1
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yu J, Zhao Y, Xie Y. Advances of E3 ligases in lung cancer. Biochem Biophys Rep 2024; 38:101740. [PMID: 38841185 PMCID: PMC11152895 DOI: 10.1016/j.bbrep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related death, and the most common type of lung cancer is non-small cell lung cancer, which accounts for approximately 85 % of lung cancer diagnoses. Recent studies have revealed that ubiquitination acts as a crucial part of the development and progression of lung cancer. The E1-E2-E3 three-enzyme cascade has a core function in ubiquitination, so targeted adjustments of E3 ligases could be used in lung cancer treatment. Hence, we elucidate research advances in lung cancer-related E3 ligases by briefly describing the structure and categorization of E3 ligases. Here, we provide a detailed review of the mechanisms by which lung cancer-related E3 ligases modify substrate proteins and regulate signaling pathways to facilitate or suppress cancer progression. We hope to show a new perspective on targeted precision therapy for lung cancer.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yiqi Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yue Xie
- Liaoning Academy of Chinese Medicine, Liaoning University Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
3
|
Li S, Sun J, Zhang BW, Yang L, Wan YC, Chen BB, Xu N, Xu QR, Fan J, Shang JN, Li R, Yu CG, Xi Y, Chen S. ATG5 attenuates inflammatory signaling in mouse embryonic stem cells to control differentiation. Dev Cell 2024; 59:882-897.e6. [PMID: 38387460 DOI: 10.1016/j.devcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Attenuated inflammatory response is a property of embryonic stem cells (ESCs). However, the underlying mechanisms are unclear. Moreover, whether the attenuated inflammatory status is involved in ESC differentiation is also unknown. Here, we found that autophagy-related protein ATG5 is essential for both attenuated inflammatory response and differentiation of mouse ESCs and that attenuation of inflammatory signaling is required for mouse ESC differentiation. Mechanistically, ATG5 recruits FBXW7 to promote ubiquitination and proteasome-mediated degradation of β-TrCP1, resulting in the inhibition of nuclear factor κB (NF-κB) signaling and inflammatory response. Moreover, differentiation defects observed in ATG5-depleted mouse ESCs are due to β-TrCP1 accumulation and hyperactivation of NF-κB signaling, as loss of β-TrCP1 and inhibition of NF-κB signaling rescued the differentiation defects. Therefore, this study reveals a previously uncharacterized mechanism maintaining the attenuated inflammatory response in mouse ESCs and further expands the understanding of the biological roles of ATG5.
Collapse
Affiliation(s)
- Sheng Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Jin Sun
- School of Laboratory Animal & Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bo-Wen Zhang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Ying-Cui Wan
- School of Laboratory Animal & Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bei-Bei Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Qian-Ru Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Juan Fan
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; Zhongzhou Laboratory, Kaifeng 475004, Henan, China.
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; Zhongzhou Laboratory, Kaifeng 475004, Henan, China.
| |
Collapse
|
4
|
Deng H, Qian X, Zhang Y, Yu W, Yang P. Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis. Dig Dis Sci 2024; 69:476-490. [PMID: 38170336 DOI: 10.1007/s10620-023-08210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with a high mortality rate. Resistance to chemotherapy remains a major challenge related to cancer treatment, and increasing the sensitivity of cancer cells to therapeutic drugs is a major focus of cancer treatment. AIMS We purposed to explore the role of Metformin in CCA involved in chemotherapeutic sensitivity and Pyruvate kinase M2 (PKM2) through regulating mitochondrial apoptosis in the present study. METHODS CCA cell lines of HCC9810 and RBE were treated with Metformin companied with antagonists or agonists of PKM2, cells sensitivity to Gemcitabine, cell migration and invasion along with apoptosis, which is mediated by JC-1 and LDH were assayed. RESULTS Our results indicated that Metformin and Gemcitabine exhibit synergistic effect on inhibition of cholangiocarcinoma cell viability, cell migration and invasion as well as promotion apoptosis of cholangiocarcinoma cells. In vivo, Metformin combined with Gemcitabine has cooperation in inhibiting the growth of cholangiocarcinoma cell-derived tumors. Moreover, Metformin and Gemcitabine inhibited expression of PKM2 and PDHB in HCC9810 and RBE. CONCLUSION Our study suggested that Metformin may increase the response of cholangiocarcinoma cells to Gemcitabine by suppressing PKM2 to activate mitochondrial apoptosis.
Collapse
Affiliation(s)
- Haishan Deng
- Department of General Surgery, Armed Police Coast Guard Corps Hospital, Jiaxing, Zhejiang, China
| | - Xiaomei Qian
- Jiaxing Shuguang Cosmetology Hospital, Jiaxing, Zhejiang, China
| | - Yongtao Zhang
- Department of General Surgery, Armed Police Coast Guard Corps Hospital, Jiaxing, Zhejiang, China
| | - Wenlong Yu
- The Second Department of Biliary Duct, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ping Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hainan, China.
| |
Collapse
|
5
|
Ramya V, Shyam KP, Angelmary A, Kadalmani B. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159429. [PMID: 37967739 DOI: 10.1016/j.bbalip.2023.159429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Lauric acid (LA) induces apoptosis in cancer and promotes the proliferation of normal cells by maintaining cellular redox homeostasis. Earlier, we postulated LA-mediated regulation of the NF-κB pathway by an epigenetic mechanism. However, the molecular mechanism and possible epigenetic events remained enigmatic. Herein, taking the lead from the alteration in cellular energetics in cancer cells upon LA exposure, we investigated whether LA exposure can epigenetically influence lncRNA HOTAIR, regulate glucose metabolism, and shift the cellular energetic state. Our results demonstrate LA induced modulation of lncRNA HOTAIR in a dose and time dependent manner. In addition, HOTAIR induces the expression of glucose transporter isoform 1 (GLUT1) and is regulated via NF-κB activation. Silencing HOTAIR by siRNA-mediated knockdown suppressed GLUT1 expression suggesting the key role of HOTAIR in LA-mediated metabolic reprogramming. Further, from our ChIP experiments, we observed that silencing HOTAIR subdues the recruitment of NF-κB on the GLUT1 (SLC2A1) promoter region. In addition, by performing western blot and immunocytochemistry studies, we found a dose dependent increase in Histone 3 Lysine 4 tri-methylation (H3K4me3) in the chromatin landscape. Taken together, our study demonstrates the epigenetic regulation in LA-treated SH-SY5Y cancer cells orchestrated by remodeling chromatin H3K4me3 and modulation of lncRNA HOTAIR that apparently governs the GLUT1 expression and regulates glucose uptake by exerting transcriptional control on NF-κB activation. Our work provides insights into the epigenetic regulation and metabolic reprogramming of LA through modulation of lncRNA HOTAIR, remodeling chromatin H3K4 tri-methylation, and shifting the energy metabolism in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Karuppiah Prakash Shyam
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Research and Development Division, VVD and Sons Private Limited, Thoothukudi, Tamilnadu 628003, India
| | - Arulanandu Angelmary
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India.
