1
|
Huang L, Wang X, Zhou W, Li Z, Chen C, Sun Y. Hydrolyzed egg yolk peptide alleviates ovariectomy-induced osteoporosis by regulating lipid metabolism. Int J Biol Macromol 2024; 292:139223. [PMID: 39733873 DOI: 10.1016/j.ijbiomac.2024.139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Osteoporosis is a systemic, progressive bone disease that causes metabolic disorders. Previous study identified the preventive effects of hydrolyzed egg yolk peptide (YPEP) on osteoporosis. However, the underlying antiosteoporosis mechanism remains unclear. Herein, 30 female rats were randomly divided into 5 groups (n = 6), including the sham, OVX, E2 (25 μg/kg/d 17β-estradiol), LYPEP (10 mg/kg/d YPEP), and HYPEP (40 mg/kg/d YPEP) groups. YPEP treatment significantly changed bone turnover marker levels and prevented the deterioration of bone structure and strength caused by ovariectomy. YPEP supplementation significantly changed endogenous metabolites related to lipid metabolism in the serum of ovariectomized rats, identifying 46 metabolites closely linked to bone biomarkers. Additionally, YPEP reduced the expression of the lipid metabolism-related protein peroxisome proliferator-activated receptor PPARγ and increased the expression of bone formation proteins BMP2 and RUNX2. Collectively, these results elucidated that YPEP improves osteoporosis by inhibiting lipogenesis to promote bone formation. This study provides novel evidence for the use of YPEP in treating osteoporosis.
Collapse
Affiliation(s)
- Ludi Huang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xincen Wang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Wei Zhou
- Radiology Department of Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), China
| | - Zeqi Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chuanjing Chen
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongye Sun
- School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Hu H, Hu J, Chen Z, Yang K, Zhu Z, Hao Y, Zhang Z, Li W, Peng Z, Cao Y, Sun X, Zhang F, Chi Q, Ding G, Liang W. RBBP6-Mediated ERRα Degradation Contributes to Mitochondrial Injury in Renal Tubular Cells in Diabetic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405153. [PMID: 39441040 PMCID: PMC11633482 DOI: 10.1002/advs.202405153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Diabetic Kidney Disease (DKD), a major precursor to end-stage renal disease, involves mitochondrial dysfunction in proximal renal tubular cells (PTCs), contributing to its pathogenesis. Estrogen-related receptor α (ERRα) is essential for mitochondrial integrity in PTCs, yet its regulation in DKD is poorly understood. This study investigates ERRα expression and its regulatory mechanisms in DKD, assessing its therapeutic potential. Using genetic, biochemical, and cellular approaches, ERRα expression Was examined in human DKD specimens and DKD mouse models. We identified the E3 ubiquitin ligase retinoblastoma binding protein 6 (RBBP6) as a regulator of ERRα, promoting its degradation through K48-linked polyubiquitination at the K100 residue. This degradation pathway significantly contributed to mitochondrial injury in PTCs of DKD models. Notably, conditional ERRα overexpression or RBBP6 inhibition markedly reduced mitochondrial damage in diabetic mice, highlighting ERRα's protective role in maintaining mitochondrial integrity. The interaction between RBBP6 and ERRα opens new therapeutic avenues, suggesting that modulating RBBP6-ERRα interactions could be a strategy for preserving mitochondrial function and slowing DKD progression.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Keju Yang
- The First College of Clinical Medical ScienceChina Three Gorges UniversityYichang443000China
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Yiqun Hao
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zongwei Zhang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Weiwei Li
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zhuan Peng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Yun Cao
- Department of NephrologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College)Haikou100053China
| | - Xiaoling Sun
- Ultrastructural Pathology CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Fangcheng Zhang
- Ultrastructural Pathology CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Qingjia Chi
- Department of Mechanics and Engineering StructureWuhan University of TechnologyWuhan430070China
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| |
Collapse
|
3
|
Peng B, Feng Z, Yang A, Liu J, He J, Xu L, Tian C, Sheng X, Wang Y, Chen R, Wang X, Ren X, Geng B, Xia Y. TIMP1 regulates ferroptosis in osteoblasts by inhibiting TFRC ubiquitination: an in vitro and in vivo study. Mol Med 2024; 30:226. [PMID: 39578773 PMCID: PMC11585138 DOI: 10.1186/s10020-024-01000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND In clinical practice, alterations in the internal environment of type 2 diabetes can significantly affect bone quality. While the increased risk of fractures among diabetic patients is well-established, the precise mechanisms by which hyperglycemia influences bone quality remain largely unclear. METHODS Western blotting, immunohistochemistry (IHC), and micro-CT were used to examine ferroptosis-related protein expression and bone morphology changes in the bone tissues of type 2 diabetic mice. The CCK8 assay determined the optimal conditions for inducing ferroptosis in osteoblasts by high glucose and high fat (HGHF). Ferroptosis phenotypes in osteoblasts were analyzed using flow cytometry, Western blotting, and two-photon laser confocal microscopy. Transcriptomic sequencing of the control and HGHF groups, followed by bioinformatic analysis, identified and validated key genes. TIMP1 was knocked down in osteoblasts to assess its impact on ferroptosis, while TFRC expression was inhibited and activated to verify the role of TIMP1 in regulating ferroptosis through TFRC. The therapeutic effect of TIMP1 inhibition on osteoporosis was evaluated in a type 2 diabetic mouse model. RESULTS The expression of TIMP1 is increased in type 2 diabetic osteoporosis. In vitro, TIMP1 knockout inhibited ferroptosis in osteoblasts induced by high glucose and high fat (HGHF). However, overexpression of TFRC reversed the ferroptosis inhibition caused by TIMP1 knockout. Suppression of TIMP1 expression alleviated the progression of osteoporosis in type 2 diabetic mice. Mechanistic studies suggest that TIMP1 regulates HGHF-induced ferroptosis in osteoblasts through TFRC. CONCLUSION This study demonstrates that TIMP1 expression is increased during type 2 diabetic osteoporosis and that TIMP1 promotes ferroptosis in osteoblasts by regulating TFRC. These findings suggest that TIMP1 is a promising novel therapeutic target for type 2 diabetic osteoporosis.
