1
|
Meimei C, Fei Z, Wen X, Huangwei L, Zhenqiang H, Rongjun Y, Qiang Z, Qiuyang L, Xiaozhen L, Yuan Y, Zhaoyang Y, Candong L. Taxus chinensis (Pilg.) Rehder fruit attenuates aging behaviors and neuroinflammation by inhibiting microglia activation via TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118943. [PMID: 39413938 DOI: 10.1016/j.jep.2024.118943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of the important by-products of Taxus chinensis (Pilg.) Rehder, its fruit (TCF) has a sweet taste, which is commonly used in folklore to make health care wine reputed for enhancing immune function and promoting anti-aging effects, especially popular in the longevity villages of China for a long history. Evidences had showed that Taxus chinensis fruit contained polysaccharides, flavonoids, amino acids and terpenoids, which all were free of toxic compounds, but its medicinal value has not been fully recognized. Our previous studies have found that TCF extract may reverse many biological events, including oxidative stress, inflammatory response, neuronal apoptosis, etc. by in silico methods, suggesting potential avenues for future pharmaceutical exploration in aging and age-related diseases. AIM OF THE STUDY Yet, the anti-aging properties of TCF have not been specifically studied, this study aims to fill this gap by investigating the effects of TCF extract (TCFE) in an aging mouse model, particularly focusing on its role in inhibiting microglial activation and elucidating its underlying anti-aging mechanisms. MATERIALS AND METHODS An aging mouse model was induced using D-galactose, with interventions involving high, medium, and low doses of TCFE compared to a positive control (2 mg/kg rapamycin combined with 100 mg/kg metformin). The methodology involved evaluating behavioral changes, serum oxidative and antioxidative markers, hypothalamic β-galactosidase activity, expression of the aging-related protein P63, serum inflammatory factors, and the TLR4/NF-κB/NLRP3 inflammatory pathway in hypothalamic tissues. Additionally, to strengthen our in vivo findings, we conducted in vitro experiments on LPS-stimulated BV2 microglial cells. Finally, UPLC-MS/MS for precise component analysis using compound standards, coupled with molecular docking analyses, were employed to discern and elucidate the anti-inflammatory mechanisms of TCF. RESULTS In vivo results revealed TCFE significantly ameliorated behavioral deficits, reduced oxidative stress markers (MDA) and pro-inflammatory cytokines (IL1-β, IL-6, IFNg, TNFα, IL-17), and increased in antioxidants (SOD, T-AOC) and anti-inflammatory factors (IL-10). TCFE also reduced hypothalamic senescence, improved cellular integrity, lowered p63, and inhibited microglia activation and inflammatory pathways (TLR4, NFKB, NLRP3). The overall effect of TCFE was better than that of the positive drug group (rapamycin combined with metformin). In vitro results further revealed that TCFE markedly decreased IL1-β, NFKB, and TLR4 levels in BV2 microglial cells, showing comparable efficacy to a TLR4 classic positive inhibitor C34, supporting its anti-inflammatory role. Through UPLC-MS/MS analysis coupled with compound standards, we identified ten bioactive compounds, including gallocatechin, epigallocatechin, catechin, procyanidin B2, kaempferol, quercetin, rutin, naringin, apigenin, ginkgetin. All these compounds showed strong binding affinity to TLR4, notably procyanidin B2 and rutin, potentially through hydrogen bonds, aromatic cation-π interactions, and hydrophobic interactions, suggesting a molecular basis for their anti-inflammatory action. CONCLUSION TCFE showed strong anti-aging effects by inhibiting microglia activation and lessening oxidative stress and modulating inflammatory pathways. This research supports TCF's use in anti-aging and sets a base for future drug development in the realms of neuroinflammation and aging.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhang Fei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xu Wen
- Science and Innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Lei Huangwei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Hong Zhenqiang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, China
| | - Yu Rongjun
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhao Qiang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Li Qiuyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Liu Xiaozhen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yang Yuan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yang Zhaoyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, China.
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
2
|
Larrea Murillo L, Sugden CJ, Ozsvari B, Moftakhar Z, Hassan GS, Sotgia F, Lisanti MP. ALDH High Breast Cancer Stem Cells Exhibit a Mesenchymal-Senescent Hybrid Phenotype, with Elevated Metabolic and Migratory Activities. Cells 2024; 13:2059. [PMID: 39768151 PMCID: PMC11674378 DOI: 10.3390/cells13242059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential. Cells that undergo an EMT process have shown to be more resistant to conventional chemo/radiotherapies. In this context, aldehyde dehydrogenase (ALDH) enzymes, known for their role in the cellular detoxification of aldehydes and enhancement of cell survival, are often upregulated in cancer cells, promoting their resistance to conventional cancer treatments. Indeed, high ALDH levels have become a hallmark biomarker of CSCs and are often used to isolate this sub-population from the more abundant cancer cell populations. Herein, we isolated human breast cancer epithelial cells with higher ALDH abundance (ALDHHigh) and compared them to those with low ALDH abundance (ALDHLow). ALDHHigh sub-populations exhibited more characteristic EMT biomarkers by adopting a more mesenchymal phenotype with increased stemness and enhanced migratory potential. Furthermore, ALDHHigh sub-populations displayed elevated senescent markers. Moreover, these cells also demonstrated higher levels of mitochondria DNA/mass, as well as greater mitochondrial and glycolytic metabolic function. Conversely, ALDHLow sub-populations showed a higher efficiency of mammosphere/colony formation and an increased proliferative capacity. Therefore, we demonstrated that these ALDH sub-populations have distinct characteristics, underscoring their role in EMT, the formation of tumors and the mechanisms of metastasis.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Conor J. Sugden
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Bela Ozsvari
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Zahra Moftakhar
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Ghada S. Hassan
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
3
|
Guo Y, Wang P, Hu B, Wang L, Zhang Y, Wang J. Kongensin A targeting PI3K attenuates inflammation-induced osteoarthritis by modulating macrophage polarization and alleviating inflammatory signaling. Int Immunopharmacol 2024; 142:112948. [PMID: 39217884 DOI: 10.1016/j.intimp.2024.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The inflammatory microenvironment, polarization of macrophages towards the M1 phenotype, and consequent matrix degradation and senescence of chondrocytes are primary contributors to the degeneration of knee joint cartilage, further exacerbating the progression of osteoarthritis (OA). Kongensin A (KA) is a recently identified natural plant extract exhibiting anti-necrotic apoptosis and anti-inflammatory properties, but the potential efficacy in alleviating OA remains uncertain. The current research lucubrated the effect of KA on the inflammatory microenvironment and macrophage polarization, as well as its regulatory function in extracellular matrix (ECM) metabolism and chondrocyte senescence. Our findings demonstrated that KA can suppress inflammatory signaling, maintain homeostasis between ECM anabolism and catabolism, and suppress chondrocytes senescence. Further investigation elucidated that the mechanism involves the suppression of the PI3K/AKT/NF-κB axis in chondrocytes under inflammatory conditions. Moreover, KA impeded M1 polarization of macrophages via inhibiting PI3K/AKT/NF-κB axis. Subsequently, we treated chondrocytes with macrophages-derived conditioned medium (CM) and revealed that KA can promote ECM anabolism and alleviate chondrocytes senescence by reprogramming macrophage polarization. Consistent with in vitro experiments, in vivo administration of KA demonstrated alleviated cartilage degeneration and delayed progression of OA. Collectively, through obstructing the PI3K/AKT/NF-κB axis, KA can reprogram macrophage polarization, promote matrix metabolism equilibrium, and alleviate chondrocytes senescence, thereby attenuating the pathology of OA. In conclusion, KA may emerge as a promising therapy for OA.