| |
Collapse
|
6
|
Luo G, Zhang L, Wu W, Zhang L, Lin J, Shi H, Wu X, Yu Y, Qiu W, Chen J, Ding H, Chen X. Upregulation of ubiquitin carboxy‑terminal hydrolase 47 (USP47) in papillary thyroid carcinoma ex vivo and reduction of tumor cell malignant behaviors after USP47 knockdown by stabilizing SATB1 expression in vitro. Oncol Lett 2023; 26:370. [PMID: 37564825 PMCID: PMC10410197 DOI: 10.3892/ol.2023.13956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Aberrant ubiquitination contributes to cancer development, including thyroid carcinoma. The present study assessed the expression of ubiquitin carboxy-terminal hydrolase 47 (USP47) and underlying molecular events in the development of papillary thyroid carcinoma (PTC). The effects of USP47 on PTC cell invasion and migration were analyzed by Transwell assays, while. the effects of USP47 and SATB1on PTC cell gene expression and changes in tumor cell metabolism were assayed by reverse transcription-quantitative PCR, western bolt, or ELISA, respectively. The expression of USP47 mRNA and protein was upregulated in PTC tissue and associated with the PTC tumor size. Knockdown of USP47 expression in PTC cell lines (TPC-1 and K1), decreased the cell proliferation mobility and invasion capacities, whereas USP47 overexpression in these cell lines showed an inverse effect and promoted cell glycolysis and glutamine metabolism. Moreover, expression of special AT-rich sequence-binding protein-1 (SATB1) was high in PTC tissue and was associated with USP47 expression. SATB1 expression promoted tumor cell glycolysis and glutamine metabolism, while USP47 protein bound to and deubiquitinated SATB1 to increase its intracellular levels, thus promoting glycolysis and glutamine metabolism. USP47 promotion of PTC development may be due to its stabilization of SATB1 protein, suggesting that targeting the USP47/SATB1 signaling axis may serve as a therapeutic intervention for PTC.
Collapse
Affiliation(s)
- Guirong Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Liting Zhang
- Department of Endocrinology, The Number 910 Hospital, The Joint Logistics Support Force, Quanzhou, Fujian 362000, P.R. China
| | - Wenyi Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Lihong Zhang
- Jinshang Town Health Center, Shishi, Fujian 362000, P.R. China
| | - Jianqing Lin
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Haihong Shi
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yihuang Yu
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weigang Qiu
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jinyan Chen
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Hansen Ding
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xinyao Chen
- Department of Thyroid and Breast Surgery, The Second Affiliated Clinical School of Medicine, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
7
|
Liu Y, Zhang X, Cheng F, Cao W, Geng Y, Chen Z, Wei W, Zhang L. Xanthatin induce DDP-resistance lung cancer cells apoptosis through regulation of GLUT1 mediated ROS accumulation. Drug Dev Res 2023; 84:1266-1278. [PMID: 37260173 DOI: 10.1002/ddr.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Chemoresistance to cisplatin (DDP) therapy is a major obstacle that needs to be overcome in treating lung cancer patients. Xanthatin has been reported to exhibit an antitumor effect on various cancers, but the function of xanthatin in DDP-resistance lung cancer remains unclear. The study aimed to explore the effect and mechanisms of xanthatin on proliferation, apoptosis, and migration in DDP-resistance lung cancer cells. In the present study, xanthatin suppresses the expression of glucose transporter 1 (GLUT1), attenuates the pentose phosphate pathway (PPP), and causes ROS accumulation and apoptosis, thereby mitigating the antioxidative capacity in DDP-resistance cells. Previous studies have shown that GLUT1 is associated with resistance to platinum drugs. We found that GLUT1 was significantly increased in the DDP-resistant lung cancer cell line compared to the parental cell line, and xanthatin significantly downregulated GLUT1 expression in DDP-resistant lung cancer cells. Notably, overexpression of GLUT1 significantly reduced the production of ROS and increased cellular NADPH/NADP+ and GSH/GSSG ratios. Thus, these results suggest that xanthatin induces DDP-resistance lung cancer cells apoptosis through regulation of GLUT1-mediated ROS accumulation. These findings might provide a possible strategy for the clinical treatment of DDP-resistant lung cancer.
Collapse
Affiliation(s)
- Yunxiao Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinge Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Fenting Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Grunt TW, Heller G. A critical appraisal of the relative contribution of tissue architecture, genetics, epigenetics and cell metabolism to carcinogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00056-1. [PMID: 37268024 DOI: 10.1016/j.pbiomolbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Here we contrast several carcinogenesis models. The somatic-mutation-theory posits mutations as main causes of malignancy. However, inconsistencies led to alternative explanations. For example, the tissue-organization-field-theory considers disrupted tissue-architecture as main cause. Both models can be reconciled using systems-biology-approaches, according to which tumors hover in states of self-organized criticality between order and chaos, are emergent results of multiple deviations and are subject to general laws of nature: inevitable variation(mutation) explainable by increased entropy(second-law-of-thermodynamics) or indeterminate decoherence upon measurement of superposed quantum systems(quantum mechanics), followed by Darwinian-selection. Genomic expression is regulated by epigenetics. Both systems cooperate. So cancer is neither just a mutational nor an epigenetic problem. Rather, epigenetics links environmental cues to endogenous genetics engendering a regulatory machinery that encompasses specific cancer-metabolic-networks. Interestingly, mutations occur at all levels of this machinery (oncogenes/tumor-suppressors, epigenetic-modifiers, structure-genes, metabolic-genes). Therefore, in most cases, DNA mutations may be the initial and crucial cancer-promoting triggers.