Collapse
Grants
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 82060405, 82360436 The National Natural Science Foundation of China
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 2021-RC-102 Lanzhou Science and Technology Plan Program
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- 22JR5RA943, 22JR5RA956, 23JRRA1500, 22JR11RA057 Natural Science Foundation of Gansu Province
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
- CY2021-MS-A07, CY2022-MS-A19, CY2021-BJ-A13,CY2023-BJ-13 Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital
Collapse
Affiliation(s)
- Bo Peng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Zhiwei Feng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Ao Yang
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Jinmin Liu
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Jinwen He
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Lihu Xu
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Cong Tian
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoyun Sheng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Yaobin Wang
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Rongjin Chen
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Xingwen Wang
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Xiaojun Ren
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China.
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yayi Xia
- Department of Orthopaedics, The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, Gansu, 730030, People's Republic of China.
- Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Qi L, Liu S, Fang Q, Qian C, Peng C, Liu Y, Yang P, Wu P, Shan L, Cui Q, Hua Q, Yang S, Ye C, Yang W, Li P, Xu X. Ginsenoside Rg3 Restores Mitochondrial Cardiolipin Homeostasis via GRB2 to Prevent Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403058. [PMID: 39159293 PMCID: PMC11497058 DOI: 10.1002/advs.202403058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Indexed: 08/21/2024]
Abstract
Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation. Consequently, this cascade enhances the survival of tyrosine hydroxylase positive (TH+) dopaminergic neurons, leading to an amelioration in motor performance within PD mouse models. Using limited proteolysis-small-molecule mapping combined with molecular docking analysis, it has confirmed Growth Factor Receptor-Bound Protein 2 (GRB2) as a molecular target for Rg3. Furthermore, these investigations reveal that Rg3 facilitates the interaction between GRB2 and TRKA (Neurotrophic Tyrosine Kinase, Receptor, Type 1), thus promotes EVI1 (Ecotropic Virus Integration Site 1 Protein Homolog) phosphorylation by ERK, subsequently increases CRLS1 (Cardiolipin Synthase 1) gene expression and boosts cardiolipin synthesis. The absence of GRB2 or CRLS1 significantly attenuates the beneficial effects of Rg3 on PD symptoms. Finally, Tenofovir Disoproxil Fumarate (TDF) that also promotes the binding between GRB2 and TRKA is further identified. The identified compounds, Rg3 and TDF, exhibit promising potential for the prevention of PD by bolstering cardiolipin expression and reinstating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Li‐Feng‐Rong Qi
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Shuai Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Qiuyuan Fang
- Department of Biophysics and Department of Neurosurgery of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Cheng Qian
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Chao Peng
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Yuci Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Peng Yang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Ping Wu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Ling Shan
- Dept. Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesMeibergdreef 47Amsterdam1105BAthe Netherlands
| | - Qinghua Cui
- Department of Biomedical InformaticsSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Sciences of the Ministry of EducationCenter for Non‐Coding RNA MedicinePeking University Health Science Center BeijingBeijing100191China
| | - Qian Hua
- School of Life SciencesBeijing University of Chinese MedicineBeijing100029China
| | - Sen Yang
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Cunqi Ye
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Wei Yang
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Ping Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xiaojun Xu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| |
Collapse
|
6
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
7
|
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C, Ge RL. Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 2024; 54:68. [PMID: 38940355 PMCID: PMC11232666 DOI: 10.3892/ijmm.2024.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Guocai Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Peiyun Fan
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Wei Luo
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
8
|
Chen J, Kuang S, Cen J, Zhang Y, Shen Z, Qin W, Huang Q, Wang Z, Gao X, Huang F, Lin Z. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci 2024; 16:41. [PMID: 38777841 PMCID: PMC11111693 DOI: 10.1038/s41368-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.
Collapse
Affiliation(s)
- Jiayao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuhong Kuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jietao Cen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiting Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianling Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
10
|
Wang J, Yang J, Tang Z, Yu Y, Chen H, Yu Q, Zhang D, Yan C. Curculigo orchioides polysaccharide COP70-1 stimulates osteogenic differentiation of MC3T3-E1 cells by activating the BMP and Wnt signaling pathways. Int J Biol Macromol 2023; 248:125879. [PMID: 37473884 DOI: 10.1016/j.ijbiomac.2023.125879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The crude polysaccharide CO70 isolated from Curculigo orchioides could alleviate ovariectomy-induced osteoporosis in rats. To clarify the bioactive components, a new heteropolysaccharide (COP70-1) was purified from CO70 in this study, which was consisted of β-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →4,6)-β-D-Manp-(1→, and →4,6)-α-D-Galp-(1→. COP70-1 significantly promoted the osteoblastic differentiation of MC3T3-E1 cells through improving alkaline phosphatase activity, the deposition of calcium as well as up-regulating the expression of osteogenic markers (RUNX2, OSX, BSP, OCN, and OPN). Furthermore, COP70-1 stimulated the expression of critical transcription factors of the BMP and Wnt pathways, including BMP2, p-SMAD1, active-β-catenin, p-GSK-3β, and LEF-1. In addition, LDN (BMP pathway inhibitor) and DKK-1 (Wnt pathway inhibitor) suppressed the COP70-1-induced osteogenic differentiation of MC3T3-E1 cells. Therefore, COP70-1 was one of the bioactive constituents of C. orchioides for targeting osteoblasts to treat osteoporosis by triggering BMP/Smad