1
|
Giudice MG, Kanbar M, Poels J, Duquenne A, Wyns C. Long-term culture of human Sertoli cells from adult Klinefelter patients as a first step to develop new tools for unravelling the testicular physiopathology. Hum Reprod 2024; 39:2400-2410. [PMID: 39237101 DOI: 10.1093/humrep/deae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
STUDY QUESTION Are Sertoli cells (SCs) from adult Klinefelter men (47,XXY) capable of proliferating in vitro and maintaining their main phenotypical and functional characteristics as do SCs from adult 46,XY patients? SUMMARY ANSWER Isolated SCs from patients with Klinefelter syndrome (KS) can be expanded in vitro while maintaining their characteristics and a stable karyotype, similar to SCs from 46,XY patients. WHAT IS KNOWN ALREADY The mechanism leading to testicular tissue degeneration in KS is still unknown. A few recent studies highlight the main role played by SCs in the physiopathology of the disease, but new study models based on co-culture or testicular organoids are needed to further understand the SC's involvement in the mechanism of testicular degeneration and fibrosis, and to find therapeutical targets. KS SC expansion could be the first step towards developing such in vitro study models. SCs have been isolated from 46,XY men and expanded in vitro while maintaining the expression of phenotypical and functional markers, but propagation of SCs from KS men has not been achieved yet. STUDY DESIGN, SIZE, DURATION Testicular tissue was obtained during a testicular sperm extraction procedure for infertility treatment between 2019 and 2021 from three azoospermic adult KS (47,XXY) men (33±3.6 years old) and from three control patients (46,XY) (36±2 years old) presenting with obstructive azoospermia. SCs isolated from frozen-thawed tissue of KS and 46,XY patients were cultured for 60 days and compared. All patients signed an informed consent according to the ethical board approval of the study protocol. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular biopsies obtained from KS (n = 3) and 46,XY (n = 3) adult patients were slow-frozen. After tissue thawing SCs were isolated using a double-step enzymatic digestion and differential plating, and cultured for 60 days in DMEM medium containing FBS. Analyses were performed at different culture times (passages 5 (P5) and 10 (P10)). Quantification of cells using immunofluorescence (IF) for cell type-specific markers (Sox9, GATA4, ACTA2, INSL3, MAGEA4), SCs characterization using both IF and quantitative real-time PCR for GDNF, BMP4, AR and CLDN11 and cells karyotyping were performed. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate for the first time that a small population of human SCs isolated from frozen-thawed testis of adult KS patients can be expanded in vitro while retaining expression of characteristic markers of SCs and the 47,XXY karyotype, and exhibiting cell-specific functional proteins and gene expression (GDNF, BMP4, AR, and CLDN11) after 60 days in culture. At P10, 83.39 ± 4.2% of cultured cells from KS men and 85.34 ± 4.1% from 46,XY men expressed Sox9, and 88.8 ± 3.9% of KS cells versus 82.9 ± 3.2% of the control cells were positive for GATA4 without any differences between two groups; both Sox9 and GATA4 are typical SC markers. No differences were found between KS and 46,XY SCs in vitro in terms of cells expansion (exponential growth between P1 and P10 with an average cell count of 2.8±1.5×107 versus 3.8±1.2×107 respectively for the KS and control groups at P10). There was no significant statistical difference for functional proteins and genes expressions (GDNF, BMP4, AR, and CLDN11) neither between KS SCs and control SCs nor between P5 and P10. LIMITATIONS, REASONS FOR CAUTION The small number of donor samples is a limitation but it is due to limited availability of tissue for research in KS populations. Although no differences were observed in SCs function in the culture of isolated SCs after 60 days, the possibility of a SCs dysfunction needs to be investigated in more complex 3-dimensional models allowing the establishment of a proper cell organization and further analyses of cell functions and interactions during longer culture periods. WIDER IMPLICATIONS OF THE FINDINGS The demonstration of the possibility to propagate KS SCs in vitro could be useful to build new in vitro models for deciphering testicular cell interactions, determining deficient signalling pathways involved in impaired spermatogenesis, and identifying targets for infertility treatment in KS. As the cell numbers achieved in this study are higher than cell numbers used to develop testicular organoids, we may expect to be able to understand the behaviour and physiopathology of SCs in the disease during the long-term culture of these organoids. Such models could be further applied to understand other causes of deficiencies in seminiferous tubules. STUDY FUNDING/COMPETING INTEREST(S) M.G.G is funded by a grant from the Cliniques Universitaires Saint-Luc (FRC) for the research project on Klinefelter Syndrome Physiopathology. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER NCT05997706.