Collapse
Affiliation(s)
- Thomas W Grunt
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria; Comprehensive Cancer Center, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, 1090, Vienna, Austria.
| | - Gerwin Heller
- Comprehensive Cancer Center, 1090, Vienna, Austria; Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
9
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
10
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
11
|
Zhou Q, Yin Y, Yu M, Gao D, Sun J, Yang Z, Weng J, Chen W, Atyah M, Shen Y, Ye Q, Li CW, Hung MC, Dong Q, Zhou C, Ren N. GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism. Redox Biol 2022; 56:102458. [PMID: 36116159 PMCID: PMC9483790 DOI: 10.1016/j.redox.2022.102458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022] Open
Abstract
Guanosine triphosphate binding protein 4 (GTPBP4) is a key regulator of cell cycle progression and MAPK activation. However, how its biological properties intersect with cellular metabolism in hepatocellular carcinoma (HCC) development remains poorly unexplained. Here, high GTPBP4 expression is found to be significantly associated with worse clinical outcomes in patients with HCC. Moreover, GTPBP4 upregulation is paralleled by DNA promoter hypomethylation and regulated by DNMT3A, a DNA methyltransferase. Additionally, both gain- and loss-of-function studies demonstrate that GTPBP4 promotes HCC growth and metastasis in vitro and in vivo. Mechanically, GTPBP4 can induce dimeric pyruvate kinase M2 (PKM2) formation through protein sumoylation modification to promote aerobic glycolysis in HCC. Notably, active GTPBP4 facilitates SUMO1 protein activation by UBA2, and acts as a linker bridging activated SUMO1 protein and PKM2 protein to induce PKM2 sumoylation. Furthermore, SUMO-modified PKM2 relocates from the cytoplasm to the nucleus may also could contribute to HCC progression through activating epithelial-mesenchymal transition (EMT) and STAT3 signaling pathway. Shikonin, a PKM2-specific inhibitor, can attenuate PKM2 dependent HCC glycolytic reprogramming, growth and metastasis promoted by GTPBP4, which offers a promising therapeutic candidate for HCC patients. Our findings indicate that GTPBP4-PKM2 regulatory axis plays a vital role in promoting HCC proliferation as well as metastasis by aerobic glycolysis and offer a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Mincheng Yu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Dongmei Gao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jialei Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhangfu Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Wanyong Chen
- Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yinghao Shen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qinghai Ye
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Qiongzhu Dong
- Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct 2022; 17:26. [PMID: 36182907 PMCID: PMC9526990 DOI: 10.1186/s13062-022-00341-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy
| | - Mara Mancini
- IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy
| | - Eleonora Candi
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy. .,IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy.
| |
Collapse
|
13
|
Yu T, Liu Y, Xue J, Sun X, Zhu D, Ma L, Guo Y, Jin T, Cao H, Chen Y, Zhu T, Li X, Liang H, Du Z, Shan H. Gankyrin modulated non-small cell lung cancer progression via glycolysis metabolism in a YAP1-dependent manner. Cell Death Dis 2022; 8:312. [PMID: 35810157 PMCID: PMC9271063 DOI: 10.1038/s41420-022-01104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is highly malignant and heterogeneous form of lung cancer and involves various oncogene alterations. Glycolysis, an important step in tumor metabolism, is closely related to cancer progression. In this study, we investigated the biological function and mechanism of action of Gankyrin in glycolysis and its association with NSCLC. Analyzed of data from The Cancer Genome Atlas as well as NSCLC specimens and adjacent tissues demonstrated that Gankyrin expression was upregulated in NSCLC tissues compared to adjacent normal tissues. Gankyrin was found to significantly aggravate cancer-related phenotypes, including cell viability, migration, invasion, and epithelial mesenchymal transition (EMT), whereas Gankyrin silencing alleviated the malignant phenotype of NSCLC cells. Our results reveal that Gankyrin exerted its function by regulating YAP1 expression and increasing its nuclear translocation. Importantly, YAP1 actuates glycolysis, which involves glucose uptake, lactic acid production, and ATP generation and thus might contribute to the tumorigenic effect of Gankyrin. Furthermore, the Gankyrin-accelerated glycolysis in NSCLC cells was reversed by YAP1 deficiency. Gankyrin knockdown reduced A549 cell tumorigenesis and EMT and decreased YAP1 expression in a subcutaneous xenograft nude mouse model. In conclusion, both Gankyrin and YAP1 play important roles in tumor metabolism, and Gankyrin-targeted inhibition may be a potential anti-cancer therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China
| | - Yanyan Liu
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P. R. China
| | - Junwen Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xiang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Di Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lu Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Huiying Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Yingzhun Chen
- Department of Pathology, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Tong Zhu
- Department of General Surgery, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China
| | - Zhimin Du
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P. R. China. .,Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China. .,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, P. R. China.
