1
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Tye H, Conos SA, Djajawi TM, Gottschalk TA, Abdoulkader N, Kong IY, Kammoun HL, Narayana VK, Kratina T, Speir M, Emery J, Simpson DS, Hall C, Vince AJ, Russo S, Crawley R, Rashidi M, Hildebrand JM, Murphy JM, Whitehead L, De Souza DP, Masters SL, Samson AL, Lalaoui N, Hawkins ED, Murphy AJ, Vince JE, Lawlor KE. Divergent roles of RIPK3 and MLKL in high-fat diet-induced obesity and MAFLD in mice. Life Sci Alliance 2025; 8:e202302446. [PMID: 39532538 PMCID: PMC11557689 DOI: 10.26508/lsa.202302446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death frequently occurs in the pathogenesis of obesity and metabolic dysfunction-associated fatty liver disease (MAFLD). However, the exact contribution of core cell death machinery to disease manifestations remains ill-defined. Here, we show via the direct comparison of mice genetically deficient in the essential necroptotic regulators, receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL), as well as mice lacking apoptotic caspase-8 in myeloid cells combined with RIPK3 loss, that RIPK3/caspase-8 signaling regulates macrophage inflammatory responses and drives adipose tissue inflammation and MAFLD upon high-fat diet feeding. In contrast, MLKL, divergent to RIPK3, contributes to both obesity and MAFLD in a manner largely independent of inflammation. We also uncover that MLKL regulates the expression of molecules involved in lipid uptake, transport, and metabolism, and congruent with this, we discover a shift in the hepatic lipidome upon MLKL deletion. Collectively, these findings highlight MLKL as an attractive therapeutic target to combat the growing obesity pandemic and metabolic disease.
Collapse
Affiliation(s)
- Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Stephanie A Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Tirta M Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Timothy A Gottschalk
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Nasteho Abdoulkader
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | | | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Jack Emery
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Angelina J Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Sophia Russo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Rhiannan Crawley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Xu H, Li H, Sun B, Sun L. An intracellular bacterial pathogen triggers RIG-I/MDA5-dependent necroptosis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100318. [PMID: 39726972 PMCID: PMC11670418 DOI: 10.1016/j.crmicr.2024.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
RIG-I and MDA5 are members of RIG-I-like receptors (RLRs) that detect viral RNA within the cytoplasm and subsequently initiate antiviral immune responses. Necroptosis is a form of programmed cell death (PCD) executed by mixed lineage kinase domain-like (MLKL), which, upon phosphorylation by receptor-interacting protein kinase 3 (RIPK3), causes necrotic cell death. To date, no link between RLRs and necroptosis has been observed during bacterial infection. Edwardsiella tarda is a zoonotic bacterial pathogen that can thrive in host macrophages. In a previous study, we identified RIG-I and MDA5 as two hub factors of RAW264.7 cells responsive to E. tarda infection. The present study aimed to determine the specific form of cell death triggered by E. tarda and explore the association between RIG-I/MDA5 and PCD in the context of bacterial infection. Our results showed that E. tarda infection induced RIPK3-MLKL-mediated necroptosis, rather than pyroptosis or apoptosis, in RAW264.7 cells. Meanwhile, E. tarda promoted RIG-I/MDA5 production and activated the RIG-I/MDA5 pathways that led to IRF3 phosphorylation, IFN-β secretion, and interferon-stimulated gene (ISG) and cytokine expression. Both RIG-I and MDA5 were essential for E. tarda-triggered necroptosis and required for effective inhibition of intracellular bacterial replication. Furthermore, the regulatory effect of RIG-I/MDA5 on necroptosis was not affected by type I IFN or TNF-α signaling blockage. Together these results revealed that necroptosis could be triggered by intracellular bacterial infection through the RIG-I/MDA5 pathways, and that there existed intricate interplays between PCD and RLRs induced by bacterial pathogen.
