1
|
Wang R, Li X, Gan Y, Liao J, Han S, Li W, Deng G. Dioscin inhibits non-small cell lung cancer cells and activates apoptosis by downregulation of Survivin. J Cancer 2024; 15:1366-1377. [PMID: 38356707 PMCID: PMC10861826 DOI: 10.7150/jca.89831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Human malignancies exhibit elevated levels of survivin, and have been linked to poor prognosis. Targeting survivin expression is a promising therapeutic strategy against cancer cells. Natural compounds have become a hot topic in research due to their non-toxic, non-invasive, and efficient treatment of multiple diseases. In this current investigation, it was discovered that Dioscin, as a natural compound, exerted profound antitumor activity against NSCLC cell lines, inhibiting NSCLC cell viability and promoting apoptosis. Further mechanistic studies showed that Dioscin promoted ubiquitination-mediated survivin degradation via strengthening the interaction between survivin and the E3 ubiquitin ligase Fbxl7. Furthermore, Dioscin exhibited a strong tumor suppressive effect in xenograft tumor models, and Dioscin treatment led to a notable decrease in tumor volume and weight. Based on our findings, Dioscin is expected to be a potential antitumor agent for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
2
|
Chang TY, Lan KC, Wu CH, Sheu ML, Yang RS, Liu SH. Nε-(1-Carboxymethyl)-L-lysine/RAGE Signaling Drives Metastasis and Cancer Stemness through ERK/NFκB axis in Osteosarcoma. Int J Biol Sci 2024; 20:880-896. [PMID: 38250151 PMCID: PMC10797696 DOI: 10.7150/ijbs.90817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Osteosarcoma is an extremely aggressive bone cancer with poor prognosis. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), can link to cancer progression, tumorigenesis and metastasis, although the underlying mechanism remains unclear. The role of CML in osteosarcoma progression is still unclear. We hypothesized that CML could promote migration, invasion, and stemness in osteosarcoma cells. CML and its receptor (RAGE; receptor for AGE) were higher expressed at advanced stages in human osteosarcoma tissues. In mouse models, which streptozotocin was administered to induce CML accumulation in the body, the subcutaneous tumor growth was not affected, but the tumor metastasis using tail vein injection model was enhanced. In cell models (MG63 and U2OS cells), CML enhanced tumor sphere formation and acquisition of cancer stem cell characteristics, induced migration and invasion abilities, as well as triggered the epithelial-mesenchymal transition process, which were associated with RAGE expression and activation of downstream signaling pathways, especially the ERK/NFκB pathway. RAGE inhibition elicited CML-induced cell migration, invasion, and stemness through RAGE-mediated ERK/NFκB pathway. These results revealed a crucial role for CML in driving stemness and metastasis in osteosarcoma. These findings uncover a potential CML/RAGE connection and mechanism to osteosarcoma progression and set the stage for further investigation.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hung Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Li S, Yang C, Wu Z, Chen Y, He X, Liu R, Ma W, Deng S, Li J, Liu Q, Wang Y, Zhang W. Suppressive effects of bilobalide on depression-like behaviors induced by chronic unpredictable mild stress in mice. Food Funct 2023; 14:8409-8419. [PMID: 37615035 DOI: 10.1039/d3fo02681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Background: Depression is a psychiatric disorder with depressed mood and even suicide attempts as the main clinical symptoms, and its pathogenesis has not yet been fully elucidated. Brain derived neurotrophic factor (BDNF) plays an important role in the pathogenesis of depression. Purpose: The main aim of the present study was to evaluate the effectiveness and reveal the potential mechanisms of bilobalide (BB) intervention in alleviating depression-like behaviors by using chronic unpredictable mild stress (CUMS) mice via mediating the BDNF pathway. Methods: Behavioral assessments were carried out by using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). CUMS mice were randomly divided into 5 groups: CUMS + solvent, CUMS + BB low, CUMS + BB medium, CUMS + BB high and CUMS + fluoxetine. Total serum levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were measured by ELISA. Expression of TNF-α, IL-6, AKT, GSK3β, β-catenin, Trk-B and BDNF in the mouse hippocampus was assessed by western blotting. Results: BB treatment reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and increased the protein expression of BDNF in the hippocampus region of the CUMS mice. Moreover, BB treatment enhanced the AKT/GSK3β/β-catenin signaling pathway which is downstream of the BDNF receptor Trk-B in the hippocampus of these mice. Conclusions: Overall, the experimental results indicated that BB reverses CUMS-induced depression-like behavior. BB exerts antidepressant-like effects by inhibiting neuroinflammation and enhancing the function of neurotrophic factors.
Collapse
Affiliation(s)
- Shengnan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wanru Ma
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Shaohuan Deng
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Jianwen Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Qingsong Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yunchun Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| |
Collapse
|
4
|
Hassan SA, Shabaan AAA, Ahmed AR, Issa YA, Fadel SH, El-Sabaa BM. Clinicopathological significance of SOX9 and β-catenin expression in pre-neoadjuvant chemotherapy cases of osteosarcoma: molecular and immunohistochemical study. J Histotechnol 2023; 46:127-138. [PMID: 37013797 DOI: 10.1080/01478885.2023.2193526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
The molecular pathogenesis of osteosarcoma (OS), the most frequent primary malignant bone tumor of all age groups, is still obscure. Since multidrug chemotherapeutic regimens were introduced in the 1970s, survival rates have been stationary. The Wnt-β-catenin signaling cascade and SOX9 have a significant contribution to skeletal growth, development, and tumorigenesis. In the present work, an attempt was made to examine the role and clinicopathological significance of β-catenin and SOX9 in 46 cases of pre-neoadjuvant chemotherapy OS tissues compared to 10 cases of non-neoplastic bone. The mRNA levels of both markers were assessed by qRT-PCR, and protein levels of β-catenin were analyzed by immunohistochemistry. The results were correlated with different clinicopathological parameters. SOX9 mRNA levels were significantly elevated in OS compared to non-neoplastic bone, and higher levels were significantly associated with the occurrence of fluid-fluid levels (indicating blood-containing cystic spaces) and osteolytic radiological pattern. Although β-catenin mRNA and protein levels were higher in OS compared to non-neoplastic bone, only the protein levels reached statistical significance. Higher β-catenin mRNA levels were significantly associated with tumor size, while higher protein levels were significantly associated with the histologic subtype, mitotic count, and radiological pattern. No significant association was noted with any of the other evaluated parameters. OS showing higher SOX9 mRNA expression and lower β-catenin mRNA and protein expression exhibited longer estimated overall survival times approaching statistical significance. To conclude, while high expression of β-catenin and SOX9 suggests their possible involvement in OS development, their prognostic role may need further research.
Collapse
Affiliation(s)
- Sarah Ahmed Hassan
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Adel Refaat Ahmed
- Department of Orthopedic Surgery and Traumatology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shady Hassan Fadel
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Faculty of Medicine, Alexandria, Egypt
| | | |
Collapse
|
5
|
Bouabdallah S, Al-Maktoum A, Amin A. Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer. Cancers (Basel) 2023; 15:3900. [PMID: 37568716 PMCID: PMC10417465 DOI: 10.3390/cancers15153900] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a global health burden responsible for an exponentially growing number of incidences and mortalities, regardless of the significant advances in its treatment. The identification of the hallmarks of cancer is a major milestone in understanding the mechanisms that drive cancer initiation, development, and progression. In the past, the hallmarks of cancer have been targeted to effectively treat various types of cancers. These conventional cancer drugs have shown significant therapeutic efficacy but continue to impose unfavorable side effects on patients. Naturally derived compounds are being tested in the search for alternative anti-cancer drugs. Steroidal saponins are a group of naturally occurring compounds that primarily exist as secondary metabolites in plant species. Recent studies have suggested that steroidal saponins possess significant anti-cancer capabilities. This review aims to summarize the recent findings on steroidal saponins as inhibitors of the hallmarks of cancer and covers key studies published between the years 2014 and 2024. It is reported that steroidal saponins effectively inhibit the hallmarks of cancer, but poor bioavailability and insufficient preclinical studies limit their utilization.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Theranostic Biomarkers, LR23ES02, Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis 1006, Tunisia
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
6
|
Cao T, Wang S, Qian L, Wu C, Huang T, Wang Y, Li Q, Wang J, Xia Y, Xu L, Wang L, Huang X. NPRA promotes fatty acid metabolism and proliferation of gastric cancer cells by binding to PPARα. Transl Oncol 2023; 35:101734. [PMID: 37418841 DOI: 10.1016/j.tranon.2023.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Among cancers, gastric cancer (GC) ranks third globally in morbidity and mortality, particularly in East Asia. Natriuretic peptide receptor A (NPRA), a receptor for guanylate cyclase, plays important roles in regulating water and sodium balance. Recent studies have suggested that NPRA is involved in tumorigenesis, but its role in GC development remains unclear. Herein, we showed that the expression level of NPRA was positively correlated with gastric tumor size and clinical stage. Patients with high NPRA expression had a lower five-year survival rate than those with low expression, and NPRA was identified as an independent predictor of GC prognosis. NPRA knockdown suppressed GC cell proliferation, migration and invasion. NPRA overexpression enhanced cell malignant behavior. Immunohistochemistry of collected tumor samples showed that tumors with high NPRA expression had higher peroxisome proliferator-activated receptor α (PPARα) levels. In vivo and in vitro studies showed that NPRA promotes fatty acid oxidation and tumor cell metastasis. Co-IP showed that NPRA binds to PPARα and prevents PPARα degradation. PPARα upregulation under NPRA protection activates arnitine palmitoyl transferase 1B (CPT1B) to promote fatty acid oxidation. In this study, new mechanisms by which NPRA promotes the development of GC and new regulatory mechanisms of PPARα were identified.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China; General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Tao Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Qian Li
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, No.2, Zheshan West Road, Wuhu, Anhui 241001, China.