Collapse
Affiliation(s)
- Yuhui Guo
- Department of Orthopaedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Peng Wang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Wang
- Department of Orthopaedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| | - Yingze Zhang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Juan Wang
- Department of Orthopaedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| |
Collapse
|
4
|
Wang L, Chen S, Zhang H, Wei G, Ma F, Zhang M, Zhang B, Yang S, Cheng H, Yang R, Wang R, Liu M, Song Y, Li X, E X. Serine protease inhibitor E2 protects against cartilage tissue destruction and inflammation in osteoarthritis by targeting NF-κB signalling. Rheumatology (Oxford) 2024; 63:3172-3183. [PMID: 39180420 DOI: 10.1093/rheumatology/keae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/19/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE OA is a chronic disease characterized by cartilage degeneration and inflammation, with no approved disease-modifying drugs. This study aimed to identify pathogenic genes and elucidate their mechanism in OA. METHODS We systematically identified pathogenic genes combined sing-cell and bulk transcriptome profiles of cartilage tissues in OA. Adenovirus carrying the serpin peptidase inhibitor clade E member 2 (serpinE2) or exogenous serpinE2 was injected into monosodium iodoacetate (MIA)-induced OA-model rats. Histological analysis, immunohistochemistry and Alcian blue staining were performed. In vitro, immunofluorescence, quantitative real-time PCR (RT-qPCR), ELISA and western blot assays were performed. RESULTS serpinE2 exhibited elevated expression and hypomethylation, showing a positive association with collagen pathway activities in patients with OA. Silencing serpinE2 aggravated MIA-induced knee cartilage degeneration in OA-model rats. Conversely, the intra-articular injection of exogenous serpinE2 ameliorated articular cartilage degeneration, reduced pain-related behavioural responses and relieve synovitis in MIA-induced OA-model rats. Exogenous serpinE2 not only attenuated the elevation of NLRP3, IL-1β and caspase1 expression levels but also restored the reduction in cell viability induced by lipopolysaccharide (LPS) in chondrocytes. Mechanistically, we found that exogenous serpinE2 inhibited LPS-induced reactive oxygen species (ROS) release and NF-κB signalling activation. CONCLUSIONS serpinE2 plays a protective role in cartilage and synovium tissues, suggesting that serpinE2 gene transfer or molecules that upregulate serpinE2 expression could be therapeutic candidates for OA.
Collapse
Affiliation(s)
- Linzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Shuangshuang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Huizhen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Guozhao Wei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Fenghua Ma
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Mingxiu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Boyang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Sen Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hongyi Cheng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ruonan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ruifeng Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Mengyuan Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yang Song
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xiaoqiang E
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
5
|
Vasileva E, Stankova T, Batalov K, Staynova R, Nonchev B, Bivolarska A, Karalilova R. Association of serum and synovial adipokines (chemerin and resistin) with inflammatory markers and ultrasonographic evaluation scores in patients with knee joint osteoarthritis- a pilot study. Rheumatol Int 2024; 44:1997-2005. [PMID: 39180525 DOI: 10.1007/s00296-024-05672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Chemerin and resistin are adipokines studied as potential markers for early diagnosis and disease severity in patients with knee osteoarthritis (KOA) Therefore, we aimed to investigate the associations serum and synovial levels of chemerin and resistin with inflammatory parameters and ultrasonographic scores (US) in KOA individuals. Serum was collected from 28 patients with KOA and synovial fluid was obtained from 16 of them. Another 31 age and sex matched cases with no joint disease were included as healthy controls. Concentrations of chemerin, resistin, interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) were determined with ELISA. Erythrocyte sedimentation rate (ESR), C-reactive protein, serum uric acid (UA) were measured in the patients group. Participants with KOA underwent US assessment using the Outcome Measures in Rheumatology (OMERACT) scores. Patients with KOA had statistically significant higher level of serum resistin than healthy controls [11.05 (3.78-24.13) ng/mL and 7.23 (3.83-12.19) respectively, p < 0.001]. A strong correlation was found between serum chemerin and ESR (r = 0.434, p = 0.021), uric acid (r = 0.573, p = 0.001) as well as the US (r=-0.872, p < 0.001). Serum resistin demonstrated significant association with TNF-alpha (r = 0.398, p = 0.044). In conclusion, both chemerin and resistin might contribute to inflammatory changes associated with KOA. Further studies are needed to elucidate their potential role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Emanuela Vasileva
- Department of Propedeutics of Internal Diseases, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov blvd., Plovdiv, 4002, Bulgaria.
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Konstantin Batalov
- Department of Propedeutics of Internal Diseases, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov blvd., Plovdiv, 4002, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Bulgaria
| | - Radiana Staynova
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Boyan Nonchev
- Clinic of Endocrinology and metabolic diseases, University Hospital "Kaspela", Plovdiv, Bulgaria
- Department of Endocrinology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Karalilova
- Department of Propedeutics of Internal Diseases, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov blvd., Plovdiv, 4002, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Bulgaria
| |
Collapse
|
6
|
Zhan CL, Zhou D, Sun MH, Jiang WJ, Lee SH, Li XH, Lu QY, Kim JD, Lee GH, Sim JM, Chung HJ, Cho ES, Sa SJ, Cui XS. In Vivo-Matured Oocyte Resists Post-Ovulatory Aging through the Hub Genes DDX18 and DNAJC7 in Pigs. Antioxidants (Basel) 2024; 13:867. [PMID: 39061935 PMCID: PMC11274268 DOI: 10.3390/antiox13070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that "organelles", especially "mitochondria", were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the "electron transport chain" and "cell redox homeostasis" pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait-module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in "RNA binding", "mRNA metabolic process", etc., as well as in GO terms, and "spliceosome" and "nucleotide excision repair" pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species.