Collapse
Affiliation(s)
- Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Huili Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Davies KA, Czabotar PE, Murphy JM. Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis. Curr Opin Struct Biol 2024; 88:102891. [PMID: 39059047 DOI: 10.1016/j.sbi.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Necroptosis is a lytic form of programmed cell death implicated in inflammatory pathologies, leading to intense interest in the underlying mechanisms and therapeutic prospects. Here, we review our current structural understanding of how the terminal executioner of the pathway, the dead kinase, mixed lineage kinase domain-like (MLKL), is converted from a dormant to killer form by the upstream regulatory kinase, RIPK3. RIPK3-mediated phosphorylation of MLKL's pseudokinase domain toggles a molecular switch that induces dissociation from a cytoplasmic platform, assembly of MLKL oligomers, and trafficking to the plasma membrane, where activated MLKL accumulates and permeabilises the lipid bilayer to induce cell death. We highlight gaps in mechanistic knowledge of MLKL's activation, how mechanisms diverge between species, and the power of modelling in advancing structural insights.
Collapse
Affiliation(s)
- Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Sun H, Yisi Shan, Cao L, Wu X, Chen J, Yuan R, Qian M. Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity. Cell Biol Toxicol 2024; 40:63. [PMID: 39093513 PMCID: PMC11297112 DOI: 10.1007/s10565-024-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
Collapse
Affiliation(s)
- Haiyan Sun
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Liyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiping Wu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiangdong Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Rong Yuan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| | - Min Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
6
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
7
|
Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Atilla-Gokcumen GE. Acylation of MLKL Impacts Its Function in Necroptosis. ACS Chem Biol 2024; 19:407-418. [PMID: 38301282 DOI: 10.1021/acschembio.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization, which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize the acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, with C184, C269, and C286 as possible acylation sites. Using all-atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane levels. Through investigations of the S-palmitoyltransferases that might acylate pMLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating the necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.
Collapse
Affiliation(s)
- Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ricardo X Ramirez
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
M Bader S, Cooney JP, Bhandari R, Mackiewicz L, Dayton M, Sheerin D, Georgy SR, Murphy JM, Davidson KC, Allison CC, Pellegrini M, Doerflinger M. Necroptosis does not drive disease pathogenesis in a mouse infective model of SARS-CoV-2 in vivo. Cell Death Dis 2024; 15:100. [PMID: 38286985 PMCID: PMC10825138 DOI: 10.1038/s41419-024-06471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.
Collapse
Affiliation(s)
- Stefanie M Bader
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - James P Cooney
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Reet Bhandari
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Merle Dayton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Dylan Sheerin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, 3030, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kathryn C Davidson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.
| |
Collapse
|
9
|
Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Ekin Atilla-Gokcumen G. Acylation of MLKL impacts its function in necroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553906. [PMID: 37645912 PMCID: PMC10462141 DOI: 10.1101/2023.08.19.553906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by the electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, C184, C269 and C286 are the possible acylation sites. Using all atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane level. Through systematic investigations of the S-palmitoyltransferases that might acylate MLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.
Collapse
Affiliation(s)
- Apoorva J. Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
10
|
Meng Y, Garnish SE, Davies KA, Black KA, Leis AP, Horne CR, Hildebrand JM, Hoblos H, Fitzgibbon C, Young SN, Dite T, Dagley LF, Venkat A, Kannan N, Koide A, Koide S, Glukhova A, Czabotar PE, Murphy JM. Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization. Nat Commun 2023; 14:6804. [PMID: 37884510 PMCID: PMC10603135 DOI: 10.1038/s41467-023-42255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katrina A Black
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Aarya Venkat
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
11
|
Garnish SE, Martin KR, Kauppi M, Jackson VE, Ambrose R, Eng VV, Chiou S, Meng Y, Frank D, Tovey Crutchfield EC, Patel KM, Jacobsen AV, Atkin-Smith GK, Di Rago L, Doerflinger M, Horne CR, Hall C, Young SN, Cook M, Athanasopoulos V, Vinuesa CG, Lawlor KE, Wicks IP, Ebert G, Ng AP, Slade CA, Pearson JS, Samson AL, Silke J, Murphy JM, Hildebrand JM. A common human MLKL polymorphism confers resistance to negative regulation by phosphorylation. Nat Commun 2023; 14:6046. [PMID: 37770424 PMCID: PMC10539340 DOI: 10.1038/s41467-023-41724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-β induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.