| |
Collapse
|
7
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
9
|
AlMuraikhi N, Binhamdan S, Alaskar H, Alotaibi A, Tareen S, Muthurangan M, Alfayez M. Inhibition of GSK-3β Enhances Osteoblast Differentiation of Human Mesenchymal Stem Cells through Wnt Signalling Overexpressing Runx2. Int J Mol Sci 2023; 24:ijms24087164. [PMID: 37108323 PMCID: PMC10139012 DOI: 10.3390/ijms24087164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Small-molecule-inhibitor-based bone differentiation has been recently exploited as a novel approach to regulating osteogenesis-related signaling pathways. In this study, we identified 1-Azakenpaullone, a highly selective inhibitor of glycogen synthase kinase-3β (GSK-3β), as a powerful inducer of osteoblastic differentiation and mineralization of human mesenchymal stem cells (MSCs). GSK-3β is a serine-threonine protein kinase that plays a major role in different disease development. GSK-3β is a key regulator of Runx2 activity in osteoblastic formation. We evaluated alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin Red staining to assess the mineralization of cultured human MSCs. Gene expression profiling was assessed using an Agilent microarray platform, and bioinformatics were performed using Ingenuity Pathway Analysis software. Human MSCs treated with 1-Azakenpaullone showed higher ALP activity, increased in vitro mineralized matrix formation, and the upregulation of osteoblast-specific marker gene expression. Global gene expression profiling of 1-Azakenpaullone-treated human MSCs identified 1750 upregulated and 2171 downregulated mRNA transcripts compared to control cells. It also suggested possible changes in various signaling pathways, including Wnt, TGFβ, and Hedgehog. Further bioinformatics analysis employing Ingenuity Pathway Analysis recognized significant enrichment in the 1-Azakenpaullone-treated cells of genetic networks involved in CAMP, PI3K (Complex), P38 MAPK, and HIF1A signaling and functional categories associated with connective tissue development. Our results suggest that 1-Azakenpaullone significantly induced the osteoblastic differentiation and mineralization of human MSCs mediated by the activation of Wnt signaling and the nuclear accumulation of β-catenin, leading to the upregulation of Runx2, a key transcription factor that ultimately promotes the expression of osteoblast-specific genes. Thus, 1-Azakenpaullone could be used as an osteo-promotor factor in bone tissue engineering.
Collapse
Affiliation(s)
- Nihal AlMuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Sarah Binhamdan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hanouf Alaskar
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Amal Alotaibi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Sumaiya Tareen
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
10
|
Passeri G, Vincent RA, Xiao Z, Northcote-Smith J, Suntharalingam K. Encapsulation and Delivery of an Osteosarcoma Stem Cell Active Gallium(III)-Diflunisal Complex Using Polymeric Micelles. ChemMedChem 2023; 18:e202200599. [PMID: 36533570 DOI: 10.1002/cmdc.202200599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Here we report the encapsulation of an osteosarcoma stem cell (OSC) potent gallium(III)-diflunisal complex 1 into polymeric nanoparticles, and its delivery into osteosarcoma cells. At the optimum feed (20 %, 1 NP20 ), nanoparticle encapsulation of 1 enhances potency towards bulk osteosarcoma cells and OSCs (cultured in monolayer and three-dimensional systems). Strikingly, the nanoparticle formulation exhibits up to 5645-fold greater potency towards OSCs than frontline anti-osteosarcoma drugs, doxorubicin and cisplatin. The nanoparticle formulation evokes a similar mechanism of action as the payload, which bodes well for future translation. Specifically, the nanoparticle formulation induces nuclear DNA damage, cyclooxygenase-2 downregulation, and caspase-dependent apoptosis. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver an OSC-active metal complex into osteosarcoma cells.
Collapse
Affiliation(s)
- Ginevra Passeri
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Ruby A Vincent
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Jiaxing, Zhejiang Province, P. R. China
| | | | | |
Collapse
|
11
|
Zheng GZ, Zhang QH, Chang B, Xie P, Liao H, Du SX, Li XD. Dioscin induces osteosarcoma cell apoptosis by upregulating ROS-mediated P38 MAPK signaling. Drug Dev Res 2023; 84:25-35. [PMID: 36401839 DOI: 10.1002/ddr.22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Many patients with osteosarcoma readily develop resistance to chemotherapy and have an extremely dismal prognosis. Dioscin, a saponin, is known to exhibit potent anticancer activities and induce cellular death of a variety of cancer types. However, the inhibitory effect of dioscin on osteosarcoma cells and its underlying mechanisms have not been fully elucidated. We investigated the responses of human U2-OS and MG63 osteosarcoma cells to dioscin with regard to proliferation, apoptosis, migration, and invasion, and studied the effect of dioscin on MAPK-related proteins by western blot analysis assays. Dioscin inhibited osteosarcoma cell proliferation, migration, and invasion. Moreover, it induced osteosarcoma cell apoptosis via reactive oxygen species (ROS)-dependent apoptotic signaling. N-acetylcysteine, a reactive oxygen species inhibitor, suppressed dioscin-induced apoptosis, indicating that ROS play an essential role in dioscin-induced apoptosis. Western blot analysis assays showed that p38 MAPK was upregulated after dioscin treatment, and that dioscin induced apoptosis by upregulating ROS-mediated p38 MAPK signaling. Our study suggests that dioscin possesses antitumor activities against human osteosarcoma cells, inhibits osteosarcoma cell proliferation, migration and invasion, and induces osteosarcoma cell apoptosis through upregulating ROS-mediated p38 MAPK signaling. This study may provide a new therapeutic strategy and potential clinical applications for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Gui-Zhou Zheng
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Qi-Hao Zhang
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Bo Chang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Peng Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Hang Liao
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Shi-Xin Du
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Xue-Dong Li
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Vincent RA, Passeri G, Northcote-Smith J, Singh K, Suntharalingam K. The Osteosarcoma Stem Cell Activity of a Gallium(III)-Phenanthroline Complex Appended to Salicylate. Chembiochem 2022; 23:e202200532. [PMID: 36281941 PMCID: PMC10099568 DOI: 10.1002/cbic.202200532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Indexed: 01/25/2023]
Abstract
We report the synthesis, characterisation, and anti-osteosarcoma properties of a gallium(III) complex (1) comprising of two 1,10-phenanthroline ligands and salicylate, a non-steroidal anti-inflammatory drug. The gallium(III) complex 1 displays micromolar potency towards bulk osteosarcoma cells and osteosarcoma stem cells (OSCs). Notably, the gallium(III) complex 1 exhibits significantly higher toxicity towards OSCs grown in monolayer and three-dimensional cultures than cisplatin, a frontline anti-osteosarcoma drug. Nuclei isolation and immunoblotting studies show that the gallium(III) complex 1 enters osteosarcoma cell nuclei and induces DNA damage. Flow cytometry and cytotoxicity studies (in the presence of prostaglandin E2) indicate that the gallium(III) complex 1 downregulates cyclooxygenase-2 (COX-2) expression and kills osteosarcoma cells in a COX-2-dependent manner. Further, the mode of osteosarcoma cell death evoked by the gallium(III) complex 1 is characterised as caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Ruby A Vincent