Collapse
Affiliation(s)
- Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Hak-Jae Chung
- The Center for Reproductive Control, TNT Research Co., Ltd., Jiphyeonjungang 3-gil 13, Sejong-si 30141, Republic of Korea;
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan-si 31000, Republic of Korea;
| | - Soo-Jin Sa
- Planning and Coordination Division, National Institute of Animal Science, Iseo-myeon, Wanju-gun 55365, Republic of Korea;
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| |
Collapse
|
7
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
8
|
Farooq HMU, Yang L, Cao M, Chen Z, Qian A, Dang K. Recent Progress in the Research on RNA-Binding Proteins in Bone Development and Diseases. Int J Mol Sci 2024; 25:7735. [PMID: 39062974 PMCID: PMC11276800 DOI: 10.3390/ijms25147735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years. This article provides a review of such studies, highlighting the potential of RBPs as pivotal targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (H.M.U.F.); (L.Y.); (Z.C.)
| | - Kai Dang
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (H.M.U.F.); (L.Y.); (Z.C.)
| |
Collapse
|
9
|
Liao FX, Yang S, Liu ZH, Bo KD, Xu PF, Chang J. Estrogen receptor is involved in the osteoarthritis mediated by Atg16L1-NLRP3 activation. Jt Dis Relat Surg 2024; 35:513-520. [PMID: 39189559 PMCID: PMC11411874 DOI: 10.52312/jdrs.2024.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVES This study aims to explore the mechanisms of dual regulation of osteoarthritis (OA) progression by the involvement of estrogen receptor (ER) in autophagy and inflammation. MATERIALS AND METHODS Bioinformatics methods were used to explore the relationship among associated genes. Western blot assays were used to detect related protein expression of OA in C28I2 and induced OA cellular model. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis were used to detect OA related gene expression in C28I2 and induced OA cellular model. Co-immunoprecipitation (CO-IP) analysis were used to verify the direct interaction between ER and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). RESULTS The C28I2 cellular model of OA was induced by interleukin-1β (IL-1β). The small interfering ribonucleic acid (SiRNA)-mediated knockdown of autophagy-related 16 like 1 (ATG16L1) in C28I2 decreased the expression of MAP1LC3B (LC3B) and NLRP3. Besides, ER-beta (ERβ) agonist changed the gene expression of NLRP3 and ATG16L1. Moreover, CO-IP analysis indicated the direct interaction between ER and NLRP3. CONCLUSION Our study results revealed that ATG16L1, NLRP3, and IL-1β interacted closely and ERβ was involved in OA process by affecting autophagy and inflammatory activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Chang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
10
|
Xu L, Zhang Y, Yu J, Huo W, Xu J, Yang H, Zhang M, Yu S, Wu Y, Wang M. miR-708-5p deficiency involves the degeneration of mandibular condylar chondrocytes via the TLR4/NF-κB pathway. Osteoarthritis Cartilage 2024; 32:666-679. [PMID: 38403153 DOI: 10.1016/j.joca.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE Ageing and aberrant biomechanical stimulation are two major risk factors for osteoarthritis (OA). One of the main characteristics of aged cartilage is cellular senescence. One of the main characteristics of osteoarthritic joints is cartilage degeneration. The cells in the temporomandibular joint (TMJ) cartilage are zonally arranged. The deep zone cells are differentiated from the superficial zone cells (SZCs). The purpose of the present study was to investigate whether degenerative shear stress (SS) stimulates the senescence programme in TMJ SZCs, and to determine which miRNA is involved in this process. METHOD SZCs were isolated from the TMJ condyles of 3-week-old rats and treated with continuous passaging or SS. RNA sequencing was conducted to identify miRNA(s) that overlap with those involved in the replication senescence process and the SS-induced degeneration programme. Unilateral anterior crossbite (UAC), which is TMJ-OA inducible, was applied to 2-month-old and 12-month-old mice for 3 weeks. The effect of TMJ local injection of agomiR-708-5p was evaluated histologically. RESULTS Both replication and SS treatment induced SZC senescence. miR-708-5p was identified. Knocking down miR-708-5p in SS-treated SZCs led to more severe senescence by alleviating the inhibitory impact of miR-708-5p on the TLR4/NF-κB pathway. miR-708-5p expression in mouse TMJ cartilage decreased with age. UAC induced more severe osteoarthritic cartilage lesions in 12-month-old mice than in 2-month-old mice. Injection of agomiR-708-5p suppressed UAC-induced osteoarthritic cartilage lesions. CONCLUSIONS Age-related miR-708-5p deficiency is involved in the mechanically stimulated OA process. Intra-articular administration of agomiR-708-5p is a promising new strategy for OA treatment.