and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongbo Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Cheng HM, Xing M, Zhou YP, Zhang W, Liu Z, Li L, Zheng Z, Ma Y, Li P, Liu X, Li P, Xu X. HSP90β promotes osteoclastogenesis by dual-activation of cholesterol synthesis and NF-κB signaling. Cell Death Differ 2023; 30:673-686. [PMID: 36198833 PMCID: PMC9984383 DOI: 10.1038/s41418-022-01071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90β (Hsp90β, encoded by Hsp90ab1 gene) is the most abundant proteins in the cells and contributes to variety of biological processes including metabolism, cell growth and neural functions. However, genetic evidences showing Hsp90β in vivo functions using tissue specific knockout mice are still lacking. Here, we showed that Hsp90β exerted paralogue-specific role in osteoclastogenesis. Using myeloid-specific Hsp90ab1 knockout mice, we provided the first genetic evidence showing the in vivo function of Hsp90β. Hsp90β binds to Ikkβ and reduces its ubiquitylation and proteasomal degradation, thus leading to activated NF-κB signaling. Meanwhile, Hsp90β increases cholesterol biosynthesis by activating Srebp2. Both pathways promote osteoclastogenic genes expression. Genetic deletion of Hsp90ab1 in osteoclast or pharmacological inhibition of Hsp90β alleviates bone loss in ovariectomy-induced mice. Therefore, Hsp90β is a promising druggable target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Mingming Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zeyu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Zhou QQ, Xiao HT, Yang F, Wang YD, Li P, Zheng ZG. Advancing targeted protein degradation for metabolic diseases therapy. Pharmacol Res 2023; 188:106627. [PMID: 36566001 DOI: 10.1016/j.phrs.2022.106627] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The development and application of traditional drugs represented by small molecule chemical drugs and biological agents, especially inhibitors, have become the mainstream drug development. In recent years, targeted protein degradation (TPD) technology has become one of the most promising methods to remove specific disease-related proteins using cell self-destruction mechanisms. Many different TPD strategies are emerging based on the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), including but not limited to proteolysis-targeting chimeras (PROTAC), molecular glues (MG), lysosome targeting chimeras (LYTAC), chaperone-mediated autophagy (CMA)-targeting chimeras, autophagy-targeting chimera (AUTAC), autophagosome-tethering compound (ATTEC), and autophagy-targeting chimera (AUTOTAC). The advent of targeted degradation technology can change most protein targets in human cells from undruggable to druggable, greatly expanding the therapeutic prospect of refractory diseases such as metabolic syndrome. Here, we summarize the latest progress of major TPD technologies, especially in metabolic syndrome and look forward to providing new insights for drug discovery.
Collapse
Affiliation(s)
- Qian-Qian Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Fan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yong-Dan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Lu N, Shan C, Fu JR, Zhang Y, Wang YY, Zhu YC, Yu J, Cai J, Li SX, Tao T, Liu W. RANKL Is Independently Associated with Increased Risks of Non-Alcoholic Fatty Liver Disease in Chinese Women with PCOS: A Cross-Sectional Study. J Clin Med 2023; 12:jcm12020451. [PMID: 36675380 PMCID: PMC9864426 DOI: 10.3390/jcm12020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Women with polycystic ovarian syndrome (PCOS) are more likely to have non-alcoholic fatty liver disease (NAFLD) than non-PCOS women; however, the exact mechanism underlying this trend is unknown. The receptor activator of NF-κB ligand (RANKL) is strongly involved in bone metabolism and has multiple functions. Recent studies suggest that RANKL is implicated in hepatic insulin resistance (IR), which is the highest risk factor for NAFLD. This study aimed to assess the role of RANKL in NAFLD in Chinese women with PCOS. A cross-sectional observational study was conducted on women newly diagnosed with PCOS, which included 146 patients with NAFLD and 142 patients without NAFLD. Sex hormones, glucose, insulin, and lipids were measured, and anthropometric data were collected. The concentration of serum total RANKL was measured using commercial ELISA kits. PCOS patients with NAFLD had a significantly higher mean age, body mass index (BMI), waist circumference (WC), and worsened metabolic profile than non-NAFLD subjects. The concentrations of high-sensitivity C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol increased with the RANKL tertile (p for trend = 0.023, 0.026, and 0.035, respectively). A significantly positive association was found between RANKL (per SD change) and the risks of NAFLD (OR = 1.545, 95% CI = 1.086−2.199) after adjusting for confounders, including demographic factors, metabolic markers, and sex hormones. Subgroup multivariate logistic analyses stratified by age, BMI, and WC showed the same tendency. In addition, the positive association between RANKL and NAFLD seemed more prominent in lean patients with a BMI < 24 kg/m2 (OR = 1.70, 95% CI = 1.06−2.75) when compared to overweight/obesity subjects. Therefore, this study suggests that RANKL is positively associated with the increased risk of NAFLD in Chinese women with PCOS, independent of metabolic and reproductive factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Tao
- Correspondence: (T.T.); (W.L.)
| | - Wei Liu
- Correspondence: (T.T.); (W.L.)
| |
Collapse
|
14
|
Fang Z, Cheng G, He M, Lin Y. CYP27A1 deficiency promoted osteoclast differentiation. PeerJ 2023; 11:e15041. [PMID: 36890868 PMCID: PMC9987298 DOI: 10.7717/peerj.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Background The elevating osteoclast differentiation can lead to an imbalance in bone homeostasis, which was responsible for bone loss and bone diseases, such as osteoporosis. Multiple pathways and molecules have been involved in osteoclast formation, but the role of CYP27A1 in osteoclast differentiation has never been explored. Methods CYP27A1 deficient mice were constructed using CRISPR-Cas9 system. Osteoclast differentiation was detected by TRAP staining. Differentially expressed genes (DEGs) were identified using RNA-seq analysis and were confirmed by qRT-PCR and Western blot. Results The results showed that CYP27A1 knockout (KO) promoted osteoclast differentiation and bone loss. The transcriptomic analysis revealed that CYP27A1 KO led to differential expression of multiple genes, including ELANE, LY6C2, S100A9, GM20708, BGN, SPARC, and COL1A2, which were confirmed by qRT-PCR and Western blot. Enrichment analysis indicated that these differential genes were significantly associated with osteogenesis-related pathways, such as PPAR signaling, IL-17 signaling, and PI3K/AKT signaling, which were confirmed by qRT-PCR and Western blot. Conclusions These results suggested that CYP27A1 was involved in osteoclast differentiation, providing a novel therapeutic target for osteoclast-related diseases.