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Ginevra Passeri
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | | | - Kuldip Singh
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | | |
Collapse
|
13
|
Dioscin suppresses proliferation and metastasis of osteosarcoma by inhibiting HuR/Pim1 axis via the induction of miR-16-5p level. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Nie JH, Yang T, Li H, Li S, Li TT, Ye HS, Lu MD, Chu X, Zhong GQ, Zhou JL, Wu ML, Zhang Y, Liu J. Frequently Expressed Glypican-3 As A Promising Novel Therapeutic Target for Osteosarcomas. Cancer Sci 2022; 113:3618-3632. [PMID: 35946078 PMCID: PMC9530858 DOI: 10.1111/cas.15521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy without a reliable therapeutic target. Glypican-3 (GPC3) mutation and upregulation have been detected in multi-drug resistant OS, and anti-GPC3 immunotherapy can effectively suppress the growth of organoids. Further profiling of GPC3 mutations and expression patterns in OS is of clinical significance. To address these issues, fresh OS specimens were collected from 24 patients for cancer-targeted next-generation sequencing (NGS) and three-dimensional patient-derived organoid (PDO) culture. A tumor microarray was prepared using 37 archived OS specimens. Immunohistochemical (IHC) staining was performed on OS specimens and microarrays to profile GPC3 and CD133 expression as well as intratumoral distribution patterns. RT-PCR was conducted to semi-quantify GPC3 and CD133 expression levels in the OS tissues. Anti-GPC3 immunotherapy was performed on OS organoids with or without GPC3 expression and its efficacy was analyzed using multiple experimental approaches. No OS cases with GPC3 mutations were found, except for the positive control (OS-08). IHC staining revealed GPC3 expression in 73.77% (45/61) of OSs in weak (+; 29/45), moderate (++; 8/45), and strong (+++; 8/45) immunolabeling densities. The intratumoral distribution of GPC3-positive cells was variable in the focal (+; 10-30%; 8/45), partial (++; 31-70%; 22/45), and the most positive patterns (+++; > 71%; 15/45), which coincided with CD133 immunolabeling (P = 9.89×10-10 ). The anti-GPC3 antibody efficiently inhibits Wnt/β-catenin signaling and induces apoptosis in GPC3-positive PDOs and PDXs, as opposed to GPC3-negative PDOs and PDXs. The high frequency of GPC3 and CD133 co-expression and the effectiveness of anti-wildtype GPC3-ab therapy in GPC3-positive OS models suggest that GPC3 is a novel prognostic parameter and a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Jun-Hua Nie
- South China University of Technology School of Medicine, Guangzhou, China
| | - Tao Yang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Hong Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, China
| | - Sheng Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, China
| | - Ting-Ting Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, China
| | - Hai-Shan Ye
- South China University of Technology School of Medicine, Guangzhou, China
| | - Meng-Di Lu
- South China University of Technology School of Medicine, Guangzhou, China
| | - Xiao Chu
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Guo-Qing Zhong
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Jie-Long Zhou
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Jia Liu
- South China University of Technology School of Medicine, Guangzhou, China.,Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Huang H, Lu Q, Yuan X, Zhang P, Ye C, Wei M, Yang C, Zhang L, Huang Y, Luo X, Luo J. Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Chem Biol Interact 2022; 365:110068. [PMID: 35917943 DOI: 10.1016/j.cbi.2022.110068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Osteosarcoma (OS) is an aggressive malignant skeletal tumor characterized by an extremely poor prognosis and a high tendency to recur. The frequently used anti-OS chemotherapy regents are often limited by drug resistance and severe adverse events. It is urgent to develop more effective, tolerable and safe drugs for the treatment of OS. Andrographolide (AG), a diterpenoid lactone isolated from Andrographis paniculata, has been proved to possess anti-tumor activity against several human cancer types. In this current study, we evaluated the inhibitory effect of AG on human OS cells and probed the possible mechanism. We found that AG inhibited the proliferation of human OS cells and blocked cell cycle at G2/M phase. Furthermore, AG impeded the migration and invasion, while promoted the apoptosis of human OS cells. Moreover, we found that AG inhibited OS growth and lung metastasis in orthotopic transplantation model. Mechanistically, we demonstrated that AG suppressed the activity of Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Notably, we validated that AG synergized with the inhibitors of Wnt/β-catenin, PI3K/AKT and NF-κB to suppress the proliferation, migration and invasion of human OS cells. Collectively, our study conclusively demonstrates that AG inhibits the growth of human OS cells, thus, may be a promising candidate for the treatment of OS.
Collapse
Affiliation(s)
- Huakun Huang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Qiuping Lu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaohui Yuan
- Department of Medical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441021, Xiangyang, Hubei, China
| | - Ping Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Caihong Ye
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Mengqi Wei
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Chunmei Yang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Lulu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Jinyong Luo
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
16
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
17
|
Wang Z, Song Y, Zhang H, Yang Y, Zhang S, Wang W. Local anesthetic levobupivacaine inhibits stemness of osteosarcoma cells by epigenetically repressing MAFB though reducing KAT5 expression. Aging (Albany NY) 2022; 14:2793-2804. [PMID: 35333774 PMCID: PMC9004559 DOI: 10.18632/aging.203975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Osteosarcoma is the most prevalent bone cancer and accounts for over half of sarcomas. In this study, we identified that the treatment of levobupivacaine suppressed proliferation of osteosarcoma cells in vitro. The tumor xenograft analysis showed that levobupivacaine significantly repressed the osteosarcoma cell growth in the nude mice. The treatment of levobupivacaine improved the apoptosis rate and attenuated invasion and migration abilities of osteosarcoma cells. The sphere formation capabilities of osteosarcoma cells were repressed by levobupivacaine. The protein levels of Sox-2, Oct3/4, and Nanog were inhibited by the treatment of levobupivacaine in osteosarcoma cells. Regarding mechanism, we identified that levobupivacaine inhibited MAFB and KAT5 expression in osteosarcoma cells. We observed that lysine acetyltransferase 5 could enriched in the promoter region of MAF BZIP transcription factor B, while levobupivacaine treatment could repressed the enrichment. The suppression of KAT5 by siRNA repressed the enrichment of histone H3 acetylation at lysine 27 and RNA polymerase II on promoter of MAFB. The expression of MAFB was decreased by KAT5 knockdown in osteosarcoma cells. The expression of MAFB was repressed by levobupivacaine, while the overexpression of KAT5 could reverse the repression of MAFB. KAT5 contributes to the cell proliferation and stemness of osteosarcoma cells. The overexpression of KAT5 or MAFB could reverse levobupivacaine-attenuated cell proliferation and stemness of osteosarcoma cells. Therefore, we concluded that local anesthetic levobupivacaine inhibited stemness of osteosarcoma cells by epigenetically repressing MAFB though reducing KAT5 expression. Levobupivacaine may act as a potential therapeutic candidate for osteosarcoma by targeting cancer stem cells.
