1
|
Li DM, Zhu FC, Wei J, Xie JX, He JH, Wei DM, Li Y, Lai KD, Liu LM, Su QB, Wei GN, Wang B, Liu YC. The Active Fraction of Polyrhachis vicina Roger (AFPR) activates ERK to cause necroptosis in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116454. [PMID: 37059246 DOI: 10.1016/j.jep.2023.116454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyrhachis vicina Roger (P. vicina), a traditional Chinese medicinal animal, has been used to treat rheumatoid arthritis, hepatitis, cancer, and other conditions. Due to its anti-inflammatory properties, our previous pharmacological investigations have demonstrated that it is effective against cancer, depression, and hyperuricemia. Nevertheless, the key active components and targets of P. vicina in cancers are still unexplored. AIM OF THE STUDY The study aimed to evaluate the pharmacological treatment mechanism of the active fraction of P. vicina (AFPR) in treating colorectal cancer (CRC) and to further reveal its active ingredients and key targets. METHODS To examine the inhibitory impact of AFPR on CRC growth, tumorigenesis assays, cck-8 assays, colony formation assays, and MMP detection were utilized. The primary components of AFPR were identified by GC-MS analysis. The network pharmacology, molecular docking, qRT-PCR, western blotting, CCK-8 assays, colony formation assay, Hoechst staining, Annexin V-FITC/PI double staining, and MMP detection were performed to pick out the active ingredients and potential key targets of AFPR. The function of Elaidic acid on necroptosis was investigated through siRNA interference and the utilization of inhibitors. Elaidic acid's effectiveness to suppress CRC growth in vivo was assessed using a tumorigenesis experiment. RESULTS Studies confirmed that AFPR prevented CRC from growing and evoked cell death. Elaidic acid was the main bioactive ingredient in AFPR that targeted ERK. Elaidic acid greatly affected the ability of SW116 cells to form colonies, produce MMP, and undergo necroptosis. Additionally, Elaidic acid promoted necroptosis predominantly by activating ERK/RIPK1/RIPK3/MLKL. CONCLUSION According to our findings, Elaidic acid is the main active component of AFPR, which induced necroptosis in CRC through the activation of ERK. It represents a promising alternative therapeutic option for CRC. This work provided experimental support for the therapeutic application of P. vicina Roger in the treatment of CRC.
Collapse
Affiliation(s)
- Dong-Mei Li
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China; Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Fu-Cui Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Jia-Xiu Xie
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Jun-Hui He
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Dong-Mei Wei
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yi Li
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ke-Dao Lai
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Li-Min Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Qi-Biao Su
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| | - Bin Wang
- Department of Gastroenterology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Suzhou, 215500, China.
| | - Yan-Cheng Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Zmudzinski M, Malon O, Poręba M, Drąg M. Imaging of proteases using activity-based probes. Curr Opin Chem Biol 2023; 74:102299. [PMID: 37031620 DOI: 10.1016/j.cbpa.2023.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023]
Abstract
Proteases (proteolytic enzymes) are proteins that catalyze one of the most important biochemical reactions, namely the hydrolysis of the peptide bond in peptide and protein substrates. Therefore these molecular biocatalysts participate in virtually all living processes. The proper balance between intact and processed protease substrates enables to maintenance of homeostasis from a single-cell level to the whole living system. However, when the proteolytic activity is altered, this delicate balance is disturbed, which might lead to the development of a plethora of diseases. Given this, monitoring proteolytic activity is indispensable to understanding how proteases operate in disease lesions and how their altered catalytic activity might be harnessed for a better diagnosis and treatment. In this manuscript, we provide a critical review of the recent development of protease chemical probes which are small molecules that detect proteolytic activity by interacting with protease active site, individual proteases as well as complex proteolytic networks.
Collapse
Affiliation(s)
- Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Oliwia Malon
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
3
|
Coronaviruses exploit a host cysteine-aspartic protease for replication. Nature 2022; 609:785-792. [PMID: 35922005 DOI: 10.1038/s41586-022-05148-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.