Collapse
Affiliation(s)
- Maria Grazia Giudice
- Pôle de recherche en Physiologie de la Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de recherche en Physiologie de la Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Armelle Duquenne
- Center for Human Genetic, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de recherche en Physiologie de la Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Lu Y, Qin M, He Q, Hua L, Qi X, Yang M, Guo Q, Liu X, Zhang Z, Xu F, Ding L, Wu Y, Zhang C, Zhai F, Liu Q, Li J, Yuan P, Shi X, Wang X, Zhao C, Lian Y, Li R, Wei Y, Yan L, Yuan P, Qiao J. How the extra X chromosome impairs the development of male fetal germ cells. Nature 2024; 635:960-968. [PMID: 39478217 DOI: 10.1038/s41586-024-08104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/24/2024] [Indexed: 11/29/2024]
Abstract
The dosage of X-linked genes is accurately regulated with the development of fetal germ cells (FGCs)1,2. How aberrant dosage of X-linked genes impairs FGC development in humans remains poorly understood. FGCs of patients with Klinefelter syndrome (KS), who have an extra X chromosome, provide natural models for addressing this issue3. Here we demonstrate that most human FGCs in KS are arrested at an early stage, characterized by the upregulation of genes related to pluripotency, the WNT pathway and the TGF-β pathway, along with the downregulation of genes involved in FGC differentiation. The limited KS FGCs that are capable of reaching the late stage remain relatively naive. X chromosomes are not inactivated and the dosage of X-linked genes is excessive in KS FGCs. X-linked genes dominate the differentially expressed genes and are enriched in critical biological processes associated with the developmental delay of KS FGCs. Moreover, aberrant interactions between Sertoli cells and FGCs disrupt the migration of late FGCs to the basement membrane in KS. Notably, inhibition of the TGF-β pathway improves the differentiation of KS FGCs. Our findings elucidate how the extra X chromosome impairs the development of male FGCs and reveal the initial molecular events preceding germ cell loss in KS.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qilong He
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lingyue Hua
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qianying Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xixi Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Fanqing Xu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ling Ding
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yixuan Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Cong Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Pengbo Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaoming Shi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xueju Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Cheng Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ying Lian
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Winge SB, Skakkebaek NE, Aksglaede L, Saritaş G, Rajpert-De Meyts E, Goossens E, Juul A, Almstrup K. X‑chromosome loss rescues Sertoli cell maturation and spermatogenesis in Klinefelter syndrome. Cell Death Dis 2024; 15:396. [PMID: 38839795 PMCID: PMC11153587 DOI: 10.1038/s41419-024-06792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Klinefelter syndrome (47,XXY) causes infertility with a testicular histology comprising two types of Sertoli cell-only tubules, representing mature and immature-like Sertoli cells, and occasionally focal spermatogenesis. Here, we show that the immature-like Sertoli cells highly expressed XIST and had two X-chromosomes, while the mature Sertoli cells lacked XIST expression and had only one X-chromosome. Sertoli cells supporting focal spermatogenesis also lacked XIST expression and the additional X-chromosome, while the spermatogonia expressed XIST despite having only one X-chromosome. XIST was expressed in Sertoli cells until puberty, where a gradual loss was observed. Our results suggest that a micro-mosaic loss of the additional X-chromosome is needed for Sertoli cells to mature and to allow focal spermatogenesis.
Collapse
Affiliation(s)
- Sofia B Winge
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark.
| | - Niels E Skakkebaek
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark
| | - Lise Aksglaede
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark
| | - Gülizar Saritaş
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark
| | - Ellen Goossens
- Research group Genetics, Reproduction and Development (GRAD), Biology of the Testis team, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Anders Juul
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, 2100, Denmark.