Collapse
Affiliation(s)
- Lingfeng Xu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Yuejiao Zhang
- Department of Oral Anatomy and Physiology and TMD, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jia Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Wanqiu Huo
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Jiali Xu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Hongxu Yang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Shibing Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China
| | - Yaoping Wu
- Department of Joint Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Department of Oral Anatomy and Physiology and TMD, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Xu J, Zhou K, Gu H, Zhang Y, Wu L, Bian C, Huang Z, Chen G, Cheng X, Yin X. Exosome miR-4738-3p-mediated regulation of COL1A2 through the NF-κB and inflammation signaling pathway alleviates osteoarthritis low-grade inflammation symptoms. BIOMOLECULES & BIOMEDICINE 2024; 24:520-536. [PMID: 38059912 PMCID: PMC11088901 DOI: 10.17305/bb.2023.9921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
This study aimed to elucidate the roles of microRNA (miR)-4738-3p and the collagen type I alpha 2 chain (COL1A2) gene in the pathogenesis of osteoarthritis (OA) through bioinformatics analysis and cellular assays. The GSE55235 dataset was analyzed using the weighted gene co-expression network analysis (WGCNA) method to identify gene modules associated with OA. Key overlapping genes were identified from these modules and the GSE55235-differential expressed genes (DEGs). The expression levels of selected genes were determined in C28/I2 cells using the quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-4738-3p and COL1A2 was examined in the context of interleukin 1 beta (IL-1β) induction. Exosome characterization was achieved through transmission electron microscopy (TEM), western blotting (WB), and other analyses. The study also investigated the functional relevance of miR-4738-3p in OA pathology through various molecular and cellular assays. Our findings revealed that the green module exhibited a strong correlation with the OA phenotype in the GSE55235 dataset, with COL1A2 emerging as a hub gene and miR-4738-3p as its key downstream target. IL-1β induction suggested that COL1A2 is involved in inflammation and apoptosis, while miR-4738-3p appeared to play an antagonistic role. The analysis of exosomes underscored the significance of miR-4738-3p in cellular communication, with an enhanced level of exo-miR-4738-3p antagonizing IL-1β-induced inflammation and promoting cell survival. Conversely, a reduction in exo-miR-4738-3p led to increased cell damage. This study established a clear regulatory relationship between miR-4738-3p and COL1A2, with the nuclear factor kappa B (NF-κB) signaling pathway playing a central role in this regulation. The miR-4738-3p significantly influences the OA-associated inflammation, primarily through modulation of COL1A2 and the NF-κB pathway. Therefore, targeting miR-4738-3p offers a potential therapeutic approach for OA, with exosome miR-4738-3p presenting a promising strategy.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Kaifeng Zhou
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Huijie Gu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Liang Wu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Chong Bian
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhongyue Huang
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Guangnan Chen
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangyang Cheng
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaofan Yin
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Ding X, Huang J, Zhou R, Che X, Pang Y, Liang D, Lu C, Zhuo Y, Cao F, Wu G, Li W, Li P, Zhao L, Rong X, Li P, Wang C. Bibliometric study and visualization of cellular senescence associated with osteoarthritis from 2009 to 2023. Medicine (Baltimore) 2024; 103:e37611. [PMID: 38669405 PMCID: PMC11049721 DOI: 10.1097/md.0000000000037611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis is a common degenerative joint disease that is highly prevalent in the elderly population. Along with the occurrence of sports injuries, osteoarthritis is gradually showing a younger trend. Osteoarthritis has many causative factors, and its pathogenesis is currently unknown. Cellular senescence is a stable form of cell cycle arrest exhibited by cells in response to external stimuli and plays a role in a variety of diseases. And it is only in the last decade or so that cellular senescence has gradually become cross-linked with osteoarthritis. However, there is no comprehensive bibliometric analysis in this field. The aim of this study is to present the current status and research hotspots of cellular senescence in the field of osteoarthritis, and to predict the future trends of cellular senescence in osteoarthritis research from a bibliometric perspective. METHODS This study included 298 records of cellular senescence associated with osteoarthritis from 2009 to 2023, with data from the Web of Science Core Collection database. CiteSpace, Scimago Graphica software, VOSviewer, and the R package "bibliometrix" software were used to analyze regions, institutions, journals, authors, and keywords to predict recent trends in cellular senescence related to osteoarthritis research. RESULTS The number of publications related to cellular senescence associated with osteoarthritis is increasing year by year. China and the United States contribute more than 70% of the publications and are the mainstay of research in this field. Central South University is the most active institution with the largest number of publications. International Journal of Molecular Sciences is the most popular journal in the field with the largest number of publications, while Osteoarthritis and Cartilage is the most cited journal. Loeser, Richard F. is not only the most prolific author, but also the most frequently cited author, contributing greatly to the field. CONCLUSION In the last decade or so, this is the first bibliometric study that systematically describes the current status and development trend of research on cellular senescence associated with osteoarthritis. The study comprehensively and systematically summarizes and concludes the research hotspots and development trends, providing valuable references for researchers in this field.
Collapse
Affiliation(s)
- Xueting Ding
- Department of Embryology, School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
- Animal Experiment Center, Shanxi Medical University, Shanxi, China
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Jingrui Huang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Raorao Zhou
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Xianda Che
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yiming Pang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Dan Liang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chengyang Lu
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yuhao Zhuo
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Fuyang Cao
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Gaige Wu
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Wenjin Li
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Penghua Li
- Laboratory department, Fenyang Hospital of Shanxi Province, Shanxi, China
| | - Litao Zhao
- Pain Department, The Third People's Hospital of Hainan Province, Hainan, China
| | - XueQin Rong
- Pain Department, The Third People's Hospital of Hainan Province, Hainan, China
| | - Pengcui Li
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chunfang Wang
- Department of Embryology, School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
- Animal Experiment Center, Shanxi Medical University, Shanxi, China
| |
Collapse
|
13
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Yu Y, Nie G, Ren YW, Ouyang L, Ni CM. Pumilio RNA binding family member 1 deficiency activates anti-tumor immunity in hepatocellular carcinoma via restraining M2 macrophage polarization. Cell Cycle 2024; 23:682-692. [PMID: 38794797 PMCID: PMC11229713 DOI: 10.1080/15384101.2024.2355825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.
Collapse
Affiliation(s)
- Yang Yu
- Department of General Surgery, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Nie
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi-Wei Ren
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liu Ouyang
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen-Ming Ni
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Zhu J, Liu L, Lin R, Guo X, Yin J, Xie H, Lu Y, Zhang Z, Zhang H, Yao Z, Zhang H, Wang X, Zeng C, Cai D. RPL35 downregulated by mechanical overloading promotes chondrocyte senescence and osteoarthritis development via Hedgehog-Gli1 signaling. J Orthop Translat 2024; 45:226-235. [PMID: 38596341 PMCID: PMC11001632 DOI: 10.1016/j.jot.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/01/2023] [Accepted: 01/13/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives To investigate the potential role of Ribosomal protein L35 (RPL35) in regulating chondrocyte catabolic metabolism and to examine whether osteoarthritis (OA) progression can be delayed by overexpressing RPL35 in a mouse compression loading model. Methods RNA sequencing analysis was performed on chondrocytes treated with or without 20 % elongation strain loading for 24 h. Experimental OA in mice was induced by destabilization of the medial meniscus and compression loading. Mice were randomly assigned to a sham group, an intra-articular adenovirus-mediated overexpression of the negative group, and an intra-articular adenovirus-mediated overexpression of the RPL35 operated group. The Osteoarthritis Research Society International score was used to evaluate cartilage degeneration. Immunostaining and western blot analyses were conducted to detect relative protein levels. Primary mouse chondrocytes were treated with 20 % elongation strain loading for 24 h to investigate the role of RPL35 in modulating chondrocyte catabolic metabolism and regulating cellular senescence in chondrocytes. Results The protein expression of RPL35 in mouse chondrocytes was significantly reduced when excessive mechanical loading was applied, while elevated protein levels of RPL35 protected articular chondrocytes from degeneration. In addition, the RPL35 knockdown alone induced chondrocyte senescence, decreased the expression of anabolic markers, and increased the expression of catabolic markers in vitro in part through the hedgehog (Hh) pathway. Conclusions These findings demonstrated a functional pathway important for OA development and identified intra-articular injection of RPL35 as a potential therapy for OA prevention and treatment. The translational potential of this article It is necessary to develop new targeted drugs for OA due to the limitations of conventional pharmacotherapy. Our study explores and demonstrates the protective effect of RPL35 against excessive mechanical stress in OA models in vivo and in vitro in animals. These findings might provide novel insights into OA pathogenesis and show its translational potential for OA therapy.