Collapse
Affiliation(s)
- Ziqi Fang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guangdong Cheng
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengting He
- Department of Critical Care Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanliang Lin
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China.,Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
16
|
Tian B, Li X, Zhang J, Zhang M, Gan D, Deng D, Sun L, He X, Wu C, Chen F. A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair. Int J Oral Sci 2022; 14:45. [PMID: 36064833 PMCID: PMC9445063 DOI: 10.1038/s41368-022-00195-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
The positive regulation of bone-forming osteoblast activity and the negative feedback regulation of osteoclastic activity are equally important in strategies to achieve successful alveolar bone regeneration. Here, a molybdenum (Mo)-containing bioactive glass ceramic scaffold with solid-strut-packed structures (Mo-scaffold) was printed, and its ability to regulate pro-osteogenic and anti-osteoclastogenic cellular responses was evaluated in vitro and in vivo. We found that extracts derived from Mo-scaffold (Mo-extracts) strongly stimulated osteogenic differentiation of bone marrow mesenchymal stem cells and inhibited differentiation of osteoclast progenitors. The identified comodulatory effect was further demonstrated to arise from Mo ions in the Mo-extract, wherein Mo ions suppressed osteoclastic differentiation by scavenging reactive oxygen species (ROS) and inhibiting mitochondrial biogenesis in osteoclasts. Consistent with the in vitro findings, the Mo-scaffold was found to significantly promote osteoblast-mediated bone formation and inhibit osteoclast-mediated bone resorption throughout the bone healing process, leading to enhanced bone regeneration. In combination with our previous finding that Mo ions participate in material-mediated immunomodulation, this study offers the new insight that Mo ions facilitate bone repair by comodulating the balance between bone formation and resorption. Our findings suggest that Mo ions are multifunctional cellular modulators that can potentially be used in biomaterial design and bone tissue engineering.
Collapse
Affiliation(s)
- Beimin Tian
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xuan Li
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Jiujiu Zhang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meng Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Dian Gan
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Daokun Deng
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Lijuan Sun
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiaotao He
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Faming Chen
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Dong X, Liu J, Guo S, Yang F, Bu R, Lu J, Xue P. Metabolomics comparison of Chemical components and metabolic regulations in different parts of Eucommia ulmoides Oliv. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
18
|
Chen J, Song D, Xu Y, Wu L, Tang L, Su Y, Xie X, Zhao J, Xu J, Liu Q. Anti-Osteoclast Effect of Exportin-1 Inhibitor Eltanexor on Osteoporosis Depends on Nuclear Accumulation of IκBα–NF-κB p65 Complex. Front Pharmacol 2022; 13:896108. [PMID: 36110547 PMCID: PMC9468713 DOI: 10.3389/fphar.2022.896108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis affects around 200 million people globally, with menopausal women accounting for the bulk of cases. In the occurrence and development of osteoporosis, a key role is played by osteoclasts. Excessive osteoclast-mediated bone resorption activity reduces bone mass and increases bone fragility, resulting in osteoporosis. Thus, considerable demand exists for designing effective osteoporosis treatments based on targeting osteoclasts. Eltanexor (Elt; KPT-8602) is a selective nuclear-export inhibitor that covalently binds to and blocks the function of the nuclear-export protein exportin-1 (XPO1), which controls the nucleus-to-cytoplasm transfer of certain critical proteins related to growth regulation and tumor suppression, such as p53, IκBα [nuclear factor-κB (NF-κB) inhibitor α] and FOXO1; among these proteins, IκBα, a critical component of the NF-κB signaling pathway that primarily governs NF-κB activation and transcription. How Elt treatment affects osteoclasts remains poorly elucidated. Elt inhibited the growth and activity of RANKL-induced osteoclasts in vitro in a dose-dependent manner, and Elt exerted no cell-killing effect within the effective inhibitory concentration. Mechanistically, Elt was found to trap IκBα in the nucleus and thus protect IκBα from proteasome degradation, which resulted in the blocking of the translocation of IκBα and NF-κB p65 and the consequent inhibition of NF-κB activity. The suppression of NF-κB activity, in turn, inhibited the activity of two transcription factors (NFATc1 and c-Fos) essential for osteoclast formation and led to the downregulation of genes and proteins related to bone resorption. Our study thus provides a newly identified mechanism for targeting in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Junchun Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - YuanGang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoxiao Xie
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Qian Liu, ; Jiake Xu,
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Qian Liu, ; Jiake Xu,
| |
Collapse
|
19
|
Zhu H, Tamura A, Zhang S, Terauchi M, Yoda T, Yui N. Mitigating RANKL-induced cholesterol overload in macrophages with β-cyclodextrin-threaded polyrotaxanes suppresses osteoclastogenesis. Biomater Sci 2022; 10:5230-5242. [PMID: 35904082 DOI: 10.1039/d2bm00833e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free cholesterol acts as an endogenous agonist for estrogen-related receptor α (ERRα), a nuclear receptor that regulates osteoclastogenesis. Because stimulation of macrophages with receptor activator of nuclear factor κB ligand (RANKL) induces an overload of free cholesterol and activates ERRα, we hypothesized that direct removal of cellular cholesterol would suppress osteoclastogenesis. In this study, the effect of 2-hydroxypropyl β-cyclodextrin (HP-β-CD), a highly water-soluble cyclic glucopyranose, and β-CD-threaded polyrotaxanes (PRXs), supramolecular polymers designed to release threaded β-CDs in acidic lysosomes, on RANKL-induced cholesterol overload and osteoclast differentiation of murine macrophage-like RAW264.7 cells were investigated. PRXs suppressed RANKL-induced cholesterol overload. Additionally, RANKL-induced osteoclast differentiation of RAW264.7 cells was inhibited by PRXs. In contrast, HP-β-CD did not reduce cholesterol levels or inhibit osteoclast differentiation in RAW264.7 cells. Gene expression analysis of osteoclast markers suggested that PRXs suppress only the early stage of osteoclast differentiation, as PRXs cannot be internalized into multinucleated osteoclasts. However, modification of PRXs with cell-penetrating peptides facilitated their cellular uptake into multinucleated osteoclasts and inhibited osteoclast maturation. Thus, PRXs are promising candidates for inhibiting osteoclast differentiation by suppressing cholesterol overload and may be useful for treating osteoporosis or other bone defects caused by the overactivity of osteoclasts.