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
4
|
EL Nagar AG, Salem MMI, Amin AMS, Khalil MH, Ashour AF, Hegazy MM, Abdel-Shafy H. A Single-Step Genome-Wide Association Study for Semen Traits of Egyptian Buffalo Bulls. Animals (Basel) 2023; 13:3758. [PMID: 38136796 PMCID: PMC10740893 DOI: 10.3390/ani13243758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The present study aimed to contribute to the limited research on buffalo (Bubalus bubalis) semen traits by incorporating genomic data. A total of 8465 ejaculates were collected. The genotyping procedure was conducted using the Axiom® Buffalo Genotyping 90 K array designed by the Affymetrix Expert Design Program. After conducting a quality assessment, we utilized 67,282 SNPs genotyped in 192 animals. We identified several genomic loci explaining high genetic variance by employing single-step genomic evaluation. The aforementioned regions were located on buffalo chromosomes no. 3, 4, 6, 7, 14, 16, 20, 22, and the X-chromosome. The X-chromosome exhibited substantial influence, accounting for 4.18, 4.59, 5.16, 5.19, and 4.31% of the genomic variance for ejaculate volume, mass motility, livability, abnormality, and concentration, respectively. In the examined genomic regions, we identified five novel candidate genes linked to male fertility and spermatogenesis, four in the X-chromosome and one in chromosome no. 16. Additional extensive research with larger sample sizes and datasets is imperative to validate these findings and evaluate their applicability for genomic selection.
Collapse
Affiliation(s)
- Ayman G. EL Nagar
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Benha 13736, Egypt;
| | - Mohamed M. I. Salem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Amin M. S. Amin
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (A.M.S.A.); (A.F.A.); (M.M.H.)
| | - Maher H. Khalil
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Benha 13736, Egypt;
| | - Ayman F. Ashour
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (A.M.S.A.); (A.F.A.); (M.M.H.)
| | - Mohammed M. Hegazy
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (A.M.S.A.); (A.F.A.); (M.M.H.)
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, El-Gamma Street, Giza 12613, Egypt;
| |
Collapse
|
5
|
Liu H, Zhang Z, Gao Y, Lin H, Zhu Z, Zheng H, Ye W, Luo Z, Qing Z, Xiao X, Hu L, Zhou Y, Zhang X. Leydig cell metabolic disorder act as a new mechanism affecting for focal spermatogenesis in Klinefelter syndrome patients: a real world cross-sectional study base on the age. Front Endocrinol (Lausanne) 2023; 14:1266730. [PMID: 38027184 PMCID: PMC10650597 DOI: 10.3389/fendo.2023.1266730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Klinefelter's syndrome (KS) was once considered infertile due to congenital chromosomal abnormalities, but the presence of focal spermatozoa changed this. The key to predict and promote spermatogenesis is to find targets that regulate focal spermatogenesis. Objective To explore the trend of fertility changes in KS patients at different ages and identify potential therapeutic targets. Methods Bibliometric analysis was used to collect clinical research data on KS from the Web of Science Core Collection (WoSCC) from 1992 to 2022. A cross-sectional study was conducted on 75 KS patients who underwent microscopic testicular sperm extraction (mTESE) from 2017 to 2022 in the real world. The reproductive hormones, testicular histopathology, androgen receptors, insulin-like factor 3 (INSL3) receptors and sperm recovery rate (SRR) were analyzed. Results Male infertility, dysplasia, Sertoli cells, Leydig cells, testosterone and spermatogenesis were the research focuses related to KS. Luteinizing hormone (LH), testosterone, and INSL3 were evaluation indicators of Leydig cell function that fluctuate with age. Testosterone and LH peaked at ages 13-19 and 30-45, while INSL3 only peaked at ages 13-19. 27 patients (27/75) recovered sperm through mTESE and experienced SRR peaks at the ages of 20, 28, 34, and 37. The SRR of fibrosis patients was 46.15%, fatty degeneration was 7.14%, and melanosis was 40.00%. The INSL3 and androgen receptors were highly expressed and roughly balanced in focal spermatogenesis. Conclusion Abnormal metabolism of Leydig cells led to imbalanced expression of INSL3 and androgen receptors, which might be a potential target for spermatogenesis in KS.
Collapse
Affiliation(s)
- Huang Liu
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhenhui Zhang
- Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Yong Gao
- Department of Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Objective and Gynecological Diseases, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Hai Lin
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhiyong Zhu
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Houbin Zheng
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Wenjing Ye
- Reproductive Medicine Center, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zefang Luo
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Zhaohui Qing
- Department of Anesthesiology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Xiaolan Xiao
- Department of Anesthesiology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Lei Hu
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yu Zhou
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Xinzong Zhang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| |
Collapse
|
6
|
Tallaksen HBL, Johannsen EB, Just J, Viuff MH, Gravholt CH, Skakkebæk A. The multi-omic landscape of sex chromosome abnormalities: current status and future directions. Endocr Connect 2023; 12:e230011. [PMID: 37399516 PMCID: PMC10448593 DOI: 10.1530/ec-23-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.