Collapse
Affiliation(s)
- Zhan Wang
- The First School of Clinical Medicine of Lanzhou University, Department of Orthopaedics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.,Department of Orthopaedics, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Yuxin Song
- The First School of Clinical Medicine of Lanzhou University, Department of Orthopaedics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.,Department of Orthopaedics, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Hui Zhang
- Department of Orthopaedics, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Yang Yang
- Department of Orthopaedics, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Suifeng Zhang
- Department of Orthopaedics, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Wenji Wang
- The First School of Clinical Medicine of Lanzhou University, Department of Orthopaedics, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
18
|
Wu Z, Zhang X, Chen D, Li Z, Wu X, Wang J, Deng Y. N6-Methyladenosine-Related LncRNAs Are Potential Remodeling Indicators in the Tumor Microenvironment and Prognostic Markers in Osteosarcoma. Front Immunol 2022; 12:806189. [PMID: 35095893 PMCID: PMC8790065 DOI: 10.3389/fimmu.2021.806189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
N6-Adenosine methylation, yielding N6-methyladenosine (m6A), is a reversible epigenetic modification found in messenger RNAs and long non-coding RNAs (lncRNAs), which affects the fate of modified RNA molecules and is essential for the development and differentiation of immune cells in the tumor microenvironment (TME). Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, and is characterized by high mortality. Currently, the possible role of m6A modifications in the prognosis of OS is unclear. In the present study, we investigated the correlation between m6A-related lncRNA expression and the clinical outcomes of OS patients via a comprehensive analysis. Clinical and workflow-type data were obtained from the Genotype-Tissue Expression Program and The Cancer Genome Atlas. We examined the relationship between m6A modifications and lncRNA expression, conducted Kyoto Encyclopedia of Genes analysis and also gene set enrichment analysis (GSEA), implemented survival analysis to investigate the association of clinical survival data with the expression of m6A-related lncRNAs, and utilized Lasso regression to model the prognosis of OS. Furthermore, we performed immune correlation analysis and TME differential analysis to investigate the infiltration levels of immune cells and their relationship with clinical prognosis. LncRNA expression and m6A levels were closely associated in co-expression analysis. The expression of m6A-related lncRNAs was quite low in tumor tissues; this appeared to be a predicting factor of OS in a prognostic model, independent of other clinical features. The NOD-like receptor signaling pathway was the most significantly enriched pathway in GSEA. In tumor tissues, SPAG4 was overexpressed while ZBTB32 and DEPTOR were downregulated. Tissues in cluster 2 were highly infiltrated by plasma cells. Cluster 2 presented higher ESTIMATE scores and stromal scores, showing a lower tumor cell purity in the TME. In conclusion, m6A-related lncRNA expression is strongly associated with the occurrence and development of OS, and can be used to as a prognostic factor of OS. Moreover, m6A-related lncRNAs and infiltrating immune cells in the TME could serve as new therapeutic targets and prognostic biomarkers for OS.
Collapse
Affiliation(s)
- Zhongguang Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Zhang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Zhang W, Wei L, Weng J, Yu F, Qin H, Wang D, Zeng H. Advances in the Research of Osteosarcoma Stem Cells and its Related Genes. Cell Biol Int 2021; 46:336-343. [PMID: 34941001 DOI: 10.1002/cbin.11752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is a malignant tumor that often occurs in adolescents. There is an urgent need of new treatment options for osteosarcoma due to its poor prognosis after metastasis. Cancer stem cell theory states that cancer stem cells represent a small proportion of cancer cells. These cancer stem cells have self-renewal ability and are closely associated with cancer growth and metastasis as well as chemotherapy resistance. Similarly, osteosarcoma stem cells (OSCs) play an important role in the growth, metastasis, and chemotherapy resistance of osteosarcoma cells. Targeting OSCs may represent a future treatment of osteosarcoma. Furthermore, some genes have shown to regulate the growth, metastasis, and chemotherapy resistance of osteosarcoma cells by altering the stemness of OSCs. Targeting these genes may help in the treatment of osteosarcoma. This review mainly discusses recent advances in the research of OSCs and its related genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Liangchen Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| |
Collapse
|
21
|
Lu Z, Yao Y, Wang J, Peng JY. Dioscin ameliorates diabetes cognitive dysfunction via adjusting P2X7R/NLRP3 signal. Int Immunopharmacol 2021; 101:108314. [PMID: 34785142 DOI: 10.1016/j.intimp.2021.108314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
Dioscin presents extents of pharmacological activities on several diseases, but its effect and mechanism on diabetes cognitive dysfunction (DCD) remains unclear. Herein, we conducted a series of pharmacological evaluation assays of purinergic receptor P2X7 (P2X7R) with dioscin. We uncovered that dioscin presented a clearly protective effect on diabetes cognitive dysfunction via a methylglyoxal-treated PC12 cell model and streptozocin (STZ)-induced rat models. Additionally, it found that P2X7R and NLRP3 inflammasome signals were activated in diabetes cognitive dysfunction via in vivo and in vitro detection. Moreover, it was demonstrated that P2X7R regulated NLRP3 inflammasome signals in methylglyoxal-treated PC12 cells. Meanwhile, it was showed that dioscin-induced anti-diabetes cognitive dysfunction effect was accompanied with an inhibition of P2X7R/NLRP3 signal. A deeper mechanical study indicated that an overexpression of P2X7R further enhanced the protective effect of dioscin. Whilst, an inhibition of P2X7R abolished the protective effect of dioscin. These results suggested that dioscin protected type 2 diabetes cognitive dysfunction through, at least partially, regulating the P2X7R/NLRP3 signal pathway. Our findings further indicate the great value of dioscin on preventing type 2 diabetes cognitive dysfunction.
Collapse
Affiliation(s)
- Zhi Lu
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China; College of Pharmacy, Dalian Medical University, Dalian, China; Department of Nuclear Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiqun Yao
- Department of Thyroid and Breast Surgery, the First Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jinhong Wang
- Department of Pharmacology and Laboratory of Applied Pharmacology, College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - J-Y Peng
- College of Pharmacy, Dalian Medical University, Dalian, China.
| |
Collapse
|
22
|
Exploring the Biological Mechanism of Huang Yam in Treating Tumors and Preventing Antitumor Drug-Induced Cardiotoxicity Using Network Pharmacology and Molecular Docking Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9988650. [PMID: 34484411 PMCID: PMC8410425 DOI: 10.1155/2021/9988650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
Drugs for the treatment of tumors could result in cardiotoxicity and cardiovascular diseases. We aimed to explore the anticancer properties of Huang yam as well as its cardioprotective properties using network pharmacology and molecular docking technology. The cardiovascular targets of the major chemical components of Huang yam were obtained from the following databases: TCMSP, ETCM, and BATMAN-TCM. The active ingredients of Huang yam were obtained from SwissADME. The cardiovascular targets of antitumor drugs were obtained using GeneCards, OMIM, DrugBank, DisGeNET, and SwissTargetPrediction databases. The drug-disease intersection genes were used to construct a drug-compound-target network using Cytoscape 3.7.1. A protein-protein interaction network was constructed using Cytoscape's BisoGenet, and the core targets of Huang yam were screened to determine their antitumor properties and identify the cardiovascular targets based on topological parameters. Potential targets were imported into the Metascape platform for GO and KEGG analysis. The results were saved and visualized using R software. The components with higher median values in the network were molecularly docked with the core targets. The network contained 10 compounds, including daucosterol, delusive, dioxin, panthogenin-B, and 124 targets, such as TP53, RPS27A, and UBC. The GO function enrichment analysis showed that there were 478 items in total. KEGG enrichment analysis showed a total of 140 main pathways associated with abnormal transcription of cancer, PI3K-Akt signaling pathway, cell cycle, cancer pathway, ubiquitination-mediated proteolysis, and other pathways. Molecular docking results showed that daucosterol, delusive, dioxin, and panthogenin-B had the highest affinity for TP53, RPS27A, and UBC. The treatment of diseases using traditional Chinese medicine encompasses multiple active ingredients, targets, and pathways. Huang yam has the potential to treat cardiotoxicity caused by antitumor drugs.
Collapse
|
23
|
Wu MM, Wang QM, Huang BY, Mai CT, Wang CL, Wang TT, Zhang XJ. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res 2021; 172:105796. [PMID: 34343656 DOI: 10.1016/j.phrs.2021.105796] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Restoring immune balance by targeting macrophage polarization is a potentially valuable therapeutic strategy for ulcerative colitis (UC). Dioscin is a steroidal saponin with potent anti-inflammatory, immunoregulatory, and hypolipidemic effects. This study examined the protective effect of Dioscin on UC in mice and explored the underlying mechanisms. Mice were induced colitis by dextran sulfate sodium (DSS) and concurrently treated with Dioscin oral administration. RAW264.7 cells were skewed to M1 macrophage polarization by lipopolysaccharide (LPS) and interferon-γ (INF-γ) in vitro, and received Dioscin treatment. The results showed that Dioscin ameliorated colitis in mice, reduced macrophage M1 polarization, but markedly promoted M2 polarization in mice colon. Dioscin inhibited mammalian target rapamycin complex 1 (mTORC1)/hypoxia-inducible factor-1α (HIF-1α) signaling and restrained glycolysis in RAW264.7; however, it activated mammalian target rapamycin complex 2 (mTORC2)/peroxisome proliferator-activated receptor-γ (PPAR-γ) signal and facilitated fatty acid oxidation (FAO). The modulation of mTORs signaling may inhibit M1, but promote M2 polarization. Furthermore, the effect of Dioscin on M2 polarization was neutralized by the FAO inhibitor Etomoxir and the mTORC2 inhibitor JR-AB2-011. In parallel, the inhibitory effect of Dioscin on M1 polarization was mitigated by the mTORC1 agonist L-leucine. Both JR-AB2-011 and L-leucine blocked the therapeutic effect of Dioscin in mice with UC. Therefore, Dioscin ameliorated UC in mice, possibly by restraining M1, while skewing M2 polarization of macrophages. Regulation of mTORC1/HIF-1α and mTORC2/PPAR-γ signals is a possible mechanism by which Dioscin inhibited aerobic glycolysis and promoted FAO of macrophages. In summary, Dioscin protected mice against DSS-induced UC by regulating mTOR signaling, thereby adjusting macrophage metabolism and polarization.