Collapse
Affiliation(s)
- Hongfei Zhu
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
20
|
Jin F, Zhu Y, Liu M, Wang R, Cui Y, Wu Y, Liu G, Wang Y, Wang X, Ren Z. Babam2 negatively regulates osteoclastogenesis by interacting with Hey1 to inhibit Nfatc1 transcription. Int J Biol Sci 2022; 18:4482-4496. [PMID: 35864959 PMCID: PMC9295054 DOI: 10.7150/ijbs.72487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoclast-mediated excessive bone resorption was highly related to diverse bone diseases including osteoporosis. BRISC and BRCA1-A complex member 2 (Babam2) was an evolutionarily conserved protein that is highly expressed in bone tissues. However, whether Babam2 is involved in osteoclast formation is still unclear. In this study, we identify Babam2 as an essential negative regulator of osteoclast formation. We demonstrate that Babam2 knockdown significantly accelerated osteoclast formation and activity, while Babam2 overexpression blocked osteoclast formation and activity. Moreover, we demonstrate that the bone resorption activity was significantly downregulated in Babam2-transgenic mice as compared with wild-type littermates. Consistently, the bone mass of the Babam2-transgenic mice was increased. Furthermore, we found that Babam2-transgenic mice were protected from LPS-induced bone resorption activation and thus reduced the calvarial bone lesions. Mechanistically, we demonstrate that the inhibitory effects of Babam2 on osteoclast differentiation were dependent on Hey1. As silencing Hey1 largely diminished the effects of Babam2 on osteoclastogenesis. Finally, we show that Babam2 interacts with Hey1 to inhibit Nfatc1 transcription. In sum, our results suggested that Babam2 negatively regulates osteoclastogenesis and bone resorption by interacting with Hey1 to inhibit Nfatc1 transcription. Therefore, targeting Babam2 may be a novel therapeutic approach for osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Fujun Jin
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China.,Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi Cui
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Jiang C, Wang Y, Zhang M, Xu J. Cholesterol inhibits autophagy in RANKL-induced osteoclast differentiation through activating the PI3K/AKT/mTOR signaling pathway. Mol Biol Rep 2022; 49:9217-9229. [PMID: 35881223 DOI: 10.1007/s11033-022-07747-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/23/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND A dysregulated balance between bone formation and bone resorption controlled by osteoblast and osteoclast will lead to osteoporosis. Cholesterol (CHO) is a crucial factor leading to osteoporosis, and autophagy appears to involve it. Therefore, we aimed to study the molecular mechanism of autophagy in CHO-induced osteoclasts differentiation. METHODS Nuclear factor-κ B ligand as a receptor activator was used to induce osteoclasts differentiation of murine macrophage RAW264.7 treated with CHO, PI3-kinase inhibitor (LY294002), and Rapamycin (RAPA), respectively. Western blot assay was used to detect the expression of TRAP/ACP5 and the proteins involved in autophagy and the PI3K/AKT/mTOR signaling pathway. In addition, TRAP staining, bone resorption assay, and F-actin immunofluorescence were performed to evaluate the ability of osteoclast formation. Transmission electron microscopy and immunofluorescence were also executed to observed the expression of LC3B, and autophagosome. RESULTS When RAW264.7 was treated with 20 μg/mL CHO for 5 consecutive days, It exhibited the optimal osteoclast activity. In addition, CHO could inhibit autophagy and activate the PI3K/AKT/mTOR signaling pathway. Moreover, the effects of CHO on osteoclast differentiation and autophagy could partially be reversed by LY294002 and RAPA. CONCLUSION Therefore, our results demonstrated that CHO could inhibit autophagy during osteoclast differentiation by activating the PI3K/AKT/mTOR signaling pathway. These findings provided important theoretical basis for CHO in bone resorption and formation.
Collapse
Affiliation(s)
- Chunyan Jiang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China.,Department of Endocrinology, People's Hospital of Linyi, Linyi, Shandong, China
| | - Yan Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. .,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China. .,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, Shandong, China.
| |
Collapse
|
22
|
Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-Related Receptor α: A Significant Regulator and Promising Target in Bone Homeostasis and Bone Metastasis. Molecules 2022; 27:3976. [PMID: 35807221 PMCID: PMC9268386 DOI: 10.3390/molecules27133976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.