Collapse
Affiliation(s)
- Helene Bandsholm Leere Tallaksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Juul A, Gravholt CH, De Vos M, Koledova E, Cools M. Individuals with numerical and structural variations of sex chromosomes: interdisciplinary management with focus on fertility potential. Front Endocrinol (Lausanne) 2023; 14:1160884. [PMID: 37214245 PMCID: PMC10197804 DOI: 10.3389/fendo.2023.1160884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Diagnosis and management of individuals who have differences of sex development (DSD) due to numerical or structural variations of sex chromosomes (NSVSC) remains challenging. Girls who have Turner syndrome (45X) may present with varying phenotypic features, from classical/severe to minor, and some remain undiagnosed. Boys and girls who have 45,X/46,XY chromosomal mosaicism may have Turner syndrome-like features and short stature; therefore, unexplained short stature during childhood requires karyotype analysis in both sexes, particularly if characteristic features or atypical genitalia are present. Many individuals with Klinefelter syndrome (47XXY) remain undiagnosed or are only diagnosed as adults due to fertility problems. Newborn screening by heel prick tests could potentially identify sex chromosome variations but would have ethical and financial implications, and in-depth cost-benefit analyses are needed before nationwide screening can be introduced. Most individuals who have NSVSC have lifelong co-morbidities and healthcare should be holistic, personalized and centralized, with a focus on information, psychosocial support and shared decision-making. Fertility potential should be assessed individually and discussed at an appropriate age. Oocyte or ovarian tissue cryopreservation is possible in some women who have Turner syndrome and live births have been reported following assisted reproductive technology (ART). Testicular sperm cell extraction (TESE) is possible in some men who have 45,X/46,XY mosaicism, but there is no established protocol and no reported fathering of children. Some men with Klinefelter syndrome can now father a child following TESE and ART, with multiple reports of healthy live births. Children who have NSVSC, their parents and DSD team members need to address possibilities and ethical questions relating to potential fertility preservation, with guidelines and international studies still needed.
Collapse
Affiliation(s)
- Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus H. Gravholt
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michel De Vos
- Brussels IVF, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ekaterina Koledova
- Global Medical Affairs Cardiometabolic and Endocrinology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Pediatric Endocrinology Service, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Dong F, Ping P, Ma Y, Chen XF. Application of single-cell RNA sequencing on human testicular samples: a comprehensive review. Int J Biol Sci 2023; 19:2167-2197. [PMID: 37151874 PMCID: PMC10158017 DOI: 10.7150/ijbs.82191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
So far there has been no comprehensive review using systematic literature search strategies to show the application of single-cell RNA sequencing (scRNA-seq) in the human testis of the whole life cycle (from embryos to aging males). Here, we summarized the application of scRNA-seq analyses on various human testicular biological samples. A systematic search was conducted in PubMed and Gene Expression Omnibus (GEO), focusing on English researches published after 2009. Articles related to GEO data-series were also retrieved in PubMed or BioRxiv. 81 full-length studies were finally included in the review. ScRNA-seq has been widely used on different human testicular samples with various library strategies, and new cell subtypes such as State 0 spermatogonial stem cells (SSC) and stage_a/b/c Sertoli cells (SC) were identified. For the development of normal testes, scRNA-seq-based evidence showed dynamic transcriptional changes of both germ cells and somatic cells from embryos to adults. And dysregulated metabolic signaling or hedgehog signaling were revealed by scRNA-seq in aged SC or Leydig cells (LC), respectively. For infertile males, scRNA-seq studies revealed profound changes of testes, such as the increased proportion of immature SC/LC of Klinefelter syndrome, the somatic immaturity and altered germline autophagy of patients with non-obstructive azoospermia, and the repressed differentiation of SSC in trans-females receiving testosterone inhibition therapy. Besides, the re-analyzing of public scRNA-seq data made further discoveries such as the potential vulnerability of testicular SARS-CoV-2 infection, and both evolutionary conservatism and divergence among species. ScRNA-seq analyses would unveil mechanisms of testes' development and changes so as to help developing novel treatments for male infertility.