| |
Collapse
|
14
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
15
|
Tang X, Li F. Decreased EMILIN2 correlates to metabolism phenotype and poor prognosis of ovarian cancer. J Biochem 2022; 172:89-97. [PMID: 35588228 DOI: 10.1093/jb/mvac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to explore the function and related mechanisms of elastin microfibril interfacer 2 (EMILIN2) in ovarian cancer. First, the expression level of EMILIN2 was detected in patient tissues and its correlation with overall survival rate was analyzed. Then, EMILIN2 was overexpressed in ovarian cancer cell lines to observe its function and effect on Warburg effect. By detecting its promoter region methylation, the epigenetic regulatory role was explored. Finally, through the luciferase reporter assay and siRNA tools, the regulatory mechanism of p53 on EMILIN2 was investigated. It was detected in clinical samples that down-regulated EMILIN2 was associated with poor prognosis of ovarian cancer. It was further found that EMILIN2 regulated the metabolic phenotype of ovarian cancer cells. The expression of EMILIN2 was epigenetically regulated by its promoter methylation. Also, it was found that p53 regulated the expression of EMILIN2, and the p53/EMILIN2 axis regulated the Warburg effect in ovarian cancer cells. EMILIN2 was inhibited by methylation in ovarian cancer. In summary, p53 can promote and regulate its transcription by binding to the promoter region of EMILIN2, thereby affecting the Warburg effect and inhibiting tumors. Therefore, EMILIN2 might be a potential target for clinical diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiaojian Tang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, Shandong, China
| | - Fengli Li
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, Shandong, China
| |
Collapse
|
16
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
17
|
Peng J, Li W, Tan N, Lai X, Jiang W, Chen G. USP47 stabilizes BACH1 to promote the Warburg effect and non-small cell lung cancer development via stimulating Hk2 and Gapdh transcription. Am J Cancer Res 2022; 12:91-107. [PMID: 35141006 PMCID: PMC8822287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023] Open
Abstract
Increasing studies demonstrated that ubiquitination plays a crucial part in the pathogenesis of non-small cell lung cancer (NSCLC), and targeted adjustment of the deubiquitination enzymes is a potential means for cancer treatment. However, the role of ubiquitin carboxyl-terminal hydrolase 47 (USP47) in NSCLC is still unclear. Here, we show that USP47 was upregulated in NSCLC clinical tissues and greatly related to advanced tumor stages and survival rate. Functional experimental results showed that USP47 promoted the cell proliferation in vitro and tumor growth in vivo. And the overexpression of USP47 promoted the glycolysis capacity of lung cancer cells. Mechanistic investigations showed that USP47 promoted NSCLC development, which depends a lot on directly binding to and deubiquitination of the basic leucine zipper transcription factor 1 (BACH1, BTB and CNC homology 1). BACH1 was also significantly overexpressed in primary NSCLC tissues and positively correlated with the expression of USP47. The promotion of USP47 on the Warburg effect and NSCLC progression was mediated by the deubiquitination of BACH1 and the downstream transcriptional regulation of hexokinase 2 (Hk2) and glyceraldehyde-phosphate dehydrogenase (Gapdh). Therefore, targeting USP47/BACH1 axis might offer a new way to inhibit the progression of NSCLC.
Collapse
Affiliation(s)
- Jing Peng
- Department of Cardiothoracic Surgery, Zhuzou Central Hospital Zhuzhou 412007, Hunan Province, China
| | - Wencan Li
- Department of Cardiothoracic Surgery, Zhuzou Central Hospital Zhuzhou 412007, Hunan Province, China
| | - Nianxi Tan
- Department of Cardiothoracic Surgery, Zhuzou Central Hospital Zhuzhou 412007, Hunan Province, China
| | - Xihua Lai
- Department of Cardiothoracic Surgery, Zhuzou Central Hospital Zhuzhou 412007, Hunan Province, China
| | - Weilin Jiang
- Department of Cardiothoracic Surgery, Zhuzou Central Hospital Zhuzhou 412007, Hunan Province, China
| | - Guang Chen
- Department of Cardiothoracic Surgery, Zhuzou Central Hospital Zhuzhou 412007, Hunan Province, China
| |
Collapse
|
18
|
Wang X, Wang Z, Huang R, Lu Z, Chen X, Huang D. UPP1 Promotes Lung Adenocarcinoma Progression through Epigenetic Regulation of Glycolysis. Aging Dis 2022; 13:1488-1503. [PMID: 36186123 PMCID: PMC9466982 DOI: 10.14336/ad.2022.0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xuan Wang
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhouyi Lu
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
| | - Xiaofeng Chen
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
19
|
Comprehensive Analysis of Alteration Landscape and Its Clinical Significance of Mitochondrial Energy Metabolism Pathway-Related Genes in Lung Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:9259297. [PMID: 34970420 PMCID: PMC8713050 DOI: 10.1155/2021/9259297] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Background Mitochondria are the energy factories of cells. The abnormality of mitochondrial energy metabolism pathways is closely related to the occurrence and development of lung cancer. The abnormal genes in mitochondrial energy metabolism pathways might be the novel targets and biomarkers to diagnose and treat lung cancers. Method Genes in major mitochondrial energy metabolism pathways were obtained from the KEGG database. The transcriptomic, mutation, and clinical data of lung cancers were obtained from The Cancer Genome Atlas (TCGA) database. Genes and clinical biomarkers were mined that affected lung cancer survival. Gene enrichment analysis was performed with ClusterProfiler and the gene set enrichment analysis (GSEA). STRING database and Cytoscape were used for protein-protein interaction (PPI) analysis. The diagnostic biomarker pattern of lung cancer was optimized, and its accuracy was verified with 10-fold cross-validation. The four genes screened by logistic regression model were verified by western blot in 5 pairs of lung cancer specimens collected in hospital. Results In total, 188 mitochondrial energy metabolism pathway-related genes (MMRGs) were included in this study. GSEA analysis found that MMRGs in the lung cancer group were mainly enriched in the metabolic pathway of oxidative phosphorylation and electron respiratory transport chain compared to the control group. Age did not affect the mutation frequency of MMRGs. Comparative analysis of these 188 MMRGs identified 43 differentially expressed MMRGs (24 upregulated and 19 downregulated) in the lung cancer group compared to the control group. The survival analysis of these 43 differentially expressed MMRGs found that the survival time was better in the low-expressed GAPDHS group than that in the high-expressed GAPDHS group of lung cancers. The advanced age, high expression of GAPDHS, low expressions of ACSBG1 and CYP4A11, and ACOX3 mutation were biomarkers of poor prognosis in lung cancers. PPI analysis showed that proteins such as GAPDH and GAPDHS interacted with many proteins in mitochondrial metabolic pathways. A four-MMRG-signature model (y = 0.0069∗ACADL - 0.001∗ALDH18A1 - 0.0405∗CPT1B + 0.0008∗PPARG - 1.625) was established to diagnose lung cancer with the accuracy up to 98.74%, AUC value up to 0.992, and a missed diagnosis rate of only 0.6%. Western blotting showed that ALDH18A1 and CPT1B proteins were significantly overexpressed in the lung cancer group (p < 0.05), and ACADL and PPARG proteins were slightly underexpressed in the lung cancer group (p < 0.05), which were consistent with the results of their corresponding mRNA expressions. Conclusion Mitochondrial energy metabolism pathway alterations are the important hallmarks of lung cancer. Age did not increase the risk of MMRG mutation. High expression of GAPDHS, low expression of ACSBG1, low expression of CYP4A11, mutated ACOX3, and old age predict a poor prognosis of lung cancer. Four differentially expressed MMRGs (ACADL, ALDH18A1, CPT1B, and PPARG) established a logistic regression model, which could effectively diagnose lung cancer. At the protein level, ALDH18A1 and CPT1B were significantly upregulated, and ACADL and PPARG were slightly underexpressed, in the lung cancer group compared to the control group, which were consistent with the results of their corresponding mRNA expressions.