Collapse
Affiliation(s)
- Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Maria Kauppi
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Victoria E Jackson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Rebecca Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Yanxiang Meng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Georgia K Atkin-Smith
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Christopher R Horne
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Samuel N Young
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Matthew Cook
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The Francis Crick Institute, London, UK
- University College London, London, UK
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Ashley P Ng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Clinical Haematology Department, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Charlotte A Slade
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - André L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Gardner C, Davies KA, Zhang Y, Brzozowski M, Czabotar PE, Murphy JM, Lessene G. From (Tool)Bench to Bedside: The Potential of Necroptosis Inhibitors. J Med Chem 2023; 66:2361-2385. [PMID: 36781172 PMCID: PMC9969410 DOI: 10.1021/acs.jmedchem.2c01621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Necroptosis is a regulated caspase-independent form of necrotic cell death that results in an inflammatory phenotype. This process contributes profoundly to the pathophysiology of numerous neurodegenerative, cardiovascular, infectious, malignant, and inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like protein (MLKL) pseudokinase have been identified as the key components of necroptosis signaling and are the most promising targets for therapeutic intervention. Here, we review recent developments in the field of small-molecule inhibitors of necroptosis signaling, provide guidelines for their use as chemical probes to study necroptosis, and assess the therapeutic challenges and opportunities of such inhibitors in the treatment of a range of clinical indications.
Collapse
Affiliation(s)
- Christopher
R. Gardner
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Katherine A. Davies
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ying Zhang
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Brzozowski
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter E. Czabotar
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M. Murphy
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Guillaume Lessene
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia,Department
of Pharmacology and Therapeutics, University
of Melbourne, Parkville, VIC 3052, Australia,Email;
| |
Collapse
|
13
|
Liccardi G, Annibaldi A. MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 2023; 30:269-278. [PMID: 36175538 PMCID: PMC9520111 DOI: 10.1038/s41418-022-01061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Necroptosis is a caspase-independent modality of cell death that requires the activation of the executioner MLKL. In the last ten years the field gained a substantial amount of evidence regarding its involvement in host response to pathogens, TNF-induced inflammatory diseases as well as pathogen recognition receptors (PRR)-induced inflammation. However, there are still a lot of questions that remain unanswered. While it is clear that there are specific events needed to drive MLKL activation, substantial differences between human and mouse MLKL not only highlight different evolutionary pressure, but also provide potential insights on alternative modalities of activation. While in TNF-induced necroptosis it is clear the involvement of the RIPK3 mediated phosphorylation, it still remains to be understood how certain inflammatory in vivo phenotypes are not equally rescued by either RIPK3 or MLKL loss. Moreover, the plethora of different reported phosphorylation events on MLKL, even in cells that do not express RIPK3, suggest indeed that there is more to MLKL than RIPK3-mediated activation, not only in the execution of necroptosis but perhaps in other inflammatory conditions that include IFN response. The recent discovery of MLKL ubiquitination has highlighted a new checkpoint in the regulation of MLKL activation and the somewhat conflicting evidence reported certainly require some untangling. In this review we will highlight the recent findings on MLKL activation and involvement to pathogen response with a specific focus on MLKL post-translational modifications, in particular ubiquitination. This review will highlight the outstanding main questions that have risen from the last ten years of research, trying at the same time to propose potential avenues of research.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany.