Collapse
Affiliation(s)
- Fan Dong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Ping
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
9
|
Miao N, Zeng Z, Lee T, Guo Q, Zheng W, Cai W, Chen W, Wang J, Sun T. Integrative epigenome profiling of 47XXY provides insights into whole genomic DNA hypermethylation and active chromatin accessibility. Front Mol Biosci 2023; 10:1128739. [PMID: 37051325 PMCID: PMC10083376 DOI: 10.3389/fmolb.2023.1128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Klinefelter syndrome (KS, 47XXY) is a disorder characterized by sex chromosomal aneuploidy, which may lead to changes in epigenetic regulations of gene expression. To define epigenetic architectures in 47XXY, we annotated DNA methylation in euploid males (46XY) and females (46XX), and 47XXY individuals using whole genome bisulfite sequencing (WGBS) and integrated chromatin accessbilty, and detected abnormal hypermethylation in 47XXY. Furthermore, we detected altered chromatin accessibility in 47XXY, in particular in chromosome X, using Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) in cultured amniotic cells. Our results construct the whole genome-wide DNA methylation map in 47XXY, and provide new insights into the early epigenomic dysregulation resulting from an extra chromosome X in 47XXY.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wenwei Zheng
- Quanzhou Women and Children’s Hospital, Quanzhou, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- *Correspondence: Tao Sun,
| |
Collapse
|
10
|
The Klinefelter Syndrome and Testicular Sperm Retrieval Outcomes. Genes (Basel) 2023; 14:genes14030647. [PMID: 36980920 PMCID: PMC10048758 DOI: 10.3390/genes14030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klinefelter syndrome (KS), caused by the presence of an extra X chromosome, is the most prevalent chromosomal sexual anomaly, with an estimated incidence of 1:500/1000 per male live birth (karyotype 47,XXY). High stature, tiny testicles, small penis, gynecomastia, feminine body proportions and hair, visceral obesity, and testicular failure are all symptoms of KS. Endocrine (osteoporosis, obesity, diabetes), musculoskeletal, cardiovascular, autoimmune disorders, cancer, neurocognitive disabilities, and infertility are also outcomes of KS. Causal theories are discussed in addition to hormonal characteristics and testicular histology. The retrieval of spermatozoa from the testicles for subsequent use in assisted reproduction treatments is discussed in the final sections. Despite testicular atrophy, reproductive treatments allow excellent results, with rates of 40–60% of spermatozoa recovery, 60% of clinical pregnancy, and 50% of newborns. This is followed by a review on the predictive factors for successful sperm retrieval. The risks of passing on the genetic defect to children are also discussed. Although the risk is low (0.63%) when compared to the general population (0.5–1%), patients should be informed about embryo selection through pre-implantation genetic testing (avoids clinical termination of pregnancy). Finally, readers are directed to a number of reviews where they can enhance their understanding of comprehensive diagnosis, clinical care, and fertility preservation.
Collapse
|
11
|
Bradshaw AW, Deebel NA, Xu MC, Kogan S, Atala A, Sadri-Ardekani H. Examining potential mechanisms of testicular fibrosis in Klinefelter Syndrome: A review of current understanding. Andrology 2023; 11:435-443. [PMID: 36252136 DOI: 10.1111/andr.13327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Men with Klinefelter Syndrome develop some degree of seminiferous tubule degeneration, hyalinization, and fibrosis by adulthood. However, the pathophysiology surrounding testicular fibrosis in Klinefelter Syndrome patients remains incompletely understood. OBJECTIVES To perform a systematic review of literature studying the mechanisms of fibrosis initiation or propagation in Klinefelter Syndrome testes. MATERIALS/METHODS PubMed was searched systematically for articles specific to Klinefelter Syndrome and the process of fibrosis. Articles that did not contain original data or specifically addressed the target material were excluded. Additional references were extracted when pertinent from the reference lists of included studies. RESULTS Primary search yielded 139 articles for abstract review, which was narrowed to 16 for full-text review. Following full-text review, eight contained original data and met topic criteria, with one paper added from reference review for a total of nine papers. DISCUSSION The date range for included papers was 1992-2022. The proposed mechanisms of fibrosis mainly were centered around the impact of altered Sertoli cells on germ cells, the hormonal impact on Leydig cells, the inflammation mediated by mast cells, or the fibrous extracellular matrix deposition by peritubular myoid cells. Additionally, discussions of the role of the altered microvasculature and the specific proteins involved in the blood-testis barrier or the seminiferous tubule architecture are reviewed. Recent papers have incorporated advanced sequencing and offer future directions for targeted gene expression analysis. Still, much of the published data consists solely of immunohistological assessment by age range, creating difficulties in extrapolating causality. CONCLUSION The specific initiating factors of fibrosis of the seminiferous tubules and the propagation mechanisms unique to Klinefelter Syndrome remain incompletely understood with a relative paucity of data. Nonetheless, academic interest is increasing in this field as it may further elucidate the pathophysiology behind Klinefelter syndrome.