Collapse
Affiliation(s)
- Mei-Mei Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, PR China.
| | - Qiu-Mei Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Bao-Yuan Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chu-Tian Mai
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Chun-Li Wang
- Guangxi Botanical Garden of Medicinal Plants, Xiangzhu Ave, Nanning 510663, PR China.
| | - Tian-Tian Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Xiao-Jun Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Xiao Z, Passeri G, Northcote-Smith J, Singh K, Suntharalingam K. Osteosarcoma Stem Cell Potent Gallium(III)-Polypyridyl Complexes Bearing Diflunisal. Chemistry 2021; 27:13846-13854. [PMID: 34269487 PMCID: PMC8518360 DOI: 10.1002/chem.202102207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/02/2022]
Abstract
We report the anti‐osteosarcoma stem cell (OSC) properties of a series of gallium(III)‐polypyridyl complexes (5‐7) containing diflunisal, a non‐steroidal anti‐inflammatory drug. The most effective complex within the series, 6 (containing 3,4,7,8‐tetramethyl‐1,10‐phenanthroline), displayed similar potency towards bulk osteosarcoma cells and OSCs, in the nanomolar range. Remarkably, 6 exhibited significantly higher monolayer and sarcosphere OSC potency (up to three orders of magnitude) than clinically approved drugs used in frontline (cisplatin and doxorubicin) and secondary (etoposide, ifosfamide, and carboplatin) osteosarcoma treatments. Mechanistic studies show that 6 downregulates cyclooxygenase‐2 (COX‐2) and kills osteosarcoma cells in a COX‐2 dependent manner. Furthermore, 6 induces genomic DNA damage and caspase‐dependent apoptosis. To the best of our knowledge, 6 is the first metal complex to kill osteosarcoma cells by simultaneously inhibiting COX‐2 and damaging nuclear DNA.
Collapse
Affiliation(s)
- Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, UK.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | | | | | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester, UK
| | | |
Collapse
|
25
|
Danieau G, Morice S, Renault S, Brion R, Biteau K, Amiaud J, Cadé M, Heymann D, Lézot F, Verrecchia F, Rédini F, Brounais-Le Royer B. ICG-001, an Inhibitor of the β-Catenin and cAMP Response Element-Binding Protein Dependent Gene Transcription, Decreases Proliferation but Enhances Migration of Osteosarcoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14050421. [PMID: 34062831 PMCID: PMC8147379 DOI: 10.3390/ph14050421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
High-grade osteosarcomas are the most frequent malignant bone tumors in the pediatric population, with 150 patients diagnosed every year in France. Osteosarcomas are associated with low survival rates for high risk patients (metastatic and relapsed diseases). Knowing that the canonical Wnt signaling pathway (Wnt/β-catenin) plays a complex but a key role in primary and metastatic development of osteosarcoma, the aim of this work was to analyze the effects of ICG-001, a CBP/β-catenin inhibitor blocking the β-catenin dependent gene transcription, in three human osteosarcoma cell lines (KHOS, MG63 and 143B). The cell proliferation and migration were first evaluated in vitro after ICG-001 treatment. Secondly, a mouse model of osteosarcoma was used to establish the in vivo biological effect of ICG-001 on osteosarcoma growth and metastatic dissemination. In vitro, ICG-001 treatment strongly inhibits osteosarcoma cell proliferation through a cell cycle blockade in the G0/G1 phase, but surprisingly, increases cell migration of the three cell lines. Moreover, ICG-001 does not modulate tumor growth in the osteosarcoma mouse model but, rather significantly increases the metastatic dissemination to lungs. Taken together, these results highlight, despite an anti-proliferative effect, a deleterious pro-migratory role of ICG-001 in osteosarcoma.
Collapse
Affiliation(s)
- Geoffroy Danieau
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Sarah Morice
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Sarah Renault
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Régis Brion
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
- Centre Hospitalier Universitaire, Université de Nantes, 44035 Nantes, France
| | - Kevin Biteau
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Jérôme Amiaud
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Marie Cadé
- Equipe Apoptose et Progression Tumorale, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, CRCINA, INSERM, UMR1232, Université de Nantes, Université d’Angers, 44035 Nantes, France; (M.C.); (D.H.)
- LaBCT, Institut de Cancérologie de l’Ouest, 44800 Saint Herblain, France
| | - Dominique Heymann
- Equipe Apoptose et Progression Tumorale, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, CRCINA, INSERM, UMR1232, Université de Nantes, Université d’Angers, 44035 Nantes, France; (M.C.); (D.H.)
- LaBCT, Institut de Cancérologie de l’Ouest, 44800 Saint Herblain, France
- European Associated Laboratory Sarcoma Research Unit, INSERM, University of Sheffield, Sheffield S10 2TN, UK
| | - Frédéric Lézot
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Franck Verrecchia
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Françoise Rédini
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
| | - Bénédicte Brounais-Le Royer
- Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, UMR1238, Université de Nantes, 44035 Nantes, France; (G.D.); (S.M.); (S.R.); (R.B.); (K.B.); (J.A.); (F.L.); (F.V.); (F.R.)
- Correspondence: ; Tel.: +33-244-769-113
| |
Collapse
|
26
|
Yongjun C, Nan Q, Yumeng S, Xiaowen J, Weibo W. Dioscin alleviates hashimoto's thyroiditis by regulating the SUMOylation of IRF4 to promote CD4 +CD25 +Foxp3 + treg cell differentiation. Autoimmunity 2020; 54:51-59. [PMID: 33274645 DOI: 10.1080/08916934.2020.1855428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dioscin has been used as a treatment for Hashimoto's thyroiditis (HT) in China. However, the molecular mechanisms governing the modes of action of dioscin have not been elucidated. In this study, flow cytometry and Western blotting were used to identify the proportions of CD4+CD25+ regulatory T (Treg) cells and the expression of forkhead box P3 (Foxp3) and SUMO-specific protease 1 (SENP1) in HT patients' peripheral blood mononuclear cells (PBMCs). A pTg-induced rat model of HT was established by injection of 100 μg pTg. Then, the model rats were randomly divided into three groups (n = 5): control (NC), model (HT) and dioscin treatment. After oral administration of dioscin each day for two weeks, CD4+CD25+Foxp3+ Treg cells were analysed by flow cytometry, and the protein expression levels of SENP1, Foxp3, SUMO-1 and SUMO-2/3 were measured by Western blotting. Co-immunoprecipitation (Co-IP) was used to identify the SUMOylation of interferon regulatory factor 4 (IRF4). The results showed that the proportions of CD4+CD25+ Treg cells and the expression of Foxp3 were significantly decreased in HT patients, but the expression of SENP1 was enhanced compared to healthy controls (HCs). However, compared to the pTg-induced HT rat group, the expression of Foxp3, SUMO-1, and SUMO-2/3 and the proportions of CD4+CD25+Foxp3+ Treg cells were increased, whereas the expression of SENP1 was decreased, in the dioscin-treated group. Furthermore, the SUMOylation of IRF4 was increased after SENP1 was knocked down. The results of our study indicate that dioscin can promote the differentiation of the CD4+CD25+Foxp3+ Treg cells and subsequently upregulate the SUMOylation of IRF4 by downregulating SENP1 expression.