| |
Collapse
|
14
|
Horne CR, Samson AL, Murphy JM. The web of death: the expanding complexity of necroptotic signaling. Trends Cell Biol 2023; 33:162-174. [PMID: 35750616 DOI: 10.1016/j.tcb.2022.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
The past decade has seen the emergence of the necroptosis programmed cell death pathway as an important contributor to the pathophysiology of myriad diseases. The receptor interacting protein kinase (RIPK)1 and RIPK3, and the pseudokinase executioner protein, mixed lineage kinase domain-like (MLKL), have grown to prominence as the core pathway components. Depending on cellular context, these proteins also serve as integrators of signals, such as post-translational modifications and protein or metabolite interactions, adding layers of complexity to pathway regulation. Here, we describe the emerging picture of the web of proteins that tune necroptotic signal transduction and how these events have diverged across species, presumably owing to selective pressures of pathogens upon the RIPK3-MLKL protein pair.
Collapse
Affiliation(s)
- Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
Ramirez RX, Campbell O, Pradhan AJ, Atilla-Gokcumen GE, Monje-Galvan V. Modeling the molecular fingerprint of protein-lipid interactions of MLKL on complex bilayers. Front Chem 2023; 10:1088058. [PMID: 36712977 PMCID: PMC9877227 DOI: 10.3389/fchem.2022.1088058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Lipids, the structural part of membranes, play important roles in biological functions. However, our understanding of their implication in key cellular processes such as cell division and protein-lipid interaction is just emerging. This is the case for molecular interactions in mechanisms of cell death, where the role of lipids for protein localization and subsequent membrane permeabilization is key. For example, during the last stage of necroptosis, the mixed lineage kinase domain-like (MLKL) protein translocates and, eventually, permeabilizes the plasma membrane (PM). This process results in the leakage of cellular content, inducing an inflammatory response in the microenvironment that is conducive to oncogenesis and metastasis, among other pathologies that exhibit inflammatory activity. This work presents insights from long all-atom molecular dynamics (MD) simulations of complex membrane models for the PM of mammalian cells with an MLKL protein monomer. Our results show that the binding of the protein is initially driven by the electrostatic interactions of positively charged residues. The protein bound conformation modulates lipid recruitment to the binding site, which changes the local lipid environment recruiting PIP lipids and cholesterol, generating a unique fingerprint. These results increase our knowledge of protein-lipid interactions at the membrane interface in the context of molecular mechanisms of the necroptotic pathway, currently under investigation as a potential treatment target in cancer and inflamatory diseases.
Collapse
Affiliation(s)
- Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Apoorva J. Pradhan
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States,*Correspondence: Viviana Monje-Galvan,
| |
Collapse
|
16
|
Abstract
Cell death, particularly that of tubule epithelial cells, contributes critically to the pathophysiology of kidney disease. A body of evidence accumulated over the past 15 years has ascribed a central pathophysiological role to a particular form of regulated necrosis, termed necroptosis, to acute tubular necrosis, nephron loss and maladaptive renal fibrogenesis. Unlike apoptosis, which is a non-immunogenic process, necroptosis results in the release of cellular contents and cytokines, which triggers an inflammatory response in neighbouring tissue. This necroinflammatory environment can lead to severe organ dysfunction and cause lasting tissue injury in the kidney. Despite evidence of a link between necroptosis and various kidney diseases, there are no available therapeutic options to target this process. Greater understanding of the molecular mechanisms, triggers and regulators of necroptosis in acute and chronic kidney diseases may identify shortcomings in current approaches to therapeutically target necroptosis regulators and lead to the development of innovative therapeutic approaches.