Collapse
Affiliation(s)
- Aaron W Bradshaw
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas A Deebel
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark C Xu
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stanley Kogan
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Gravholt CH, Ferlin A, Gromoll J, Juul A, Raznahan A, van Rijn S, Rogol AD, Skakkebæk A, Tartaglia N, Swaab H. New developments and future trajectories in supernumerary sex chromosome abnormalities: a summary of the 2022 3rd International Workshop on Klinefelter Syndrome, Trisomy X, and XYY. Endocr Connect 2023; 12:e220500. [PMID: 36598290 PMCID: PMC9986408 DOI: 10.1530/ec-22-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The 3rd International Workshop on Klinefelter Syndrome, Trisomy X, and 47,XYY syndrome was held in Leiden, the Netherlands, on September 12-14, 2022. Here, we review new data presented at the workshop and discuss scientific and clinical trajectories. We focus on shortcomings in knowledge and therefore point out future areas for research. We focus on the genetics and genomics of supernumerary sex chromosome syndromes with new data being presented. Most knowledge centre specifically on Klinefelter syndrome, where aspects on testosterone deficiency and the relation to bone, muscle and fat were discussed, as was infertility and the treatment thereof. Both trisomy X and 47,XYY syndrome are frequently affected by infertility. Transitioning of males with Klinefelter syndrome was addressed, as this seemingly simple process in practise is often difficult. It is now realized that neurocognitive changes are pervasive in all supernumerary sex chromosome syndromes, which were extensively discussed. New intervention projects were also described, and exciting new data concerning these were presented. Advocacy organizations were present, describing the enormous burden carried by parents when having to explain their child's specific syndrome to most professionals whenever in contact with health care and education systems. It was also pointed out that most countries do not have health care systems that diagnose patients with supernumerary sex chromosome syndromes, thus pinpointing a clear deficiency in the current genetic testing and care models. At the end of the workshop, a roadmap towards the development of new international clinical care guidelines for Klinefelter syndrome was decided.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Joerg Gromoll
- Centre of Reproductive Medicine and Andrology, Münster, Germany
| | - Anders Juul
- Department of Growth and Reproduction Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophie van Rijn
- Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands
| | - Alan D Rogol
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Nicole Tartaglia
- Department of Pediatrics, Developmental Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hanna Swaab
- Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands
| |
Collapse
|
13
|
Januś D, Wójcik M, Starzyk JB. Testicular microlithiasis in paediatric patients with Klinefelter syndrome from infancy till adolescence: early start of degenerative process in the testes-preliminary results. Eur J Pediatr 2023; 182:225-235. [PMID: 36282322 PMCID: PMC9829623 DOI: 10.1007/s00431-022-04663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 01/21/2023]
Abstract
UNLABELLED To present the results of testicular ultrasonography supported by clinical and hormonal aspects in paediatric patients with Klinefelter syndrome (KS). Prospective analysis of medical files of 20 patients diagnosed with KS between 2016 and 2022. Assessed data included analysis of causes of referral, ultrasound, and clinical characterisation with hormonal evaluation of serum FSH, LH, testosterone, inhibin B, and anti-Müllerian hormone. Non-mosaic Klinefelter syndrome (47, XXY) was diagnosed in 65% of cases (13/20) by the geneticist (including 7 cases prenatally), in 25% (5/20) by the endocrinologist and in 10% (2/20) by the hematologist. Ultrasound assessment revealed bilateral testicular microlithiasis (TM) in all patients. The youngest KS patient with TM was 3 months old. TM patterns have not changed during follow-ups of up to 6 years in any of the patients. In all KS patients markedly reduced echogenicity and in pubertal KS patients, also irregular echostructure of the testes was observed. The hormonal patterns observed in the study group were typical for those already described in KS. Sertoli and Leydig cell function was intact in prepubertal patients and deteriorated after the start of puberty. CONCLUSION Although the degenerative process in the testicular tissue starts very early in the testes in KS and is reflected in morphological changes seen in ultrasonography, Sertoli and Leydig cell hormonal function is normal in prepubertal KS patients. WHAT IS KNOWN • So far, normal Leydig and Sertoli cell function was observed in infants and prepubertal KS patients. WHAT IS NEW • The morphological changes in the testes in KS may already be seen in early infancy.