Collapse
|
20
|
Zhang Y, Li L, Li Y, Fei Y, Xue C, Yao X, Zhao Y, Wang X, Li M, Luo Z. An ROS-Activatable Nanoassembly Remodulates Tumor Cell Metabolism for Enhanced Ferroptosis Therapy. Adv Healthc Mater 2022; 11:e2101702. [PMID: 34710950 DOI: 10.1002/adhm.202101702] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Ferroptosis is an emerging antitumor option and has demonstrated unique advantages against many tumor indications. However, its efficacy is potentially hindered by the endogenous lipid peroxide-scavenging mechanisms and the reliance on acidic pH. Herein, a nanointegrated strategy based on clinically-safe components to synergistically remodel glutathione and lactate metabolism in tumor cells for enhanced ferroptosis therapy is developed. First ferrocene is conjugated on PEGylated polyamidoamine dendrimers via reactive oxygen species (ROS)-cleavable thioketal linkage, which would further self-assemble with the glutathione (GSH)-depleting agent diethyl maleate (DEM) and monocarboxylate transporter 4-inhibiting siRNA (siMCT4) to afford biostable nanoassemblies (siMCT4-PAMAM-PEG-TK-Fc@DEM). The nanoassemblies can be activated by the elevated ROS levels in tumor intracellular environment and readily release the incorporated therapeutic contents, afterward DEM can directly conjugate to GSH to disrupt the glutathione peroxidase 4 (GPX4)-mediated antioxidant defense, while siMCT4 can block the MCT4-mediated efflux of lactic acid and acidify the intracellular milieu, both of which can improve the ferrocene-catalyzed lipid peroxidation and induce pronounced ferroptotic damage. The siMCT4-PAMAM-PEG-TK-Fc@DEM nanoplatform demonstrates high ferroptosis-based antitumor potency and good biocompatibility in vitro and in vivo, which may offer new avenues for the development of more advanced antitumor therapeutics with improved translatability.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Liqi Li
- Department of General Surgery Xinqiao Hospital Army Medical University Chongqing 400037 P. R. China
| | - Yanan Li
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Yang Fei
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Chencheng Xue
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Xuemei Yao
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Youbo Zhao
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Xuan Wang
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Menghuan Li
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Zhong Luo
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
21
|
Li S, Zhang L, Zhang G, Shangguan G, Hou X, Duan W, Xi Y, Xu N, Zhang B, Dong J, Wang Y, Cui W, Chen S. A nonautophagic role of ATG5 in regulating cell growth by targeting c-Myc for proteasome-mediated degradation. iScience 2021; 24:103296. [PMID: 34755101 PMCID: PMC8564121 DOI: 10.1016/j.isci.2021.103296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a conserved biological process that maintains cell homeostasis by targeting macromolecules for lysosome-mediated degradation. The levels of autophagy are relatively lower under normal conditions than under stress conditions (e.g., starvation), as autophagy is usually stimulated after multiple stresses. However, many autophagy-related regulators are still expressed under normal conditions. Although these regulators have been studied deeply in autophagy regulation, the nonautophagic roles of these regulators under normal conditions remain incompletely understood. Here, we found that autophagy-related 5 (ATG5), which is a key regulator of autophagy, regulates c-Myc protein degradation under normal conditions through the ubiquitin-proteasome pathway. We also found that ATG5 binds c-Myc and recruits the E3 ubiquitin-protein ligase FBW7 to promote c-Myc degradation. Moreover, ATG5-mediated degradation of c-Myc limits cell growth under normal conditions and is essential for embryonic stem cell differentiation. Therefore, this study reveals a nonautophagic role of ATG5 in regulating of c-Myc protein degradation. ATG5 differentially regulates cell growth between normal and starvation conditions ATG5 recruits FBW7 to regulate c-Myc protein degradation under normal conditions ATG5-mediated degradation of c-Myc limits cell growth under normal conditions ATG5 negatively regulates the protein level of c-Myc during ESC differentiation
Collapse
Affiliation(s)
- Sheng Li
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Leilei Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Guoan Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Guoqiang Shangguan
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Xitan Hou
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Wanglin Duan
- School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi Province 710061, PR China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan Province 475004, PR China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan Province 475004, PR China
| | - Bowen Zhang
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan Province 475004, PR China
| | - Junli Dong
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan Province 475004, PR China
| | - Yequan Wang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Wen Cui
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China
| | - Su Chen
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong Province 272067, PR China.,Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan Province 475004, PR China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei Province 064200, PR China
| |
Collapse
|
22
|
Ganini C, Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, Cipriani C, Di Daniele N, Juhl H, Mauriello A, Marani C, Marshall J, Melino S, Marchetti P, Montanaro M, Natale ME, Novelli F, Palmieri G, Piacentini M, Rendina EA, Roselli M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Global mapping of cancers: The Cancer Genome Atlas and beyond. Mol Oncol 2021; 15:2823-2840. [PMID: 34245122 PMCID: PMC8564642 DOI: 10.1002/1878-0261.13056] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer genomes have been explored from the early 2000s through massive exome sequencing efforts, leading to the publication of The Cancer Genome Atlas in 2013. Sequencing techniques have been developed alongside this project and have allowed scientists to bypass the limitation of costs for whole-genome sequencing (WGS) of single specimens by developing more accurate and extensive cancer sequencing projects, such as deep sequencing of whole genomes and transcriptomic analysis. The Pan-Cancer Analysis of Whole Genomes recently published WGS data from more than 2600 human cancers together with almost 1200 related transcriptomes. The application of WGS on a large database allowed, for the first time in history, a global analysis of features such as molecular signatures, large structural variations and noncoding regions of the genome, as well as the evaluation of RNA alterations in the absence of underlying DNA mutations. The vast amount of data generated still needs to be thoroughly deciphered, and the advent of machine-learning approaches will be the next step towards the generation of personalized approaches for cancer medicine. The present manuscript wants to give a broad perspective on some of the biological evidence derived from the largest sequencing attempts on human cancers so far, discussing advantages and limitations of this approach and its power in the era of machine learning.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- IDI‐IRCCSRomeItaly