Collapse
Affiliation(s)
- Cao Yongjun
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Qiao Nan
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Sun Yumeng
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Jin Xiaowen
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Wen Weibo
- The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
27
|
Yang Y, Zhao M, Hu T, Su F, Qian F, Wang Z. Identification of an antitumor effect of demethylzeylasteral on human gastric cancer cells. Oncol Lett 2020; 21:49. [PMID: 33281960 DOI: 10.3892/ol.2020.12310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer is a common malignancy in China, with the second highest mortality rate worldwide. Advanced gastric cancer usually exhibits a poor prognosis with a low 5-year survival rate. Therefore, developing novel drugs for the treatment of this cancer will be beneficial for patients. Demethylzeylasteral, an extract of tripterygium wilfordii, has shown positive anticancer activities. However, the possible antitumor effect of demethylzeylasteral on gastric cancer cells and its underlying molecular mechanism remain to be determined. In the present study, the Cell Counting Kit-8 and colony formation assays revealed that demethylzeylasteral impeded the proliferation of human gastric cancer cells in a dose-dependent manner. Furthermore, the Transwell assay identified an inhibitory effect of demethylzeylasteral on the migration of MKN-45 cells, while flow cytometry found that treatment with demethylzeylasteral induced apoptosis and decreased the mitochondrial membrane potential in the cancer cells. Further investigation revealed that demethylzeylasteral downregulated the phosphorylation of ERK1/2, AKT, and GSK-3β in MKN-45 cells. Notably, decreased expression of Bcl-2 and increased expression of Bax, cleaved caspase-3, cleaved caspase-9 and cleaved PARP were detected in the cancer cells treated with demethylzeylasteral. The present study demonstrated that demethylzeylasteral exhibits therapeutic potential for gastric cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Menglin Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ting Hu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Feng Qian
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
28
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
29
|
Eskandari A, Flamme M, Xiao Z, Suntharalingam K. The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosis-Inducing Nickel(II)-Phenanthroline Complex. Chembiochem 2020; 21:2854-2860. [PMID: 32415808 DOI: 10.1002/cbic.202000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022]
Abstract
We report the anti-osteosarcoma and anti-osteosarcoma stem cell (OSC) properties of a nickel(II) complex, 1. Complex 1 displays similar potency towards bulk osteosarcoma cells and OSCs, in the micromolar range. Notably, 1 displays similar or better OSC potency than the clinically approved platinum(II) anticancer drugs cisplatin and carboplatin in two- and three-dimensional osteosarcoma cell cultures. Mechanistic studies revealed that 1 induces osteosarcoma cell death by necroptosis, an ordered form of necrosis. The nickel(II) complex, 1 triggers necrosome-dependent mitrochondrial membrane depolarisation and propidium iodide uptake. Interestingly, 1 does not evoke necroptosis by elevating intracellular reactive oxygen species (ROS) or hyperactivation of poly ADP ribose polymerase (PARP-1). ROS elevation and PARP-1 activity are traits that have been observed for established necroptosis inducers such as shikonin, TRAIL and glutamate. Thus the necroptosis pathway evoked by 1 is distinct. To the best of our knowledge, this is the first report into the anti-osteosarcoma and anti-OSC properties of a nickel complex.
Collapse
Affiliation(s)
- Arvin Eskandari
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Marie Flamme
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, 75015, France
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | |
Collapse
|
30
|
Long noncoding RNA lncARSR confers resistance to Adriamycin and promotes osteosarcoma progression. Cell Death Dis 2020; 11:362. [PMID: 32404870 PMCID: PMC7220921 DOI: 10.1038/s41419-020-2573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
One of the significant challenges for chemotherapy is the appearance of resistance to compounds. Although several signaling pathways have been implicated in the development of Adriamycin (ADM) resistance, mechanisms involved in ADM-resistant osteosarcoma progression remain unknown. The present study attempted to illustrate the role of long noncoding RNA ARSR (lncARSR) in the development of adapted ADM resistance. We found lncARSR overexpressed in the Adriamycin-resistant cell lines U2OS/ADM and MG63/ADM, accompanied with acquired multidrug resistance against to paclitaxel and cisplatin. Overexpression of lncARSR triggered rhodamine 123 efflux and survival, as well as the migration of Adriamycin-resistant cells. Inversely, the depletion of lncARSR promoted rhodamine 123 retention and apoptosis, while reducing the motility of ADM-resistant cells. Further investigation revealed that the upregulation of lncARSR enhanced multidrug resistance-associated protein-1 (MRP1), apoptosis inhibitor Survivin, and matrix metalloproteinase-2 (MMP2) through activating AKT. The reduction of lncARSR overcame the resistance to ADM in U2OS/ADM mouse model. The current study gained novel evidence for understanding the mechanisms underlying adaptive ADM resistance and provided rationales to improve clinical outcomes of refractory osteosarcoma.
Collapse
|
31
|
Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells 2020; 9:cells9051110. [PMID: 32365809 PMCID: PMC7290852 DOI: 10.3390/cells9051110] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/β-catenin signaling and β-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-κB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth.
Collapse
|
32
|
Leng J, Li X, Tian H, Liu C, Guo Y, Zhang S, Chu Y, Li J, Wang Y, Zhang L. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complement Med Ther 2020; 20:126. [PMID: 32336289 PMCID: PMC7184706 DOI: 10.1186/s12906-020-02930-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/16/2020] [Indexed: 12/04/2022] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes. Diosgenin is a natural steroidal saponin with a variety of beneficial effects, including antidiabetic effects, and is a raw material for the synthesis of carrier hormones. In our study, we aimed to assess the antioxidant effects of diosgenin in diabetic mice. Methods Male C57 mice were fed a high-fat diet for 8 weeks and intraperitoneally injected with streptozotocin (STZ) at a dose of 100 mg/kg for 2 consecutive days. Eligible mice were divided into the normal control group (CON), diabetic group (DM), low-dose diosgenin (50 mg/kg) group (DIO50) and high-dose diosgenin (100 mg/kg) group (DIO100). Treatment was started 6 weeks after the induction of diabetes by STZ and continued for 8 weeks. Blood sugar and body weight were monitored dynamically. The behavioural effects of diosgenin were detected by a hot tail immersion test and paw tactile responses. HE staining was used to evaluate edema and degeneration of the sciatic nerve. The levels of SOD, MDA and GPx were tested according to the instructions of the respective kits. The levels of Nrf2, HO-1 and NQO1 were detected by immunofluorescence and Western blotting. Statistical analysis was performed using SPSS, and P < 0.05 was considered statistically significant. Results Diosgenin decreased the blood glucose levels and increased the body weight of diabetic mice. There was a significant increase in the tail withdrawal latency of diabetic animals, and mechanical hyperalgesia was significantly alleviated after diosgenin treatment. Histopathological micrographs of HE-stained sciatic nerves showed improvement after diosgenin treatment. Diosgenin attenuated the level of MDA but increased the activities of SOD and GPx. Diosgenin increased the expression of Nrf2, HO-1 and NQO1. Conclusions Our results demonstrate that diosgenin can ameliorate behavioural and morphological changes in DPN by reducing oxidative stress. The Nrf2/HO-1 signalling pathway was involved in its neuroprotective effects.
Collapse
Affiliation(s)
- Jinhong Leng
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Xiaohua Li
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - He Tian
- Department of Histology and Embryology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| | - Chang Liu
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| | - Yining Guo
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Su Zhang
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Yang Chu
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Jian Li
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Ying Wang
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Ling Zhang
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| |
Collapse
|
33
|
Cai S, Chen J, Li Y. Dioscin protects against diabetic nephropathy by inhibiting renal inflammation through TLR4/NF-κB pathway in mice. Immunobiology 2020; 225:151941. [PMID: 32359778 DOI: 10.1016/j.imbio.2020.151941] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is a chronic kidney disease caused by the long-term loss of renal function, which occurs in 20% - 40% of all diabetes and is also the primary cause of end-stage renal diseases. DN is related with other lethal diseases, particularly cardiovascular diseases, leading to an increased risk of death. Therefore, an effective treatment for DN is required. Here we tested the protective effect of dioscin in a mouse model of streptozocin (STZ)-induced DN. First, STZ was intraperitoneally injected into C57BL/6 J mice and TLR4-/- mice respectively, on a daily basis for 5 days to induce diabetes. Dioscin was then orally administered into diabetic mice daily for 8 weeks. Our results show that STZ injection effectively induced diabetes in mice as indicated by the increased blood glucose levels in C57BL/6 J mice, whereas it did not cause diabetes in TLR4-/- mice. Dioscin significantly ameliorated STZ-induced renal damage via reducing inflammatory responses in diabetic mice and antagonizing the activation of TLR4/NF-κB pathway and the production of inflammatory cytokines. In conclusion, our study highlights the potential of dioscin as a novel approach to treat DN in diabetic patients.