Collapse
Affiliation(s)
- Dominika Januś
- Department of Paediatric and Adolescent Endocrinology, Chair of Paediatrics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka St. 265, 30-663, Krakow, Poland. .,Department of Paediatric and Adolescent Endocrinology, University Children's Hospital, Krakow, Poland.
| | - Małgorzata Wójcik
- Department of Paediatric and Adolescent Endocrinology, Chair of Paediatrics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka St. 265, 30-663 Krakow, Poland ,Department of Paediatric and Adolescent Endocrinology, University Children’s Hospital, Krakow, Poland
| | - Jerzy B. Starzyk
- Department of Paediatric and Adolescent Endocrinology, Chair of Paediatrics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka St. 265, 30-663 Krakow, Poland ,Department of Paediatric and Adolescent Endocrinology, University Children’s Hospital, Krakow, Poland
| |
Collapse
|
14
|
Transcriptomic differences between fibrotic and non-fibrotic testicular tissue reveal possible key players in Klinefelter syndrome-related testicular fibrosis. Sci Rep 2022; 12:21518. [PMID: 36513788 PMCID: PMC9748020 DOI: 10.1038/s41598-022-26011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Klinefelter syndrome (KS; 47,XXY) affects 1-2 in 1000 males. Most men with KS suffer from an early germ cell loss and testicular fibrosis from puberty onwards. Mechanisms responsible for these processes remain unknown. Previous genomics studies on testis tissue from men with KS focused on germ cell loss, while a transcriptomic analysis focused on testicular fibrosis has not yet been performed. This study aimed to identify factors involved in the fibrotic remodelling of KS testes by analysing the transcriptome of fibrotic and non-fibrotic testicular tissue. RNA sequencing was performed to compare the genes expressed in testicular samples with (KS and testis atrophy) and without (Sertoli cell-only syndrome and fertile controls) fibrosis (n = 5, each). Additionally, differentially expressed genes (DEGs) between KS and testis atrophy samples were studied to reveal KS-specific fibrotic genes. DEGs were considered significant when p < 0.01 and log2FC > 2. Next, downstream analyses (GO and KEGG) were performed. Lastly, RNA in situ hybridization was performed to validate the results. The first analysis (fibrotic vs non-fibrotic) resulted in 734 significant DEGs (167 up- and 567 down-regulated). Genes involved in the extracellular structure organization (e.g. VCAM1) were found up-regulated. KEGG analysis showed an up-regulation of genes involved in the TGF-β pathway. The KS vs testis atrophy analysis resulted in 539 significant DEGs (59 up- and 480 down-regulated). Chronic inflammatory response genes were found up-regulated. The overlap of X-linked DEGs from the two analyses revealed three genes: matrix-remodelling associated 5 (MXRA5), doublecortin (DCX) and variable charge X-Linked 3B (VCX3B). RNA in situ hybridization showed an overexpression of VCAM1, MXRA5 and DCX within the fibrotic group compared with the non-fibrotic group. To summarize, this study revealed DEGs between fibrotic and non-fibrotic testis tissue, including VCAM1. In addition, X-linked fibrotic genes were revealed, e.g. MXRA5, DCX and VCX3B. Their potential role in KS-related testicular fibrosis needs further study.
Collapse
|
15
|
Kyrgiafini MA, Sarafidou T, Mamuris Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. BIOLOGY 2022; 11:biology11101510. [PMID: 36290414 PMCID: PMC9598197 DOI: 10.3390/biology11101510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Male infertility is a complex disorder affecting many couples worldwide. Long noncoding RNAs (lncRNAs) regulate important cellular processes; however, a comprehensive understanding of their role in male infertility is limited. This systematic review investigates the differential expressions of lncRNAs in male infertility or variations in lncRNA regions associated with it. The PRISMA guidelines were used to search Pubmed and Web of Science (1 June 2022). Inclusion criteria were human participants, patients diagnosed with male infertility, and English language speakers. We also performed an in silico analysis investigating lncRNAs that are reported in many subtypes of male infertility. A total of 625 articles were found, and after the screening and eligibility stages, 20 studies were included in the final sample. Many lncRNAs are deregulated in male infertility, and interactions between lncRNAs and miRNAs play an important role. However, there is a knowledge gap regarding the impact of variants found in lncRNA regions. Furthermore, eight lncRNAs were identified as differentially expressed in many subtypes of male infertility. After in silico analysis, gene ontology (GO) and KEGG enrichment analysis of the genes targeted by them revealed their association with bladder and prostate cancer. However, pathways involved in general in tumorigenesis and cancer development of all types, such as p53 pathways, apoptosis, and cell death, were also enriched, indicating a link between cancer and male infertility. This evidence, however, is preliminary. Future research is needed to explore the exact mechanism of action of the identified lncRNAs and investigate the association between male infertility and cancer.