| | - Ivano Amelio
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Riccardo Bertolo
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Pierluigi Bove
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Oreste Claudio Buonomo
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Eleonora Candi
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- IDI‐IRCCSRomeItaly
| | - Chiara Cipriani
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Nicola Di Daniele
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Alessandro Mauriello
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Carla Marani
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - John Marshall
- Medstar Georgetown University HospitalGeorgetown UniversityWashingtonDCUSA
| | - Sonia Melino
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Manuela Montanaro
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Maria Emanuela Natale
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Flavia Novelli
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giampiero Palmieri
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Mauro Piacentini
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Mario Roselli
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giuseppe Sica
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Manfredi Tesauro
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Valentina Rovella
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giuseppe Tisone
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Yufang Shi
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSoochow UniversityChina
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Gerry Melino
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| |
Collapse
|
23
|
Ganini C, Amelio I, Bertolo R, Candi E, Cappello A, Cipriani C, Mauriello A, Marani C, Melino G, Montanaro M, Natale ME, Tisone G, Shi Y, Wang Y, Bove P. Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Oncol 2021; 12:45. [PMID: 35201488 PMCID: PMC8777499 DOI: 10.1007/s12672-021-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Maria Emanuela Natale
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Pierluigi Bove
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| |
Collapse
|
24
|
MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications. Biomolecules 2021; 11:biom11101531. [PMID: 34680164 PMCID: PMC8533942 DOI: 10.3390/biom11101531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Since the well-known hallmarks of cancer were described by Hanahan and Weinberg, fundamental advances of molecular genomic technologies resulted in the discovery of novel puzzle pieces in the multistep pathogenesis of cancer. MicroRNAs are involved in the altered epigenetic pattern and metabolic phenotype of malignantly transformed cells. They contribute to the initiation, progression and metastasis-formation of cancers, also interacting with oncogenes, tumor-suppressor genes and epigenetic modifiers. Metabolic reprogramming of cancer cells results from the dysregulation of a complex network, in which microRNAs are located at central hubs. MicroRNAs regulate the expression of several metabolic enzymes, including tumor-specific isoforms. Therefore, they have a direct impact on the levels of metabolites, also influencing epigenetic pattern due to the metabolite cofactors of chromatin modifiers. Targets of microRNAs include numerous epigenetic enzymes, such as sirtuins, which are key regulators of cellular metabolic homeostasis. A better understanding of reversible epigenetic and metabolic alterations opened up new horizons in the personalized treatment of cancer. MicroRNA expression levels can be utilized in differential diagnosis, prognosis stratification and prediction of chemoresistance. The therapeutic modulation of microRNA levels is an area of particular interest that provides a promising tool for restoring altered metabolism of cancer cells.
Collapse
|
25
|
The Indication of Poor Prognosis by High Expression of ENO1 in Squamous Cell Carcinoma of the Lung. JOURNAL OF ONCOLOGY 2021; 2021:9910962. [PMID: 34504528 PMCID: PMC8423576 DOI: 10.1155/2021/9910962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to investigate the significance of alpha-enolase (ENO1) expression in squamous cell carcinoma of the lung (LUSC), its prognostic value, and prospective molecular mechanism. Using multiplatforms data, including in-house immunohistochemistry, in-house real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), in-house microarray, and public high-throughput data, the expression significance and prognostic role of ENO1 in LUSC tissues were analyzed comprehensively. With the combination of all eligible cases, compared with 941 non-LUSC lung tissues, ENO1 was significantly overexpressed in 1163 cases of LUSC (standardized mean difference (SMD) = 1.23, 95% confidence interval (CI) = 0.76–1.70, P < 0.001). ENO1 also displayed a great ability to differentiate LUSC tissues from non-LUSC lung tissues (AUC = 0.8705) with the comprehensive sensitivity being 0.88 [0.83–0.92], and comprehensive specificity being 0.89 [0.84–0.94]). Moreover, in 1860 cases of LUSC with survival information, patients with higher expression of ENO1 had poorer prognosis (hazard ratio (HR) = 1.20, 95% CI = 1.01–1.43, P = 0.043). ENO1 and its related genes mainly participated in the pathways of cell division and proliferation. In conclusion, the upregulation of ENO1 could affect the carcinogenesis and unfavorable outcome of LUSC.
Collapse
|
26
|
Sun Q, Melino G, Amelio I, Jiang J, Wang Y, Shi Y. Recent advances in cancer immunotherapy. Discov Oncol 2021; 12:27. [PMID: 35201440 PMCID: PMC8777500 DOI: 10.1007/s12672-021-00422-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy represents a major advance in the cure of cancer following the dramatic advancements in the development and refinement of chemotherapies and radiotherapies. In the recent decades, together with the development of early diagnostic techniques, immunotherapy has significantly contributed to improving the survival of cancer patients. The immune-checkpoint blockade agents have been proven effective in a significant fraction of standard therapy refractory patients. Importantly, recent advances are providing alternative immunotherapeutic tools that could help overcome their limitations. In this mini review, we provide an overview on the main steps of the discovery of classic immune-checkpoint blockade agents and summarise the most recent development of novel immunotherapeutic strategies, such as tumour antigens, bispecific antibodies and TCR-engineered T cells.