Collapse
Affiliation(s)
- Jinjian Zhu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rengui Lin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiongtian Guo
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianbin Yin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haoyu Xie
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuheng Lu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhicheng Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zihao Yao
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiangjiang Wang
- Orthopedics department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Chun Zeng
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
17
|
Wang D, Zhang Z, Li X, He L. RNA binding protein PUM2 promotes IL-1β-induced apoptosis of chondrocytes via regulating FOXO3 expression. Heliyon 2024; 10:e25080. [PMID: 38356524 PMCID: PMC10865267 DOI: 10.1016/j.heliyon.2024.e25080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Objective RNA-binding proteins (RBPs) have been recently proven to be involved in the pathogenesis of several diseases. However, few studies elaborated RBPs in regulating osteoarthritis. This study aims to define the function and mechanism of RBPs-PUM2 in chondrocyte apoptosis during osteoarthritis. Methods Cartilage tissue samples and human juvenile chondrocyte cell line C28/I2 were collected for further study. PUM2 expression in the human tissues and cells was determined using qRT-PCR. Chondrocyte viability and apoptosis were determined by MTT and flow cytometry. ROS generation was determined by flow cytometry. The regulation of PUM2 on FOXO3 translation was evaluated by RNA immunoprecipitation, RNA pull-down, and Luciferase gene reporter analysis. Results PUM2 is upregulated in both cartilage tissue of osteoarthritis patients and IL-1β-stimulated chondrocytes. PUM2 overexpression reduces cell viability and promotes cell apoptosis and ROS generation of chondrocytes. PUM2 silencing increases cell viability and ameliorates cell apoptosis as well as ROS generation in chondrocytes induced by IL-1β. PUM2 inhibits FOXO3 expression via binding its mRNA 3'-UTR. PUM2 forms a signaling axis with FOXO3 in IL-1β induced chondrocyte damage. Conclusion PUM2 is upregulated in cartilage tissue of osteoarthritis and positively regulates chondrocytes apoptosis through controlling FOXO3 protein expression.
Collapse
Affiliation(s)
- Du Wang
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - ZhiLi Zhang
- Department of Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xili Li
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Ling He
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Sun Y, Wang X, Li L, Zhong C, Zhang Y, Yang X, Li M, Yang C. The role of gut microbiota in intestinal disease: from an oxidative stress perspective. Front Microbiol 2024; 15:1328324. [PMID: 38419631 PMCID: PMC10899708 DOI: 10.3389/fmicb.2024.1328324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Recent studies have indicated that gut microbiota-mediated oxidative stress is significantly associated with intestinal diseases such as colorectal cancer, ulcerative colitis, and Crohn's disease. The level of reactive oxygen species (ROS) has been reported to increase when the gut microbiota is dysregulated, especially when several gut bacterial metabolites are present. Although healthy gut microbiota plays a vital role in defending against excessive oxidative stress, intestinal disease is significantly influenced by excessive ROS, and this process is controlled by gut microbiota-mediated immunological responses, DNA damage, and intestinal inflammation. In this review, we discuss the relationship between gut microbiota and intestinal disease from an oxidative stress perspective. In addition, we also provide a summary of the most recent therapeutic approaches for preventing or treating intestinal diseases by modifying gut microbiota.
Collapse
Affiliation(s)
- Yiqi Sun
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xurui Wang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Zhong
- Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Xiangdong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Yang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Shi Y, Wang R, Li Y, Cui Y, He Y, Wang H, Liu Y, Zhang M, Chen Y, Jia M, Chen K, Ruan X, Tian J, Ma T, Chen J. Involvement of TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123114. [PMID: 38081376 DOI: 10.1016/j.envpol.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Yanan Li
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Yixin Cui
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
20
|
Sun Q, Bai R, Chen S, Zhuang Z, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine demethylase 3A promotes chondrogenic differentiation of aged human dental pulp stem cells. J Dent Sci 2024; 19:86-91. [PMID: 38303882 PMCID: PMC10829671 DOI: 10.1016/j.jds.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Aging severely impairs the beneficial effects of human dental pulp stem cells (hDPSCs) on cartilage regeneration. Lysine demethylase 3A (KDM3A) is involved in regulating mesenchymal stem cells (MSCs) senescence and bone aging. In this study, we investigated the role of KDM3A in hDPSCs aging and whether KDM3A could rejuvenate aged hDPSCs to enhance their chondrogenic differentiation capacity. Materials and methods The cellular aging of hDPSCs was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Protein levels were determined using Western blot analysis. KDM3A was overexpressed in aged hDPSCs by lentivirus infection. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were used to determine the mRNA levels of stemness markers. Toluidine blue staining was used to evaluate the effect of KDM3A overexpression on the chondrogenic differentiation of aged hDPSCs. Results hDPSCs at passage 12 or treated with etoposide exhibited augmented cellular senescence as evidenced by increased SA-β-gal activity. KDM3A was significantly increased during senescence of hDPSCs. Overexpression of KDM3A did not affect the stemness properties but significantly promoted the chondrogenic differentiation of aged hDPSCs. Conclusion Our findings indicate that KDM3A plays an important role in the maintenance of the chondrogenic differentiation capacity of aged hDPSCs and suggest that therapies targeting KDM3A may be a novel strategy to rejuvenate aged hDPSCs.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
21
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
22
|
Meng Q, Wang Y, Yuan T, Su Y, Li Z, Sun S. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. GENE REPORTS 2023; 33:101833. [DOI: 10.1016/j.genrep.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing 2023; 20:67. [PMID: 38001481 PMCID: PMC10668412 DOI: 10.1186/s12979-023-00383-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
TLR4, a transmembrane receptor, plays a central role in the innate immune response. TLR4 not only engages with exogenous ligands at the cellular membrane's surface but also interacts with intracellular ligands, initiating intricate intracellular signaling cascades. Through MyD88, an adaptor protein, TLR4 activates transcription factors NF-κB and AP-1, thereby facilitating the upregulation of pro-inflammatory cytokines. Another adapter protein linked to TLR4, known as TRIF, autonomously propagates signaling pathways, resulting in heightened interferon expression. Recently, TLR4 has garnered attention as a significant factor in the regulation of symptoms in aging-related disorders. The persistent inflammatory response triggered by TLR4 contributes to the onset and exacerbation of these disorders. In addition, alterations in TLR4 expression levels play a pivotal role in modifying the manifestations of age-related diseases. In this review, we aim to consolidate the impact of TLR4 on cellular senescence and aging-related ailments, highlighting the potential of TLR4 as a novel therapeutic target that extends beyond immune responses.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, 24414, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