Collapse
|
4
|
Caspase-mediated regulation of the distinct signaling pathways and mechanisms in neuronal survival. Int Immunopharmacol 2022; 110:108951. [PMID: 35717837 DOI: 10.1016/j.intimp.2022.108951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
Caspases are intimately associated with altering various signaling pathways, resulting in programmed cell death or apoptosis. Apoptosis is necessary for the normal homeostasis of cells and their development. The untoward activation of apoptotic pathways indirectly or directly results in pathologies of various diseases. Identifying different caspases in apoptotic pathways directed the research to develop caspase inhibitors as therapeutic agents. However, no drug is available in the market that targets caspase inhibition and produces a therapeutic effect. Here, we will shed light on the role of caspases in the number of neuronal disorders and neurodegenerative diseases. The article reviews the findings about the activation of various upstream mechanisms associated with caspases in neurodegenerative disorders along with the recent progress in the generation of caspase inhibitors and the challenge faced in their development as therapeutic agents for neurological indications.
Collapse
|
5
|
Kim HR, Tagirasa R, Yoo E. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site. J Med Chem 2021; 64:5291-5322. [PMID: 33904753 DOI: 10.1021/acs.jmedchem.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs. Here, we provide an overview of technologies useful for the study of proteases with the focus on recent advances in chemoproteomic methods and screening platforms. By highlighting covalent inhibitors that have been designed to target immunomodulatory proteases, we identify opportunities for the development of small molecule immunomodulators.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Bibo-Verdugo B, Snipas SJ, Kolt S, Poreba M, Salvesen GS. Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. J Biol Chem 2020; 295:11292-11302. [PMID: 32554464 DOI: 10.1074/jbc.ra120.014259] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/06/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway, signaled by caspase-1, and the noncanonical pathway, regulated by mouse caspase-11 and human caspase-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors prointerleukin-18 and prointerleukin-1β (pro-IL18/pro-IL1β). Here, in vitro cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1'-P4', the C-terminal gasdermin D region adjacent to the cleavage site, influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1'-P4' region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable with that of gasdermin D cleavage. Pro-IL1β cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1'-P4' region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11, i.e. caspase-4 and caspase-5, are ruled by the same mechanism. We propose that P1'-P4'-based inhibitors could be exploited to specifically target inflammatory caspases.
Collapse
Affiliation(s)
| | - Scott J Snipas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sonia Kolt
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Marcin Poreba
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
7
|
Sarcognato S, de Jong IEM, Fabris L, Cadamuro M, Guido M. Necroptosis in Cholangiocarcinoma. Cells 2020; 9:cells9040982. [PMID: 32326539 PMCID: PMC7226990 DOI: 10.3390/cells9040982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Necroptosis is a type of regulated cell death that is increasingly being recognized as a relevant pathway in different pathological conditions. Necroptosis can occur in response to multiple stimuli, is triggered by the activation of death receptors, and is regulated by receptor-interacting protein kinases 1 and 3 and mixed-lineage kinase domain-like, which form a regulatory complex called the necrosome. Accumulating evidence suggests that necroptosis plays a complex role in cancer, which is likely context-dependent and can vary among different types of neoplasms. Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis and, as a pro-inflammatory death type, it may inhibit tumor progression by releasing damage-associated molecular patterns to elicit robust cross-priming of anti-tumor CD8+ T cells. The development of therapeutic strategies triggering necroptosis shows great potential for anti-cancer therapy. In this review, we summarize the current knowledge on necroptosis and its role in liver biliary neoplasms, underlying the potential of targeting necroptosis components for cancer treatment.
Collapse
Affiliation(s)
- Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Iris E. M. de Jong
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands
| | - Luca Fabris
- Department of Molecular Medicine—DMM, University of Padova, 35121 Padova, Italy
| | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine—DIMED, University of Padova, 35121 Padova, Italy
- Correspondence: ; Tel.: +39-0422-322750
| |
Collapse
|