Collapse
Affiliation(s)
- Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jingting Jiang
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yufang Shi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
27
|
Zhang L, Ke J, Min S, Wu N, Liu F, Qu Z, Li W, Wang H, Qian Z, Wang X. Hyperbaric Oxygen Therapy Represses the Warburg Effect and Epithelial-Mesenchymal Transition in Hypoxic NSCLC Cells via the HIF-1α/PFKP Axis. Front Oncol 2021; 11:691762. [PMID: 34367973 PMCID: PMC8335162 DOI: 10.3389/fonc.2021.691762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tumor cells initiate hypoxia-induced mechanisms to fuel cell proliferation, invasion, and metastasis, largely mediated by low O2-responsive Hypoxia-Inducible Factor 1 Alpha (HIF-1α). Therefore, hyperbaric oxygen therapy (HBO) is now being studied in cancer patients, but its impact upon non-small-cell lung cancer (NSCLC) cell metabolism remains uncharacterized. METHODS We employed the NSCLC cell lines A549 and H1299 for in vitro studies. Glucose uptake, pyruvate, lactate, and adenosine triphosphate (ATP) assays were used to assess aerobic glycolysis (Warburg effect). A quantitative glycolytic flux model was used to analyze the flux contributions of HIF-1α-induced glucose metabolism genes. We used a Lewis lung carcinoma (LLC) murine model to measure lung tumorigenesis in C57BL/6J mice. RESULTS HBO suppressed hypoxia-induced HIF-1α expression and downstream HIF-1α signaling in NSCLC cells. One HIF-1α-induced glucose metabolism gene-Phosphofructokinase, Platelet (PFKP)-most profoundly enhanced glycolytic flux under both low- and high-glucose conditions. HBO suppressed hypoxia-induced PFKP transactivation and gene expression via HIF-1α downregulation. HBO's suppression of the Warburg effect, suppression of hyperproliferation, and suppression of epithelial-to-mesenchymal transition (EMT) in hypoxic NSCLC cell lines is mediated by the HIF-1α/PFKP axis. In vivo, HBO therapy inhibited murine LLC lung tumor growth in a Pfkp-dependent manner. CONCLUSIONS HBO's repression of the Warburg effect, repression of hyperproliferation, and repression of EMT in hypoxic NSCLC cells is dependent upon HIF-1α downregulation. HIF-1α's target gene PFKP functions as a central mediator of HBO's effects in hypoxic NSCLC cells and may represent a metabolic vulnerability in NSCLC tumors.
Collapse
Affiliation(s)
- Linling Zhang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jingjing Ke
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shengping Min
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fei Liu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhen Qu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
28
|
Wang Y, Jin G, Guo Y, Cao Y, Niu S, Fan X, Zhang J. SMYD2 suppresses p53 activity to promote glucose metabolism in cervical cancer. Exp Cell Res 2021; 404:112649. [PMID: 34015314 DOI: 10.1016/j.yexcr.2021.112649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Reprogrammed energy metabolism, especially the Warburg effect, is emerged as a hallmark of cancer. The protein lysine methyltransferase SMYD2 functions as an oncogene and is implicated in various malignant phenotypes of human cancers. However, the role of SMYD2 in tumor metabolism is still largely unknown. Here, we report that SMYD2 is highly expressed in human cervical cancer and its aberrant expression is linked to a poor prognosis. Bioinformatic analysis revealed a novel link between SMYD2 expression and aerobic glycolysis. Through loss-of-function experiments, we demonstrated that SMYD2 knockdown or inhibition induced a metabolic shift from aerobic glycolysis to oxidative phosphorylation, as evidenced by glucose uptake, lactate production, extracellular acidification, and the oxygen consumption rate. In contrast, SMYD2 overexpression promoted glycolytic metabolism in cervical cancer cells. Moreover, SMYD2 was required for tumor growth in cervical cancer and this oncogenic activity was largely glycolysis-dependent. Mechanistically, SMYD2 altered the methylation status of p53 and inhibited its transcriptional activity. Genetic silencing of p53 largely abrogated the effects of SMYD2 in promoting aerobic glycolysis. Taken together, our findings reveal a novel function of SMYD2 in regulating the Warburg effect in cervical cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Ge Jin
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yunfeng Guo
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yuan Cao
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Shuhuai Niu
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Xiaomei Fan
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| | - Jun Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
29
|
Guan H, Luo W, Liu Y, Li M. Novel circular RNA circSLIT2 facilitates the aerobic glycolysis of pancreatic ductal adenocarcinoma via miR-510-5p/c-Myc/LDHA axis. Cell Death Dis 2021; 12:645. [PMID: 34168116 PMCID: PMC8225611 DOI: 10.1038/s41419-021-03918-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023]
Abstract
Increasing evidence has indicated the great diagnostic and therapeutic potentials of circular RNAs (circRNAs) in human cancers. Although the biological roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) have been partially annotated, the potential regulatory mechanism of circRNAs in PDAC tumorigenesis remains poorly understood. Here, our study found that the novel circRNA circSLIT2 was significantly upregulated in PDAC tissues and cells. Clinically, ectopic high-expression of circSLIT2 was correlated with unfavorable prognosis of PDAC patients. Functional experiments demonstrated that circSLIT2 promoted the aerobic glycolysis and proliferation of PDAC cells in vitro, and circSLIT2 knockdown inhibited tumor growth in vivo. Mechanistically, circSLIT2 acted as miRNA sponge to target miR-510-5p/c-Myc axis. Furthermore, c-Myc bound with the promoter region of lactate dehydrogenase A (LDHA) to activate the transcription. Collectively, present findings reveal that circSLIT2/miR-510-5p/c-Myc/LDHA axis participates in the aerobic glycolysis and carcinogenesis of PDAC, and may act as a promising therapeutic target.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glycolysis
- Humans
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Hua Guan
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Luo
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Mingfei Li
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
30
|
Li S, Zhang G, Liu Y, Sun Q, Yang L, Dong J, Zhang B, Chen S. In vitro ubiquitination and degradation of bacteria-purified human histone H2B by the nucleoli fractions. STAR Protoc 2021; 2:100601. [PMID: 34169294 PMCID: PMC8209693 DOI: 10.1016/j.xpro.2021.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Histones are the main components of chromatin, and the protein levels of histones significantly affect chromatin assembly. Here, we describe detailed protocols for histone H2B purification from bacteria and for the separation of nucleolar fractions and cytoplasmic and nucleoplasmic fractions. Finally, the in vitro ubiquitination and degradation of H2B by distinct cellular fractions are described. For complete details on the use and execution of this protocol, please refer to Liu et al. (2021). Protocols to purify nucleoli, cytoplasm, and nucleoplasm In vitro H2B degradation and ubiquitination assays by these cellular components In vitro ubiquitination and degradation of bacterial histone H2B by the nucleoli fractions