25
|
Reyes A, Ortiz G, Duarte LF, Fernández C, Hernández-Armengol R, Palacios PA, Prado Y, Andrade CA, Rodriguez-Guilarte L, Kalergis AM, Simon F, Carreño LJ, Riedel CA, Cáceres M, González PA. Contribution of viral and bacterial infections to senescence and immunosenescence. Front Cell Infect Microbiol 2023; 13:1229098. [PMID: 37753486 PMCID: PMC10518457 DOI: 10.3389/fcimb.2023.1229098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Rosario Hernández-Armengol
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yolanda Prado
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Wang S, Zhang Z, Liang J, Li K, Bo L, Zhan H, Hong X, Hu J, Yang Qian L, Liu X, Zhang B. Identification of several inflammation-related genes based on bioinformatics and experiments. Int Immunopharmacol 2023; 121:110409. [PMID: 37301122 DOI: 10.1016/j.intimp.2023.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/16/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease of elderly individuals, with an unclear pathogenesis and limited treatment options to date. Inflammation occurs prominently in osteoarthritis, thereby making anti-inflammatory treatments promising in clinical outcomes. Therefore, it is of diagnostic and therapeutic significance to explore more inflammatory genes. METHOD In this study, appropriate datasets were first acquired through gene set enrichment analysis (GSEA), followed by inflammation-related genes through weighted gene coexpression network analysis (WGCNA). Two machine learning algorithms (random forest-RF and support vector machine-recursive feature elimination, SVM-RFE) were used to capture the hub genes. In addition, two genes negatively associated with inflammation and osteoarthritis were identified. Afterwards, these genes were verified through experiments and network pharmacology. Due to the association between inflammation and many diseases, the expression levels of the above genes in various inflammatory diseases were determined through literature and experiments. RESULT Two hub genes closely related to osteoarthritis and inflammation were obtained, namely, lysyl oxidase-like 1 (LOXL1) and pituitary tumour-transforming gene (PTTG1), which were shown to be highly expressed in osteoarthritis according to the literature and experiments. However, the expression levels of receptor expression-enhancing protein (REEP5) and cell division cycle protein 14B (CDC14B) remained unchanged in osteoarthritis. This finding was consistent with our verification from the literature and experiments that some genes were highly expressed in numerous inflammation-related diseases, while REEP5 and CDC14B were almost unchanged. Meanwhile, taking PTTG1 as an example, we found that inhibition of PTTG1 expression could suppress the expression of inflammatory factors and protect the extracellular matrix through the microtubule-associated protein kinase (MAPK) signalling pathway. CONCLUSIONS LOXL1 and PTTG1 were highly expressed in some inflammation-related diseases, while that of REEP5 and CDC14B were almost unchanged. PTTG1 may be a potential target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Zhiwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Kaihuang Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Li Bo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Haibo Zhan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Lu Yang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| |
Collapse
|
27
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
28
|
Wu MD, Zhang Y, Wang H, Yue K, Bai Y, You LW, Cui YH, Guo JR. Exploration of the effect of PUM1/Cripto-1 pathway on ferroptosis by regulating macrophage polarization in allogeneic blood transfused mice. Aging (Albany NY) 2023; 15:5662-5672. [PMID: 37387538 PMCID: PMC10333072 DOI: 10.18632/aging.204818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND To study the link between macrophage polarization, PUM1/Cripto-1 pathway and ferroptosis in the allogeneic blood transfusion setting. METHODS This is an exploratory research. The purpose of this study was to investigate the effect of PUM1/Cripto-1 pathway on ferroptosis by regulating macrophage polarization in allogeneic blood transfused mice. Establish in vitro cell models and in vivo rat models. To find out whether PUM1 and Cripto-1 were expressed, RT-qPCR and Western blot analyses were employed. The macrophage polarization markers iNOS, TNF-, IL-1, IL-6, Arg-1, and IL-10 were utilized to identify M1 and M2 macrophages. JC-1 staining was used to detect ATP membrane potential in peripheral blood macrophages. RESULTS In animal experiments, expression of Cripto-1 was negatively regulated by PUM1 and promoted M1 type polarization of macrophages. Allogeneic blood transfusion assured good state of macrophage mitochondria. Allogeneic blood transfusion inhibited ferroptosis in macrophages by affecting the PUM1/Cripto-1 pathway. In cell experiments, PUM1 regulated Cripto-1 in mouse macrophage RAW264.7. Polarization of RAW264.7 cells was regulated by the PUM1/Cripto-1 pathway. The effect of PUM1/Cripto-1 pathway on macrophage ferroptosis in cell experiments was consistent with that in animal experiments. CONCLUSIONS In this study, through in vivo cell experiments and in vitro animal experiments, it was successfully proved that PUM1/Cripto-1 pathway affected ferroptosis by regulating macrophage polarization in allogeneic blood transfused mice.
Collapse
Affiliation(s)
- Man-Di Wu
- School of Clinic Medicine, Ningxia Medical University, Ningxia 750004, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai 200135, China
| | - Yan Zhang
- School of Clinic Medicine, Ningxia Medical University, Ningxia 750004, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai 200135, China
| | - Huan Wang
- School of Clinic Medicine, Ningxia Medical University, Ningxia 750004, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai 200135, China
| | - Ke Yue
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yu Bai
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
| | - Lai-Wei You
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
| | - Ying-Hui Cui
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
| | - Jian-Rong Guo
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
| |
Collapse
|
29
|
Liao C, Cui J, Lei J, Guo Y, Zhang B. Effects of Bacillus subtilis Natto NB205 and Its Mutant NBMK308 on Egg Quality in Aging Laying Hens. Life (Basel) 2023; 13:1109. [PMID: 37240754 PMCID: PMC10223476 DOI: 10.3390/life13051109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
In aging laying hens, reproductive changes reduce egg quality. Bacillus subtilis natto (B. subtilis) is a versatile bacterium with high vitamin K2 content, providing health benefits for animals and humans. This study investigated the effect of B. subtilis natto NB205 and its mutant NBMK308 on egg quality in aging laying hens. Results showed that NB205 and NBMK308 supplementation significantly improved albumen height (p < 0.001), Haugh units (p < 0.05), and eggshell thickness (p < 0.001) compared to the control group. Supplementation also increased ovalbumin expression, regulated tight junction (TJ) proteins, reduced pro-inflammatory cytokine levels, and improved the health and productivity of aging laying hens by regulating key apoptosis-related genes in the magnum part of the oviduct. There were differences in the expression of vitamin K-dependent proteins (VKDPs) in the magnum between NB205 and NBMK308, but no significant differences in the improvement of egg quality. Supplementation with NB205 and NBMK308 can improve egg quality in aging laying hens.
