced inflammation and apoptosis both in NRCMs and septic mice and restore impaired cardiac function. Moreover, Rg1 may exert its effect via blocking the TLR4/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Man Luo
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Dongsheng Yan
- Department of Gastroenterological Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Qingsong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jiali Tao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Liang Xu
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
23
|
Reddy LVK, Sen D. Regulation of Cardiomyocyte Differentiation, Angiogenesis, and Inflammation by the Delta Opioid Signaling in Human Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00100-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 2019; 114:40. [DOI: 10.1007/s00395-019-0748-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
25
|
Sun Z, Yang Y, Wu L, Talabieke S, You H, Zheng Y, Luo D. Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem Biophys Res Commun 2019; 513:567-572. [PMID: 30981509 DOI: 10.1016/j.bbrc.2019.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Connexin 43 (Cx43) phosphorylation plays a pivotal role in cardiac electrical and contractile performance. In a previous study we have found that Cx43 phosphorylation at serine 282 (pS282) regulates cardiomyocyte survival. Considering that both sites are altered simultaneously in many studies, we designed this study to identify the status of S279 phosphorylation upon pS282 manipulation. In heterozygous mice with S282 gene substituted with alanine (S282A), we found ventricular arrhythmias with inhibition of Cx43 phosphorylation at both S282 and S279 in the hearts. In cultured neonatal rat ventricular myocytes (NRVMs), transfection of virus carrying S282A mutant also blocked Cx43 phosphorylation at both S279/282 and gap junction coupling, while expression of wild-type Cx43 or S279A did not. Further, NRVMs transfected with S282 phospho-mimicking mutant substituted with aspartate or treated with ATP exhibited promotions of Cx43 phosphorylation at S279/282 and intercellular communication. Therefore, this study demonstrated a regulatory role of Cx43-S282 on S279 phosphorylation in cardiomyocytes, and suggested an involvement of S279 in the Cx43-S282 mediated cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Zhipeng Sun
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yutong Yang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lulin Wu
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Shaletanati Talabieke
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|