Collapse
|
17
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
18
|
Abstract
Necroptosis, or programmed necrosis, is an inflammatory form of cell death with important functions in host defense against pathogens and tissue homeostasis. The four cytosolic receptor-interacting protein kinase homotypic interaction motif (RHIM)-containing adaptor proteins RIPK1, RIPK3, TRIF (also known as TICAM1) and ZBP1 mediate necroptosis induction in response to infection and cytokine or innate immune receptor activation. Activation of the RHIM adaptors leads to phosphorylation, oligomerization and membrane targeting of the necroptosis effector protein mixed lineage kinase domain-like (MLKL). Active MLKL induces lesions on the plasma membrane, leading to the release of pro-inflammatory damage-associated molecular patterns (DAMPs). Thus, activities of the RHIM adaptors and MLKL are tightly regulated by posttranslational modifications to prevent inadvertent release of immunogenic contents. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the regulatory mechanisms of necroptosis and its biological functions in tissue homeostasis, pathogen infection and other inflammatory diseases.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Christa Park
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| |
Collapse
|
19
|
The role of RHIM in necroptosis. Biochem Soc Trans 2022; 50:1197-1205. [PMID: 36040212 PMCID: PMC9444067 DOI: 10.1042/bst20220535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
The RIP homotypic interaction motif (RHIM) is a conserved protein domain that is approximately 18–22 amino acids in length. In humans, four proteins carrying RHIM domains have been identified: receptor-interacting serine/threonine protein kinase (RIPK) 1, RIPK3, Z-DNA-binding protein 1 (ZBP1), and TIR domain-containing adapter-inducing IFN-β (TRIF), which are all major players in necroptosis, a distinct form of regulated cell death. Necroptosis is mostly presumed to be a fail-safe form of cell death, occurring in cells in which apoptosis is compromised. Upon activation, RIPK1, ZBP1, and TRIF each hetero-oligomerize with RIPK3 and induce the assembly of an amyloid-like structure of RIPK3 homo-oligomers. These act as docking stations for the recruitment of the pseudokinase mixed-lineage kinase domain like (MLKL), the pore-forming executioner of necroptosis. As RHIM domain interactions are a vital component of the signaling cascade and can also be involved in apoptosis and pyroptosis activation, it is unsurprising that viral and bacterial pathogens have developed means of disrupting RHIM-mediated signaling to ensure survival. Moreover, as these mechanisms play an essential part of regulated cell death signaling, they have received much attention in recent years. Herein, we present the latest insights into the supramolecular structure of interacting RHIM proteins and their distinct signaling cascades in inflammation and infection. Their uncovering will ultimately contribute to the development of new therapeutic strategies in the regulation of lytic cell death.
Collapse
|
20
|
Zhang C, Liu N. Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol 2022; 13:920059. [PMID: 35958626 PMCID: PMC9361070 DOI: 10.3389/fimmu.2022.920059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies that causes death in women and is a heterogeneous disease with complex molecular and genetic changes. Because of the relatively high recurrence rate of OC, it is crucial to understand the associated mechanisms of drug resistance and to discover potential target for rational targeted therapy. Cell death is a genetically determined process. Active and orderly cell death is prevalent during the development of living organisms and plays a critical role in regulating life homeostasis. Ferroptosis, a novel type of cell death discovered in recent years, is distinct from apoptosis and necrosis and is mainly caused by the imbalance between the production and degradation of intracellular lipid reactive oxygen species triggered by increased iron content. Necroptosis is a regulated non-cysteine protease–dependent programmed cell necrosis, morphologically exhibiting the same features as necrosis and occurring via a unique mechanism of programmed cell death different from the apoptotic signaling pathway. Pyroptosis is a form of programmed cell death that is characterized by the formation of membrane pores and subsequent cell lysis as well as release of pro-inflammatory cell contents mediated by the abscisin family. Studies have shown that ferroptosis, necroptosis, and pyroptosis are involved in the development and progression of a variety of diseases, including tumors. In this review, we summarized the recent advances in ferroptosis, necroptosis, and pyroptosis in the occurrence, development, and therapeutic potential of OC.