Collapse
Affiliation(s)
| | | | | | | | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Yoon DS, Choi Y, Lee KM, Ko EA, Kim EJ, Park KH, Lee JW. Downregulation of the RNA-binding protein PUM2 facilitates MSC-driven bone regeneration and prevents OVX-induced bone loss. J Biomed Sci 2023; 30:26. [PMID: 37088847 PMCID: PMC10122812 DOI: 10.1186/s12929-023-00920-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong-Si 18274, Gyeonggi-Do, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun-Ji Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
31
|
Uebelhoer M, Lambert C, Grisart J, Guse K, Plutizki S, Henrotin Y. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: A scoping review. Front Med (Lausanne) 2023; 10:1148623. [PMID: 37077668 PMCID: PMC10106745 DOI: 10.3389/fmed.2023.1148623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
ObjectiveOsteoarthritis (OA) is the most common degenerative joint disease, characterized by a progressive loss of cartilage associated with synovitis and subchondral bone remodeling. There is however no treatment to cure or delay the progression of OA. The objective of this manuscript was to provide a scoping review of the preclinical and clinical studies reporting the effect of gene therapies for OA.MethodThis review followed the JBI methodology and was reported in accordance with the PRISMA-ScR checklist. All research studies that explore in vitro, in vivo, or ex vivo gene therapies that follow a viral or non-viral gene therapy approach were considered. Only studies published in English were included in this review. There were no limitations to their date of publication, country of origin, or setting. Relevant publications were searched in Medline ALL (Ovid), Embase (Elsevier), and Scopus (Elsevier) in March 2023. Study selection and data charting were performed by two independent reviewers.ResultsWe found a total of 29 different targets for OA gene therapy, including studies examining interleukins, growth factors and receptors, transcription factors and other key targets. Most articles were on preclinical in vitro studies (32 articles) or in vivo animal models (39 articles), while four articles were on clinical trials related to the development of TissueGene-C (TG-C).ConclusionIn the absence of any DMOAD, gene therapy could be a highly promising treatment for OA, even though further development is required to bring more targets to the clinical stage.
Collapse
Affiliation(s)
| | - Cécile Lambert
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | | | - Kilian Guse
- GeneQuine Biotherapeutics GmbH, Hamburg, Germany
| | | | - Yves Henrotin
- Artialis S.A., Liège, Belgium
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
32
|
Xiang M, Liu L, Wu T, Wei B, Liu H. RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Res Rev 2023; 86:101870. [PMID: 36746279 DOI: 10.1016/j.arr.2023.101870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs), which are conserved proteins comprising multiple intermediate sequences, can interact with proteins, messenger RNA (mRNA) of coding genes, and non-coding RNAs to perform different biological functions, such as the regulation of mRNA stability, selective polyadenylation, and the management of non-coding microRNA (miRNA) synthesis to affect downstream targets. This article will highlight the functions of RBPs, in degenerative joint diseases (intervertebral disc degeneration [IVDD] and osteoarthritis [OA]). It will reviews the latest advancements on the regulatory mechanism of RBPs in degenerative joint diseases, in order to understand the pathophysiology, early diagnosis and treatment of OA and IVDD from a new perspective.
Collapse
Affiliation(s)
- Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
33
|
Downregulation of Sox8 mediates monosodium urate crystal-induced autophagic impairment of cartilage in gout arthritis. Cell Death Discov 2023; 9:95. [PMID: 36918540 PMCID: PMC10015026 DOI: 10.1038/s41420-023-01388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The deposition of monosodium urate (MSU) crystals in arthritic joints of gout seriously damages cartilage. This study aimed to investigate whether MSU crystal-induced cartilage impairment was related to autophagic signaling. mRNAs of cartilage from MSU-induced gouty arthritis rat model were sequenced. MSU crystal-treated human chondrocytes were used to evaluate the function of Sox8. The recombinant Sox8 lentiviral vector (lenti-Sox8) was applied to upregulate the expression of Sox8. Transfection of the mRFP-GFP-LC3 plasmid was evaluated by confocal microscopy. The autophagic vacuoles were stained with monodansylcadaverine and examined by flow cytometry. The morphology of autophagosomes was observed by transmission electron microscopy. The ratio of LC3-II/I in the presence or absence of bafilomycin A1 and the expression levels of Beclin1, Sox8, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR were detected by Western blot. In vivo, the effect of Sox8 on cartilage of acute gouty model rats was evaluated by safranin-O/fast green staining and Western blot. The expression of Sox8 was significantly downregulated both in vivo and in vitro. In chondrocytes, MSU crystals reduced the expression of Sox8, inhibited the PI3K/AKT/mTOR signaling pathway, and increased the level of autophagy. Overexpression of Sox8 notably inhibited MSU crystal-induced autophagy by rescuing the phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. In vivo, overexpression of Sox8 remarkably alleviated cartilage damage in acute gouty model rats. These results indicate that downregulation of Sox8 plays an important role in MSU-induced chondrocyte autophagy by modulating PI3K/AKT/mTOR signaling, and overexpression of Sox8 may serve as a novel therapy to prevent the impairment of cartilage in gout arthritis.
Collapse
|
34
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 346] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Yin W, Lei Y, Yang X, Zou J. A two-gene random forest model to diagnose osteoarthritis based on RNA-binding protein-related genes in knee cartilage tissue. Aging (Albany NY) 2023; 15:193-212. [PMID: 36641761 PMCID: PMC9876643 DOI: 10.18632/aging.204469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is one of the most common diseases in the orthopedic clinic, characterized by progressive cartilage degradation. RNA-binding proteins (RBPs) are capable of binding to RNAs at transcription and translation levels, playing an important role in the pathogenesis of OA. This study aims to investigate the diagnosis values of RBP-related genes in OA. The RBPs were collected from previous studies, and the GSE114007 dataset (control = 18, OA = 20) was downloaded from the Gene Expression Omnibus (GEO) as the training cohort. Through various bioinformatical and machine learning methods, including genomic difference detection, protein-protein interaction network analyses, Lasso regression, univariate logistic regression, Boruta algorithm, and SVM-RFE, RNMT and RBM24 were identified and then included into the random forest (RF) diagnosis model. GSE117999 dataset (control = 10, OA = 10) and clinical samples collected from local hospital (control = 10, OA = 11) were used for external validation. The RF model was a promising tool to diagnose OA in the training dataset (area under curve [AUC] = 1.000, 95% confidence interval [CI] = 1.000-1.000), the GSE117999 cohort (AUC = 0.900, 95% CI = 0.769-1.000), and local samples (AUC = 0.759, 95% CI = 0.568-0.951). Besides, qPCR and Western Blotting experiments showed that RNMT (P < 0.05) and RBM24 (P < 0.01) were both down-regulated in CHON-001 cells with IL-1β treatment. In all, an RF model to diagnose OA based on RNMT and RBM24 in cartilage tissue was constructed, providing a promising clinical tool and possible cut-in points in molecular mechanism clarification.