Collapse
Affiliation(s)
- Sheng Li
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guoan Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yanping Liu
- School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Qinru Sun
- School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| | - Junli Dong
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| | - Bowen Zhang
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| |
Collapse
|
31
|
Zhang L, Zhang W, Sun J, Liu KN, Gan ZX, Liu YZ, Chang JF, Yang XM, Sun F. Nucleotide variation in histone H2BL drives crossalk of histone modification and promotes tumour cell proliferation by upregulating c-Myc. Life Sci 2021; 271:119127. [PMID: 33515561 DOI: 10.1016/j.lfs.2021.119127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Gene mutations play important roles in tumour development. In this study, we identified a functional histone H2B mutation H2BL-T11C, causing an amino acid variation from Leu to Pro (L3P, H2BL-L3P). Cells overexpressing H2BL-L3P showed stronger proliferation, colony formation, tumourigenic abilities, and a different cell cycle distribution. Meanwhile, the c-Myc expression was elevated as evident by RNA-seq. We further revealed that an H2BK5ac-H2BK120ubi crosstalk which regulates gene transcription. Moreover, EdU staining demonstrated an important role of c-Myc in accelerating cell cycle progression through the G1/S checkpoint, while treatment with 10058-F4, an inhibitor of the c-Myc/MAX interaction, alleviated the abnormal cell proliferation and cell cycle distribution in vitro and partially inhibited tumour growth in vivo. The mutation of amino acid L3P is associated with tumour progression, suggesting patients carrying this SNP may have higher risk of tumour development.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Xue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu-Zhou Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
32
|
Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11:377-398. [PMID: 32843908 PMCID: PMC7429635 DOI: 10.1007/s13167-020-00217-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovak Republic
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 426 01 South Korea
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
33
|
Pu Z, Xu M, Yuan X, Xie H, Zhao J. Circular RNA circCUL3 Accelerates the Warburg Effect Progression of Gastric Cancer through Regulating the STAT3/HK2 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:310-318. [PMID: 33230436 PMCID: PMC7527579 DOI: 10.1016/j.omtn.2020.08.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The Warburg effect is a significant hallmark of gastric cancer (GC), and increasing evidence emphasizes the crucial role of circular RNAs (circRNAs) in GC tumorigenesis. However, the precise molecular mechanisms by which circRNAs drive the GC Warburg effect are still elusive. The present study was designed to unveil the roles of circRNAs and the corresponding potential mechanism. High-regulated expression of circCUL3 was observed in both GC tissues and cell lines. Clinically, the high expression of circCUL3 was closely correlated with advanced clinical stage and overall survival in GC patients. Functionally, cellular experimental investigations demonstrated that circCUL3 promoted the proliferation, glucose consumption, lactate production, ATP quantity, and extracellular acidification rate (ECAR) of GC cells. In vivo, circCUL3 knockdown repressed tumor growth. Mechanistic analysis demonstrated that circCUL3 promoted signal transducer and activator of transcription (STAT)3 expression through sponging miR-515-5p; moreover, transcription factor STAT3 accelerated the transcriptional level of hexokinase 2 (HK2). In summary, the present findings provide mechanistic insights into circCUL3/miR-515-5p/STAT3/HK2 axis regulation on the GC Warburg effect, providing a novel possibility for an understanding of GC pathogenesis.
Collapse
Affiliation(s)
- Zhichen Pu
- Department of Drug Clinical Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Maodi Xu
- Department of Drug Clinical Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiaolong Yuan
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.,Vascular Diseases Research Center of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Haitang Xie
- Department of Drug Clinical Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Jun Zhao
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| |
Collapse
|
34
|
Zheng Z, Ma X, Li H. Circular RNA circMDM2 accelerates the glycolysis of oral squamous cell carcinoma by targeting miR-532-3p/HK2. J Cell Mol Med 2020; 24:7531-7537. [PMID: 32410389 PMCID: PMC7339225 DOI: 10.1111/jcmm.15380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) function as an essential regulator in the progression of oral squamous cell carcinoma (OSCC). However, the potential roles and mechanism of circRNAs in OSCC are still elusive. Here, this research investigates the roles and molecular mechanism of novel circRNA (circMDM2) in OSCC progression. Clinically, circMDM2 was overexpressed in OSCC tissue and cells, and the overexpression served as a poor prognostic factor for OSCC patients. Functionally, cellular experiments confirmed that circMDM2 accelerated OSCC cell proliferation and glycolysis in vitro and circMDM2 knockdown repressed the tumour growth in vivo. Mechanistically, circMDM2 sponged miR‐532‐3p to promote the hexokinase 2 (HK2), forming the circMDM2/miR‐532‐3p/HK2 axis. In conclusion, these findings demonstrated that circMDM2/miR‐532‐3p/HK2 axis promotes the proliferation and glycolysis of OSCC, rendering a potential diagnostic biomarker and prospective therapeutic target for OSCC.
Collapse
Affiliation(s)
- Zhao Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, P.R. China
| | - Xiaozhou Ma
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, P.R. China
| | - Hongfa Li
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
35
|
Wu Y, Zhang S, Gong X, Tam S, Xiao D, Liu S, Tao Y. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer 2020; 19:39. [PMID: 32103754 PMCID: PMC7045519 DOI: 10.1186/s12943-020-01157-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis, a novel form of regulated cell death, is different from other types of cell death in morphology, genetics and biochemistry. Increasing evidence indicates that ferroptosis has significant implications on cell death linked to cardiomyopathy, tumorigenesis, and cerebral hemorrhage to name a few. Here we summarize current literature on ferroptosis, including organelle dysfunction, signaling transduction pathways, metabolic reprogramming and epigenetic regulators in cancer progression. With regard to organelles, mitochondria-induced cysteine starvation, endoplasmic reticulum-related oxidative stress, lysosome dysfunction and golgi stress-related lipid peroxidation all contribute to induction of ferroptosis. Understanding the underlying mechanism in ferroptosis could provide insight into the treatment of various intractable diseases including cancers.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Siwei Zhang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoxiao Gong
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Samantha Tam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| | - Shuang Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|