Collapse
Affiliation(s)
- Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Haifei Cao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Jiangwei Tan
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| |
Collapse
|
23
|
Xu X, Li Y, Shi L, He K, Sun Y, Ding Y, Meng B, Zhang J, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep 2022; 23:e53509. [PMID: 35068044 PMCID: PMC8892248 DOI: 10.15252/embr.202153509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Whether bone marrow regulates bone metabolism through endocrine and paracrine mechanism remains largely unknown. Here, we found that (i) myeloid cell-specific myeloid-derived growth factor (MYDGF) deficiency decreased bone mass and bone strength in young and aged mice; (ii) myeloid cell-specific MYDGF restoration prevented decreases in bone mass and bone strength in MYDGF knockout mice; moreover, myeloid cell-derived MYDGF improved the progress of bone defects healing, prevented ovariectomy (OVX)-induced bone loss and age-related osteoporosis; (iii) MYDGF inhibited osteoclastogenesis and promoted osteoblast differentiation in vivo and in vitro; and (iv) PKCβ-NF-κB and MAPK1/3-STAT3 pathways were involved in the regulation of MYDGF on bone metabolism. Thus, we concluded that myeloid cell-derived MYDGF is a positive regulator of bone homeostasis by inhibiting bone resorption and promoting bone formation. MYDGF may become a potential novel therapeutic drug for osteoporosis, and bone marrow may become a potential therapeutic target for bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yixiang Li
- Department of Hematology and Medical OncologySchool of MedicineEmory UniversityAtlantaGAUSA
| | - Lingfeng Shi
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaiyue He
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ying Sun
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yan Ding
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Biying Meng
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiajia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Lin Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jing Dong
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Min Liu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Junxia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingwei Xiang
- Centers for Surgery and Public HealthBrigham and Women's HospitalBostonMAUSA
| | - Guangda Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
24
|
Dong Q, Han Z, Tian L. Identification of Serum Exosome-Derived circRNA-miRNA-TF-mRNA Regulatory Network in Postmenopausal Osteoporosis Using Bioinformatics Analysis and Validation in Peripheral Blood-Derived Mononuclear Cells. Front Endocrinol (Lausanne) 2022; 13:899503. [PMID: 35757392 PMCID: PMC9218277 DOI: 10.3389/fendo.2022.899503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Osteoporosis is one of the most common systemic metabolic bone diseases, especially in postmenopausal women. Circular RNA (circRNA) has been implicated in various human diseases. However, the potential role of circRNAs in postmenopausal osteoporosis (PMOP) remains largely unknown. The study aims to identify potential biomarkers and further understand the mechanism of PMOP by constructing a circRNA-associated ceRNA network. METHODS The PMOP-related datasets GSE161361, GSE64433, and GSE56116 were downloaded from the Gene Expression Omnibus (GEO) database and were used to obtain differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to determine possible relevant functions of differentially expressed messenger RNAs (mRNAs). The TRRUST database was used to predict differential transcription factor (TF)-mRNA regulatory pairs. Afterwards, combined CircBank and miRTarBase, circRNA-miRNA as well as miRNA-TF pairs were constructed. Then, a circRNA-miRNA-TF-mRNA network was established. Next, the correlation of mRNAs, TFs, and PMOP was verified by the Comparative Toxicogenomics Database. And expression levels of key genes, including circRNAs, miRNAs, TFs, and mRNAs in the ceRNA network were further validated by quantitative real-time PCR (qRT-PCR). Furthermore, to screen out signaling pathways related to key mRNAs of the ceRNA network, Gene Set Enrichment Analysis (GSEA) was performed. RESULTS A total of 1201 DE mRNAs, 44 DE miRNAs, and 1613 DE circRNAs associated with PMOP were obtained. GO function annotation showed DE mRNAs were mainly related to inflammatory responses. KEGG analysis revealed DE mRNAs were mainly enriched in osteoclast differentiation, rheumatoid arthritis, hematopoietic cell lineage, and cytokine-cytokine receptor interaction pathways. We first identified 26 TFs and their target mRNAs. Combining DE miRNAs, miRNA-TF/mRNA pairs were obtained. Combining DE circRNAs, we constructed the ceRNA network contained 6 circRNAs, 4 miRNAs, 4 TFs, and 12 mRNAs. The expression levels of most genes detected by qRT-PCR were generally consistent with the microarray results. Combined with the qRT-PCR validation results, we eventually identified the ceRNA network that contained 4 circRNAs, 3 miRNAs, 3 TFs, and 9 mRNAs. The GSEA revealed that 9 mRNAs participate in many important signaling pathways, such as "olfactory transduction", "T cell receptor signaling pathway", and "neuroactive ligand-receptor interaction". These pathways have been reported to the occurrence and development of PMOP. To sum up, key mRNAs in the ceRNA network may participate in the development of osteoporosis by regulating related signal pathways. CONCLUSIONS A circRNA-associated ceRNA network containing TFs was established for PMOP. The study may help further explore the molecular mechanisms and may serve as potential biomarkers or therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Qianqian Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
- *Correspondence: Limin Tian,
| |
Collapse
|
25
|
Yang M, Wu D, Cheng S, Dong Y, Wu C, Wang Z, Du M. Inhibitory effects of Atlantic cod (Gadus morhua) peptides on RANKL-induced osteoclastogenesis in vitro and osteoporosis in ovariectomized mice. Food Funct 2022; 13:1975-1988. [DOI: 10.1039/d1fo03696c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atlantic cod (Gadus morhua) is one of the most important fishes in the world with high nutritional value and economic value. However, the impact and underlying mechanism of the G....
Collapse
|
26
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| |
Collapse
|
27
|
Geniposide Ameliorated Dexamethasone-Induced Cholesterol Accumulation in Osteoblasts by Mediating the GLP-1R/ABCA1 Axis. Cells 2021; 10:cells10123424. [PMID: 34943934 PMCID: PMC8699812 DOI: 10.3390/cells10123424] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Overexposure to glucocorticoid (GC) produces various clinical complications, including osteoporosis (OP), dyslipidemia, and hypercholesterolemia. Geniposide (GEN) is a natural iridoid compound isolated from Eucommia ulmoides. Our previous study found that GEN could alleviate dexamethasone (DEX)-induced differentiation inhibition of MC3T3-E1 cells. However, whether GEN protected against Dex-induced cholesterol accumulation in osteoblasts was still unclear. Methods: DEX was used to induce rat OP. Micro-CT data was obtained. The ALP activity and mineralization were determined by the staining assays, and the total intracellular cholesterol was determined by the ELISA kits. The protein expression was detected by western blot. Results: GEN ameliorated Dex-induced micro-structure damages and cell differentiation inhibition in the bone trabecula in rats. In MC3T3-E1 cells, Dex enhanced the total intracellular cholesterol, which reduced the activity of cell proliferation and differentiation. Effectively, GEN decreased DEX-induced cholesterol accumulation, enhanced cell differentiation, and upregulated the expression of the GLP-1R/ABCA1 axis. In addition, inhibition of ABAC1 expression reversed the actions of GEN. Treatment with Exendin9-39, a GLP-1R inhibitor, could abrogate the protective activity of GEN. Conclusions: GEN ameliorated Dex-induced accumulation of cholesterol and inhibition of cell differentiation by mediating the GLP-1R/ABCA1 axis in MC3T3-E1 cells.