Collapse
Affiliation(s)
- Wenhua Yin
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Ying Lei
- Department of Audit, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Xuan Yang
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Jiawei Zou
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| |
Collapse
|
36
|
Yoon DS, Kim EJ, Cho S, Jung S, Lee KM, Park KH, Lee JW, Kim SH. RUNX2 stabilization by long non-coding RNAs contributes to hypertrophic changes in human chondrocytes. Int J Biol Sci 2023; 19:13-33. [PMID: 36594090 PMCID: PMC9760429 DOI: 10.7150/ijbs.74895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Chondrocyte hypertrophy has been implicated in endochondral ossification and osteoarthritis (OA). In OA, hypertrophic chondrocytes contribute to the destruction and focal calcification of the joint cartilage. Although studies in this field have remarkably developed the modulation of joint inflammation using gene therapy and regeneration of damaged articular cartilage using cell therapy, studies that can modulate or prevent hypertrophic changes in articular chondrocytes are still lacking. Methods: In vitro hypertrophic differentiation and inflammation assays were conducted using human normal chondrocyte cell lines, TC28a2 cells. Human cartilage tissues and primary articular chondrocytes were obtained from OA patients undergoing total knee arthroplasty. Long non-coding RNAs (lncRNAs), LINC02035 and LOC100130207, were selected through RNA-sequencing analysis using RNAs extracted from TC28a2 cells cultured in hypertrophic medium. The regulatory mechanism was evaluated using western blotting, real-time quantitative polymerase chain reaction, osteocalcin reporter assay, RNA-immunoprecipitation (RNA-IP), RNA-in situ hybridization, and IP. Results: LncRNAs are crucial regulators of various biological processes. In this study, we identified two important lncRNAs, LINC02035 and LOC100130207, which play important roles in hypertrophic changes in normal chondrocytes, through RNA sequencing. Interestingly, the expression level of RUNX2, a master regulator of chondrocyte hypertrophy, was regulated at the post-translational level during hypertrophic differentiation of the normal human chondrocyte cell line, TC28a2. RNA-immunoprecipitation proved the potential interaction between RUNX2 protein and both lncRNAs. Knockdown (KD) of LINC02035 or LOC100130207 promoted ubiquitin-mediated proteasomal degradation of RUNX2 and prevented hypertrophic differentiation of normal chondrocyte cell lines, whereas overexpression of both lncRNAs stabilized RUNX2 protein and generated hypertrophic changes. Furthermore, the KD of the two lncRNAs mitigated the destruction of important cartilage matrix proteins, COL2A1 and ACAN, by hypertrophic differentiation or inflammatory conditions. We also confirmed that the phenotypic changes raised by the two lncRNAs could be rescued by modulating RUNX2 expression. In addition, the KD of these two lncRNAs suppressed hypertrophic changes during chondrogenic differentiation of mesenchymal stem cells. Conclusion: Therefore, this study suggests that LINC02035 and LOC100130207 contribute to hypertrophic changes in normal chondrocytes by regulating RUNX2, suggesting that these two novel lncRNAs could be potential therapeutic targets for delaying or preventing OA development, especially for preventing chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eun-Ji Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sehee Cho
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soyeong Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.,✉ Corresponding authors: Jin Woo Lee, [; Phone: (82-2) 2228-2190 • Fax: (82-2) 363-1139] or Sung-Hwan Kim [; Phone: (82-2) 2019-3415 • Fax: (82-2) 573-5393]
| | - Sung-Hwan Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.,Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea.,✉ Corresponding authors: Jin Woo Lee, [; Phone: (82-2) 2228-2190 • Fax: (82-2) 363-1139] or Sung-Hwan Kim [; Phone: (82-2) 2019-3415 • Fax: (82-2) 573-5393]
| |
Collapse
|
37
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
38
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|
39
|
Deubiquitinating Enzyme USP7 Is Required for Self-Renewal and Multipotency of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23158674. [PMID: 35955807 PMCID: PMC9369338 DOI: 10.3390/ijms23158674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is highly expressed in a variety of malignant tumors. However, the role of USP7 in regulating self-renewal and differentiation of human bone marrow derived mesenchymal stromal cells (hBMSCs) remains unknown. Herein, we report that USP7 regulates self-renewal of hBMSCs and is required during the early stages of osteogenic, adipogenic, and chondrogenic differentiation of hBMSCs. USP7, a deubiquitinating enzyme (DUB), was found to be downregulated during hBMSC differentiation. Furthermore, USP7 is an upstream regulator of the self-renewal regulating proteins SOX2 and NANOG in hBMSCs. Moreover, we observed that SOX2 and NANOG are poly-ubiquitinated and their expression is downregulated in USP7-deficient hBMSCs. Overall, this study showed that USP7 is required for maintaining self-renewal and multipotency in cultured hBMSCs. Targeting USP7 might be a novel strategy to preserve the self-renewal capacity of hBMSCs intended for stem cell therapy.
Collapse
|
40
|
Drug repositioning of polaprezinc for bone fracture healing. Commun Biol 2022; 5:462. [PMID: 35577977 PMCID: PMC9110432 DOI: 10.1038/s42003-022-03424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Fractures and related complications are a common challenge in the field of skeletal tissue engineering. Vitamin D and calcium are the only broadly available medications for fracture healing, while zinc has been recognized as a nutritional supplement for healthy bones. Here, we aimed to use polaprezinc, an anti-ulcer drug and a chelate form of zinc and L-carnosine, as a supplement for fracture healing. Polaprezinc induced upregulation of osteogenesis-related genes and enhanced the osteogenic potential of human bone marrow-derived mesenchymal stem cells and osteoclast differentiation potential of mouse bone marrow-derived monocytes. In mouse experimental models with bone fractures, oral administration of polaprezinc accelerated fracture healing and maintained a high number of both osteoblasts and osteoclasts in the fracture areas. Collectively, polaprezinc promotes the fracture healing process efficiently by enhancing the activity of both osteoblasts and osteoclasts. Therefore, we suggest that drug repositioning of polaprezinc would be helpful for patients with fractures. Polaprezinc promoted both osteoblast and osteoclast differentiation and altered YAP protein expression in vitro, and animals treated with polaprezinc showed greater bone formation in their fracture calluses after 21 days.
Collapse
|