Collapse
Affiliation(s)
- Shengyu Cai
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, Guangdong, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, Guangdong, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, East Road of Third North Ring, Chaoyang District, Beijing 100029, China.
| | - Yousheng Li
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
34
|
He P, Ding J. EWS promotes cell proliferation and inhibits cell apoptosis by regulating miR-199a-5p/Sox2 axis in osteosarcoma. Biotechnol Lett 2020; 42:1263-1274. [PMID: 32236759 DOI: 10.1007/s10529-020-02859-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Osteosarcoma is one of the most common malignant bone tumors which mainly occurs in children and adolescents. It is characterized by high malignancy and high metastasis rate, resulting in high mortality and disability. Accumulating studies have validated that long noncoding RNAs (lncRNAs) exerted vital roles in multiple cancer progression by regulating the expression of specific genes. This work aimed to explore the potential molecular mechanism of EWS in osteosarcoma. RESULTS In this study, we discovered that both EWS and Sox2 were highly expressed in osteosarcoma tissue samples. In addition, the expression of EWS was positively associated with Sox2 level. We conducted a series of functional assays and observed that Sox2 overexpression could significantly overturned the enhancement of cell proliferation and the decline of cell apoptosis induced by EWS knockdown in osteosarcoma. Moreover, we found a key upstream regulatory gene of Sox2: miR-199a-5p. CONCLUSIONS Through molecular biology studies and rescue assays, we further demonstrated that EWS promotes tumor growth through the miR-199a-5p/Sox2 signaling axis in osteosarcoma. These findings may provide an important theoretical basis for the clinical diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng He
- Department of Orthopedics, XD Group Hospital, Xi'an, 710077, Shaanxi, China
| | - Junjie Ding
- Department of Orthopedics, Yan'an People's Hospital, No. 57 Qilipu Street, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
35
|
Robin P, Singh K, Suntharalingam K. Gallium(iii)-polypyridyl complexes as anti-osteosarcoma stem cell agents. Chem Commun (Camb) 2020; 56:1509-1512. [PMID: 31917383 DOI: 10.1039/c9cc08962d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gallium(iii) complexes with polypridyl ligands are shown to kill bulk osteosarcoma cells and osteosarcoma stem cells (OSCs) with up to nanomolar potency. The most effective complex induces apoptosis in osteosarcoma cells by damaging genomic DNA. To the best of our knowledge this is the first investigation into metal-based anti-OSC agents.
Collapse
Affiliation(s)
- Perrine Robin
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | | | |
Collapse
|
36
|
The DNMT1/miR-34a Axis Is Involved in the Stemness of Human Osteosarcoma Cells and Derived Stem-Like Cells. Stem Cells Int 2019; 2019:7028901. [PMID: 31781245 PMCID: PMC6875320 DOI: 10.1155/2019/7028901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022] Open
Abstract
The DNA methyltransferase 1 (DNMT1)/miR-34a axis promoted carcinogenesis of various types of cancers. However, no literature reported its contribution to the stemness of osteosarcoma cancer stem-like cells (OSLCs). We sought to determine whether the DNMT1/miR-34a axis facilitates the stemness of OSLCs. We here revealed the higher DNMT1 activity and expression, lower miR-34a expression with high methylation of its promoter, and stronger stemness of OSLCs, as manifested by elevated sphere and colony formation capacities; CD133, CD44, ABCG2, Bmi1, Sox2, and Oct4 protein amounts in vitro; and carcinogenicity in a nude mouse xenograft model, when compared to the parental U2OS cells. 5-Azacytidine (Aza-dC) repressed DNMT1 activation and upregulated miR-34a expression by promoter demethylation and suppressed the stemness of OSLCs in a dose-dependent manner. DNMT1 knockdown increased miR-34a and reduced the stemness of OSLCs. Transfection with a miR-34a mimic repressed the stemness of OSLCs but did not alter DNMT1 activity and expression. Conversely, DNMT1 overexpression declined miR-34a levels, promoting the stemness of U2OS cells. Transfection with a miR-34a inhibitor enhanced the stemness of U2OS cells, without affecting the DNMT1 activity and expression. Importantly, reexpression of miR-34a could rescue the effects of DNMT1 overexpression on miR-34a inhibition as well as the stemness promotion without affecting the activity and expression of DNMT1. Our results revealed that aberrant activation of DNMT1 caused promoter methylation of miR-34a, leading to miR-34a underexpression, and the role of the DNMT1/miR-34a axis in promoting and sustaining the stemness of OSLCs.
Collapse
|
37
|
Wang S, Hu H, Zhong B, Shi D, Qing X, Cheng C, Deng X, Zhang Z, Shao Z. Bruceine D inhibits tumor growth and stem cell-like traits of osteosarcoma through inhibition of STAT3 signaling pathway. Cancer Med 2019; 8:7345-7358. [PMID: 31631559 PMCID: PMC6885873 DOI: 10.1002/cam4.2612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Patients with osteosarcoma exhibiting resistance to chemotherapy or presenting with metastasis usually have a poor prognosis. Osteosarcoma stem cells (OSCs) are a potential cause of tumor metastasis, relapse, and chemotherapy resistance. Therefore, it is necessary to develop novel therapeutic drugs, which not only kill osteosarcoma cells but also target OSCs. This study aims to explore the anti‐osteosarcoma effects of Bruceine D (BD), a natural compound derived from Brucea javanica, and investigate its underlying mechanisms. Results demonstrated that BD could significantly inhibit cell proliferation and migration, induce cell cycle arrest, and promote apoptosis in osteosarcoma cells. Besides, BD could also suppress the sphere‐forming and self‐renewal ability of OSCs. Mechanistically, the inhibitory role of BD on osteosarcoma cell growth and migration including OSC stemness was partially executed through the inhibition of STAT3 signaling pathway. More importantly, BD showed significant anti‐osteosarcoma activity without obvious side effects in vivo. Collectively, the results of this study demonstrated that BD exerts a strong inhibitory effect on tumor growth and stem cell like traits of osteosarcoma which may be partially due to STAT3 inhibition, suggesting that BD maybe a promising therapeutic candidate against osteosarcoma.
Collapse
Affiliation(s)
- Shangyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlong Zhong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Liang X, Xu C, Cao X, Wang W. Isovitexin Suppresses Cancer Stemness Property And Induces Apoptosis Of Osteosarcoma Cells By Disruption Of The DNMT1/miR-34a/Bcl-2 Axis. Cancer Manag Res 2019; 11:8923-8936. [PMID: 31686915 PMCID: PMC6800563 DOI: 10.2147/cmar.s222708] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Isovitexin (apigenin-6-C-glucoside, ISOV) is a natural flavonoid that exhibits tumor suppressive activity on various types of cancer. However, it is unknown whether the mechanism of its action in osteosarcoma (OS) is associated with epigenetic regulation and whether it involves DNA methyltransferase 1 (DNMT1), microRNAs and their targets. MATERIALS AND METHODS The present study investigated the effects of ISOV on DNMT1 activation and miR-34a and Bcl-2 expression levels in order to explain the mechanism underlying ISOV-mediated repression of proliferation and stemness. In addition, the induction of apoptosis in the spheres derived from OS cells was investigated. RESULTS The results indicated that ISOV significantly repressed survival, induced apoptosis and decreased the level of CD133, CD44, ABCG2 and ALDH1 mRNA in the spheres derived from U2OS (U2OS-SC) and MG63 cells (MG63-SC). ISOV further reduced the sphere formation rate of U2OS-SC and MG63-SC. It is important to noted that, ISOV inhibited tumor growth and reduced tumor size of U2OS-SC xenografts in nude mice, which was accompanied by decreased CD133 protein levels, elevated apoptotic index, downregulation of proliferating cell nuclear antigen (PCNA) expression, reduced DNMT1 activity and expression, increased miR-34a and decreased Bcl-2 levels. We identified that Bcl-2 as a direct functional target of miR-34a. Furthermore, ISOV exhibited a synergistic effect with 5-aza-2'-deoxycytidine, the miR-34a mimic or ABT-263 in order to repress cell survival, induce apoptosis, downregulate CD133, CD44, ABCG2 and ALDH1 mRNA expression levels and reduce sphere formation rates of U2OS-SC and MG63-SC cells. CONCLUSION The findings suggested that ISOV-mediated epigenetic regulation involved the DNMT1/miR-34a/Bcl-2 axis and caused the suppression of stemness and induction of apoptosis in the spheres derived from OS cells. The data indicated that ISOV exhibited a novel efficient potential for the treatment of OS.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Chang Xu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Xiaocheng Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Wanchun Wang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| |
Collapse
|
39
|
Danieau G, Morice S, Rédini F, Verrecchia F, Royer BBL. New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies? Int J Mol Sci 2019; 20:ijms20153751. [PMID: 31370265 PMCID: PMC6696068 DOI: 10.3390/ijms20153751] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/β-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/β-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/immunology
- Bone Neoplasms/mortality
- Bone and Bones
- Child
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/mortality
- Neovascularization, Pathologic/prevention & control
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Osteosarcoma/drug therapy
- Osteosarcoma/genetics
- Osteosarcoma/immunology
- Osteosarcoma/mortality
- Proto-Oncogene Proteins c-ets/antagonists & inhibitors
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/immunology
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/immunology
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/mortality
- Survival Analysis
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/drug effects
- Young Adult
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
- beta Catenin/immunology
Collapse
Affiliation(s)
- Geoffroy Danieau
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Sarah Morice
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Françoise Rédini
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Franck Verrecchia
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France.