Collapse
|
28
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
29
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
30
|
Bellavia D, Caradonna F, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Gentile C, Alessandro R, Fini M, Giavaresi G. Terpenoid treatment in osteoporosis: this is where we have come in research. Trends Endocrinol Metab 2021; 32:846-861. [PMID: 34481733 DOI: 10.1016/j.tem.2021.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/30/2023]
Abstract
Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible pharmacological use in osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy.
| | - Fabio Caradonna
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Eufrosina Dimarco
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Carla Gentile
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Riccardo Alessandro
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, Palermo, Italy; Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| |
Collapse
|
31
|
Wang X, Li Y, He M, Kong X, Jiang P, Liu X, Diao L, Zhang X, Li H, Ling X, Xia S, Liu Z, Liu Y, Cui CP, Wang Y, Tang L, Zhang L, He F, Li D. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res 2021; 50:D719-D728. [PMID: 34669962 PMCID: PMC8728189 DOI: 10.1093/nar/gkab962] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
As an important post-translational modification, ubiquitination mediates ∼80% of protein degradation in eukaryotes. The degree of protein ubiquitination is tightly determined by the delicate balance between specific ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase-mediated deubiquitination. In 2017, we developed UbiBrowser 1.0, which is an integrated database for predicted human proteome-wide E3-substrate interactions. Here, to meet the urgent requirement of proteome-wide E3/deubiquitinase-substrate interactions (ESIs/DSIs) in multiple organisms, we updated UbiBrowser to version 2.0 (http://ubibrowser.ncpsb.org.cn). Using an improved protocol, we collected 4068/967 known ESIs/DSIs by manual curation, and we predicted about 2.2 million highly confident ESIs/DSIs in 39 organisms, with >210-fold increase in total data volume. In addition, we made several new features in the updated version: (i) it allows exploring proteins' upstream E3 ligases and deubiquitinases simultaneously; (ii) it has significantly increased species coverage; (iii) it presents a uniform confidence scoring system to rank predicted ESIs/DSIs. To facilitate the usage of UbiBrowser 2.0, we also redesigned the web interface for exploring these known and predicted ESIs/DSIs, and added functions of 'Browse', 'Download' and 'Application Programming Interface'. We believe that UbiBrowser 2.0, as a discovery tool, will contribute to the study of protein ubiquitination and the development of drug targets for complex diseases.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Mengqi He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangren Kong
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xi Liu
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinlei Zhang
- Beijing Geneworks Technology Co.,Ltd., Beijing 100101, China
| | - Honglei Li
- Beijing Geneworks Technology Co.,Ltd., Beijing 100101, China
| | - Xinping Ling
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Simin Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuan Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liujun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,College of Life Sciences, Hebei University, Baoding 071002, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
32
|
Shen J, Fu B, Li Y, Wu Y, Sang H, Zhang H, Lin H, Liu H, Huang W. E3 Ubiquitin Ligase-Mediated Regulation of Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2021; 9:706395. [PMID: 34513836 PMCID: PMC8430030 DOI: 10.3389/fcell.2021.706395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is an essential pathway that regulates the homeostasis and function of intracellular proteins and is a crucial protein-degradation system in osteoblast differentiation and bone formation. Abnormal regulation of ubiquitination leads to osteoblast differentiation disorders, interfering with bone formation and ultimately leading to osteoporosis. E3 ubiquitin ligases (E3) promote addition of a ubiquitin moiety to substrate proteins, specifically recognizing the substrate and modulating tyrosine kinase receptors, signaling proteins, and transcription factors involved in the regulation of osteoblast proliferation, differentiation, survival, and bone formation. In this review, we summarize current progress in the understanding of the function and regulatory effects of E3 ligases on the transcription factors and signaling pathways that regulate osteoblast differentiation and bone formation. A deep understanding of E3 ligase-mediated regulation of osteoblast differentiation provides a scientific rationale for the discovery and development of novel E3-targeting therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanfang Li
- Department of Pediatric Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Heshi Zhang
- Department of Vessel and Breast, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
33
|
Site-1 protease controls osteoclastogenesis by mediating LC3 transcription. Cell Death Differ 2021; 28:2001-2018. [PMID: 33469231 PMCID: PMC8184842 DOI: 10.1038/s41418-020-00731-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
Site-1 protease (S1P) is a Golgi-located protein that activates unique membrane-bound latent transcription factors, and it plays an indispensable role in endoplasmic reticulum stress, lipid metabolism, inflammatory response and lysosome function. A patient with S1P mutation exhibits severe skeletal dysplasia with kyphoscoliosis, dysmorphic facial features and pectus carinatum. However, whether S1P regulates bone remodeling by affecting osteoclastogenesis remains elusive. Here, we show that S1P is indeed a positive regulator of osteoclastogenesis. S1P ablation in mice led to significant osteosclerosis compared with wild-type littermates. Mechanistically, S1P showed upregulated during osteoclastogenesis and was identified as a direct target of miR-9-5p. S1P deletion in bone marrow monocytes (BMMs) inhibited ATF6 and SREBP2 maturation, which subsequently impeded CHOP/SREBP2-complex-induced LC3 expression and autophagy flux. Consistently, transfection of LC3 adenovirus evidently rescued osteoclastogenesis in S1P-deficient BMMs. We then identified the interaction regions between CHOP and SREBP2 by Co-immunoprecipitation (Co-IP) and molecular docking. Furthermore, S1P deletion or inhibitor efficaciously rescued ovariectomized (OVX)- and LPS-induced bone loss in vivo. Collectively, we showed that S1P regulates osteoclast differentiation in a LC3 dependent manner and so is a potential therapy target for osteoporosis.