Collapse
|
21
|
Meng Y, Horne CR, Samson AL, Dagley LF, Young SN, Sandow JJ, Czabotar PE, Murphy JM. Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death Dis 2022; 13:565. [PMID: 35739084 PMCID: PMC9226014 DOI: 10.1038/s41419-022-05009-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling. Here, we sought to identify phosphorylation sites of RIPK3 and dissect their regulatory functions. Phosphoproteomics identified 21 phosphorylation sites in HT29 cells overexpressing human RIPK3. By comparing cells expressing wild-type and kinase-inactive D142N RIPK3, autophosphorylation sites and substrates of other cellular kinases were distinguished. Of these 21 phosphosites, mutational analyses identified only pT224 and pS227 as crucial, synergistic sites for stable interaction with MLKL to promote necroptosis, while the recently reported activation loop phosphorylation at S164/T165 negatively regulate the kinase activity of RIPK3. Despite being able to phosphorylate MLKL to a similar or higher extent than wild-type RIPK3, mutation of T224, S227, or the RHIM in RIPK3 attenuated necroptosis. This finding highlights the stable recruitment of human MLKL by RIPK3 to the necrosome as an essential checkpoint in necroptosis signaling, which is independent from and precedes the phosphorylation of MLKL.
Collapse
Affiliation(s)
- Yanxiang Meng
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Christopher R. Horne
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Andre L. Samson
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Laura F. Dagley
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Samuel N. Young
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Jarrod J. Sandow
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Peter E. Czabotar
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - James M. Murphy
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|
22
|
Jacobsen AV, Murphy JM. CRISPR deletions in cell lines for reconstitution studies of pseudokinase function. Methods Enzymol 2022; 667:229-273. [PMID: 35525543 DOI: 10.1016/bs.mie.2022.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The non-catalytic cousins of protein kinases, the pseudokinases, have grown to prominence as indispensable signaling entities over the past decade, despite their lack of catalytic activity. Because their importance has only been fully embraced recently, many of the 10% of the human kinome categorized as pseudokinases are yet to be attributed biological functions. The advent of CRISPR-Cas9 editing to genetically delete pseudokinases in a cell line of interest has proven invaluable to dissecting many functions and remains the method of choice for gene knockout. Here, using the terminal effector pseudokinase in the necroptosis cell death pathway, MLKL, as an exemplar, we describe a method for genetic knockout of pseudokinases in cultured cells. This method does not retain the CRISPR guide sequence in the edited cells, which eliminates possible interference in subsequent reconstitution studies where mutant forms of the pseudokinase can be reintroduced into cells exogenously for detailed mechanistic characterization.
Collapse
Affiliation(s)
- Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
23
|
Fitzgibbon C, Meng Y, Murphy JM. Co-expression of recombinant RIPK3:MLKL complexes using the baculovirus-insect cell system. Methods Enzymol 2022; 667:183-227. [PMID: 35525542 DOI: 10.1016/bs.mie.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudokinase domains are found throughout the kingdoms of life and serve myriad roles in cell signaling. These domains, which resemble protein kinases but are catalytically-deficient, have been described principally as protein interaction domains. Broadly, pseudokinases have been reported to function as: allosteric regulators of conventional enzymes; scaffolds to nucleate assembly and/or localization of signaling complexes; molecular switches; or competitors of signaling complex assembly. From detailed structural and biochemical studies of individual pseudokinases, a picture of how they mediate protein interactions is beginning to emerge. Many such studies have relied on recombinant protein production in insect cells, where endogenous chaperones and modifying enzymes favor bona fide folding of pseudokinases. Here, we describe methods for co-expression of pseudokinases and their interactors in insect cells, as exemplified by the MLKL pseudokinase, which is the terminal effector in the necroptosis cell death pathway, and its upstream regulator kinase RIPK3. These methods are broadly applicable to co-expression of other pseudokinases with their interaction partners from bacmids using the baculovirus-insect cell expression system.
Collapse
Affiliation(s)
- Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Cell Death Dis 2022; 13:291. [PMID: 35365636 PMCID: PMC8976052 DOI: 10.1038/s41419-022-04740-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
Abstract
Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.
Collapse
|