| |
Collapse
|
40
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zimu Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pengfei Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jia Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
41
|
Chen J, Wang P, Cai R, Peng H, Zhang C, Zhang M. SLC34A2 promotes neuroblastoma cell stemness via enhancement of miR-25/Gsk3β-mediated activation of Wnt/β-catenin signaling. FEBS Open Bio 2019; 9:527-537. [PMID: 30868061 PMCID: PMC6396163 DOI: 10.1002/2211-5463.12594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells contribute to cancer progression, but the mechanisms underlying neuroblastoma stem cell development are unclear. Here, we examined the roles of the transcription factor SLC34A2 in regulating the stemness of neuroblastoma cells. We found that SLC34A2 expression was negatively correlated with the overall survival and relapse‐free survival probability of neuroblastoma patients. Additionally, SLC34A2 expression was observed to be remarkably increased in spheroids derived from neuroblastoma cells. Knockdown of SLC34A2 attenuated the expression of stemness markers and spheroid formation capacity of neuroblastoma cell‐derived spheroids, and overexpression of SLC34A2 exerted the opposite effects in neuroblastoma cells. Mechanistically, SLC34A2 was found to directly bind to the promoter of MIR25, which targets glycogen synthesis kinase 3β (Gsk3β), an antagonist of Wnt signaling. Transfection of miR‐25 inhibitor or a Gsk3β overexpression plasmid attenuated the effects of SLC34A2 overexpression on the stemness of neuroblastoma cells. Our results demonstrate that miR‐25/Gsk3β‐mediated activation of Wnt signaling is responsible for SLC34A2‐induced enhancement of neuroblastoma cell stemness.
Collapse
Affiliation(s)
- Jianlong Chen
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Pengcheng Wang
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Renduan Cai
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Hao Peng
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Chaocai Zhang
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| | - Mao Zhang
- Department of Neurosurgery Hainan General Hospital Xiuying District Haikou China
| |
Collapse
|
42
|
Dioscin Inhibits Virulence Factors of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4651726. [PMID: 30598996 PMCID: PMC6287159 DOI: 10.1155/2018/4651726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Candida albicans infections present a heavy burden upon public health, with only a few drugs available, while biofilms formed by C. albicans worsen this situation. Dioscin has antitumor, anti-inflammatory, and hepatoprotective effects, and this study was conducted to evaluate the effects of dioscin on the biofilm formation and development, as well as other virulence factors of C. albicans such as morphological transition, adhesion, and extracellular secreted phospholipase. Our results showed dioscin inhibits these virulence factors and has low cytotoxicity against mammalian cells. Considering protective effects of dioscin against damage on liver and kidney, dioscin may be used as a potential candidate for antifungal development.
Collapse
|
43
|
Zhang C, Du S, Cao L. Retracted Article: Long non-coding RNA KCNQ1OT1 promotes osteosarcoma progression by increasing β-catenin activity. RSC Adv 2018; 8:37581-37589. [PMID: 35558611 PMCID: PMC9089326 DOI: 10.1039/c8ra07209d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/07/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Long non-coding RNA KCNQ1OT1 has been associated with the development of different types of cancers. The present research investigated the role of KCNQ1OT1 in osteosarcoma. Methods: Expression level of KCNQ1OT1 in osteosarcoma and paired non-cancerous tissue specimens from 56 osteosarcoma patients and its association with patients' clinicopathological features was investigated. KCNQ1OT1 overexpression and knockdown in primary-cultured osteosarcoma cells was constructed by lentiviral transduction. Influence of KCNQ1OT1 overexpression or knockdown on osteosarcoma cell growth, apoptosis, migration, invasion, epithelial-to-mesenchymal transition and beta-catenin activation was investigated. Results: Expression of KCNQ1OT1 in osteosarcoma tissue specimens was significantly increased in comparison to that in adjacent counterparts. High expression of KCNQ1OT1 significantly associated with osteosarcoma progression and patients' decreased survival. Overexpression of KCNQ1OT1 significantly increased osteosarcoma cell growth, proliferation, migration, invasion, epithelial-to-mesenchymal transition and beta-catenin activation while reducing cell apoptosis in vitro, and KCNQ1OT1 knockdown showed opposite effects. Inhibition of beta-catenin/TCF activity by ICG-001 treatment significantly attenuated the promoting effect of KCNQ1OT1 overexpression on osteosarcoma cell malignancy described above. Conclusion: KCNQ1OT1 might be a potential prognostic factor in osteosarcoma. High expression of KCNQ1OT1 might promote osteosarcoma development by increasing the activation of WNT/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Changsheng Zhang
- Department of Minimally Invasive Spine Surgery, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital) No. 100 Yongping road Zhengzhou 450000 Henan China +86-0371-85965160
| | - Shengyang Du
- Department of Orthopaedics, The First People's Hospital of Xuzhou Quanshan 221000 Xuzhou Jiangsu China
| | - Lei Cao
- Department of Orthopaedics, The First People's Hospital of Xuzhou Quanshan 221000 Xuzhou Jiangsu China
| |
Collapse
|
44
|
Tao X, Yin L, Xu L, Peng J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 2018; 137:259-269. [DOI: 10.1016/j.phrs.2018.09.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023]
|
45
|
Wang W, Hu S, Chang J, Ruan H, Zhi W, Wang X, Shi Q, Wang Y, Yang Y. Down-Regulated microRNA-34a Expression as a Prognostic Marker for Poor Osteosarcoma in Mice: A Systematic Review and Meta-Analysis. J Cancer 2018; 9:4179-4186. [PMID: 30519318 PMCID: PMC6277615 DOI: 10.7150/jca.27483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: In children and adolescents, osteosarcomais the most common malignant bone tumor with a high mortality rate. New therapeutic strategies are urgent to be explored. Studies have proven that microRNAs (miRNAs) in malignant tumors often appear dysregulation, this provides a direction for exploring the new therapeutic strategies for cancers. The aim of this meta-analysis is to summarize and analyze whethermicroRNA-34a(miRNA-34a) could be a prognostic marker for osteosarcoma in mice. Methods: We searched PubMed, Web of Science, Embase, Wan Fang Database, China Knowledge Resource Integrated Database, VIP Database, and SinoMed since their initiation date to January 24, 2018. After screening based on inclusion and exclusion criteria, eight articles were included for the final analysis. Results: Our results showed that tumor volume and tumor weight were inhibited by restoring the down-regulated expression of miRNA-34a in the xenograft mouse models. Conclusions: Down-regulated miRNA-34a expression is a prognostic marker for poor osteosarcoma. We should be more committed to investigate the clinical significance of miRNA-34a in osteosarcoma patients.
Collapse
Affiliation(s)
- Wenyi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Hongfeng Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Wenlan Zhi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Xiaobo Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| |
Collapse
|
46
|
Dioscin ameliorates cardiac hypertrophy through inhibition of the MAPK and Akt/GSK3β/mTOR pathways. Life Sci 2018; 209:420-429. [DOI: 10.1016/j.lfs.2018.08.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
|