Collapse
|
34
|
Jiang C, Ma Q, Wang S, Shen Y, Qin A, Fan S, Jie Z. Oxymatrine Attenuates Osteoclastogenesis via Modulation of ROS-Mediated SREBP2 Signaling and Counteracts Ovariectomy-Induced Osteoporosis. Front Cell Dev Biol 2021; 9:684007. [PMID: 34136493 PMCID: PMC8202524 DOI: 10.3389/fcell.2021.684007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis, mainly caused by osteoclast-induced bone resorption, has become a major health problem in post-menopausal women and the elderly. Growing evidence indicates that inhibiting osteoclastogenesis is an efficient approach to develop alternative therapeutic agents for treating osteoporosis. In this study, we identified the potential regulating role of Oxymatrine (OMT), a quinazine alkaloid extracted from Sophora flavescens with various therapeutic effects in many diseases, on osteoclastogenesis for the first time. We found that OMT attenuated RANKL-induced osteoclast formation in both time- and dose-dependent manners. Further, OMT significantly suppressed RANKL-induced sterol regulatory element-binding protein 2 (SREBP2) activation and the expression of the nuclear factor of activated T cells 1 (NFATc1). Moreover, OMT inhibited the generation of RANKL-induced reactive oxygen species (ROS), and the upregulation of ROS could rescue the inhibition of SREBP2 by OMT. More importantly, ovariectomy (OVX) mouse model showed that OMT could effectively improve ovariectomy (OVX)-induced osteopenia by inhibiting osteoclastogenesis in vivo. In conclusion, our data demonstrated that OMT impaired ROS mediated SREBP2 activity and downstream NFATc1 expression during osteoclastogenesis, suppressed OVX-induced osteopenia in vivo, which suggested that OMT could be a promising compound for medical treatment against osteoporosis.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
35
|
Zhang Y, Zhang C, Wang J, Liu H, Wang M. Bone-Adipose Tissue Crosstalk: Role of Adipose Tissue Derived Extracellular Vesicles in Bone Diseases. J Cell Physiol 2021; 236:7874-7886. [PMID: 33993498 DOI: 10.1002/jcp.30414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Bone is a metabolically active organ that undergoes constant remodeling throughout life. A failure of this process leads to pathological destructive bone diseases such as osteoporosis, rheumatoid arthritis, and osteoarthritis. Studies of the interplay between adipose tissue and bone system, have revealed that adipose tissue disorders (e.g. obesity) strongly influence the development of bone diseases. Adipokines secreted by adipose tissue play important roles in the crosstalk between bone and adipose tissue. Recently, extracellular vesicles (EVs) have been identified as a novel method of communication between different organs and have attracted increased attention in the field of bone remodeling process. Adipokines carried by EVs are known to play pivotal roles in bone remodeling processes including osteogenesis and osteoclastogenesis. In this review, we highlighted the role of adipose tissue derived EVs (EVs-AT) in the context of bone remodeling events and focused on the characteristics of EVs-AT and their components in the regulation of bone diseases. Moreover, we introduced the intriguing therapeutic application of EVs-AT in different pathological destructive bone diseases and proposed future directions for research on EVs-AT in bone diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Cheng Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jiasheng Wang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Muyao Wang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
36
|
Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, Qian Y, Zhang M. The Macrophage-Osteoclast Axis in Osteoimmunity and Osteo-Related Diseases. Front Immunol 2021; 12:664871. [PMID: 33868316 PMCID: PMC8044404 DOI: 10.3389/fimmu.2021.664871] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoimmunity is involved in regulating the balance of bone remodeling and resorption, and is essential for maintaining normal bone morphology. The interaction between immune cells and osteoclasts in the bone marrow or joint cavity is the basis of osteoimmunity, in which the macrophage-osteoclast axis plays a vital role. Monocytes or tissue-specific macrophages (macrophages resident in tissues) are an important origin of osteoclasts in inflammatory and immune environment. Although there are many reports on macrophages and osteoclasts, there is still a lack of systematic reviews on the macrophage-osteoclast axis in osteoimmunity. Elucidating the role of the macrophage-osteoclast axis in osteoimmunity is of great significance for the research or treatment of bone damage caused by inflammation and immune diseases. In this article, we introduced in detail the concept of osteoimmunity and the mechanism and regulators of the differentiation of macrophages into osteoclasts. Furthermore, we described the role of the macrophage-osteoclast axis in typical bone damage caused by inflammation and immune diseases. These provide a clear knowledge framework for studying macrophages and osteoclasts in inflammatory and immune environments. And targeting the macrophage-osteoclast axis may be an effective strategy to treat bone damage caused by inflammation and immune diseases.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Ma YS, Hou ZJ, Li Y, Zheng BB, Wang JM, Wang WB. Unveiling the Pharmacological Mechanisms of Eleutheroside E Against Postmenopausal Osteoporosis Through UPLC-Q/TOF-MS-Based Metabolomics. Front Pharmacol 2020; 11:1316. [PMID: 32982736 PMCID: PMC7479840 DOI: 10.3389/fphar.2020.01316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common metabolic bone disease in postmenopausal women in the Worldwide, and seriously affects the quality of life of middle-aged and elderly women. Therefore, there is an urgent need to discover a highly effective drug for PMOP treatment. In this study, ultra-high performance liquid tandem quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to analyze the urine metabolic profiling and potential biomarkers, the relevant metabolic network of PMOP rats, and further to evaluate the intervention effect of Eleutheroside E (EE) against PMOP. Using multivariate statistical analysis combined with UPLC-Q/TOF-MS, a total of 27 biomarkers were identified, which related with 16 metabolic pathways, mainly involving steroidogenesis, beta oxidation of very long chain fatty acids, glutathione metabolism, carnitine synthesis, estrone metabolism, oxidation of branched chain fatty acids, etc. After treatment of EE, these biomarkers were markedly regulated, mainly involving steroid hormone biosynthesis, arachidonic acid metabolism, primary bile acid biosynthesis, indicating that EE had the therapeutic effect on PMOP. This study identified the potential urine metabolic markers and related metabolic pathways of the PMOP, explained the metabolic effect and pharmacological mechanisms of EE against PMOP, and provided a basis for the pharmacological study of EE.
Collapse
Affiliation(s)
- Yong-Sheng Ma
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhan-Jiang Hou
- The Emergency Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - You Li
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beng-Beng Zheng
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Ming Wang
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Bo Wang
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|