Collapse
|
16
|
He H, Huang T, Yu F, Chen K, Guo S, Zhang L, Tang X, Yuan X, Liu J, Zhou Y. KIF2C affects sperm cell differentiation in patients with Klinefelter syndrome, as revealed by RNA-Seq and scRNA-Seq data. FEBS Open Bio 2022; 12:1465-1474. [PMID: 35622500 PMCID: PMC9340869 DOI: 10.1002/2211-5463.13446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
Klinefelter syndrome (KS) is a leading contributor to male infertility and is characterised by complex and diverse clinical features; however, genetic changes in the KS transcriptome remain largely unknown. We therefore used transcriptomic and single‐cell RNA sequencing (scRNA‐seq) datasets from KS versus normal populations through the Gene Expression Omnibus (GEO) database to identify gene biomarkers associated with the occurrence of KS. We identified a total of 700 differentially expressed genes (DEGs) and completed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), enrichment pathway analysis and protein‐protein interaction (PPI) network analysis. A total of four unreported KS‐related hub genes (KIF2C, MRPS2, RPS15 and TSFM) were identified. Validation of the single‐cell sequencing dataset showed that only KIF2C and RPS15 were expressed in spermatocytes and that they were differentially expressed in sperm cells. Further construction of the developmental trajectories of these two genes in sperm cells showed that the KIF2C gene showed an upward trend throughout the differentiation and development of sperm cells. In conclusion, we report here that KIF2C may be closely related to the differentiation and development of sperm cells in KS patients, which is important for revealing the molecular mechanism of KS and conducting further studies.
Collapse
Affiliation(s)
- Haihong He
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Tingting Huang
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Fan Yu
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Keyan Chen
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Shixing Guo
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Lijun Zhang
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Xi Tang
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Xinhua Yuan
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Jiao Liu
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| | - Yiwen Zhou
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, 518108, China
| |
Collapse
|
17
|
Tang XJ, Xiao QH, Wang XL, He Y, Tian YN, Xia BT, Guo Y, Huang JL, Duan P, Tan Y. Single-Cell Transcriptomics-Based Study of Transcriptional Regulatory Features in the Non-Obstructive Azoospermia Testis. Front Genet 2022; 13:875762. [PMID: 35669193 PMCID: PMC9163961 DOI: 10.3389/fgene.2022.875762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is one of the most important causes of male infertility. Although many congenital factors have been identified, the aetiology in the majority of idiopathic NOA (iNOA) cases remains unknown. Herein, using single-cell RNA-Seq data sets (GSE149512) from the Gene Expression Omnibus (GEO) database, we constructed transcriptional regulatory networks (TRNs) to explain the mutual regulatory relationship and the causal relationship between transcription factors (TFs). We defined 10 testicular cell types by their marker genes and found that the proportion of Leydig cells (LCs) and macrophages (tMΦ) was significantly increased in iNOA testis. We identified specific TFs including LHX9, KLF8, KLF4, ARID5B and RXRG in iNOA LCs. In addition, we found specific TFs in iNOA tMΦ such as POU2F2, SPIB IRF5, CEBPA, ELK4 and KLF6. All these identified TFs are strongly engaged in cellular fate, function and homeostasis of the microenvironment. Changes in the activity of the above-mentioned TFs might affect the function of LCs and tMΦ and ultimately cause spermatogenesis failure. This study illustrate that these TFs play important regulatory roles in the occurrence and development of NOA.
Collapse
Affiliation(s)
- Xiao-juan Tang
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Qiao-hong Xiao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xue-lin Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Training Basement of Jinzhou Medicical University, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Ya-nan Tian
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Training Basement of Jinzhou Medicical University, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Bin-tong Xia
- Department of Urology Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yang Guo
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-long Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan Tan
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
18
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
19
|
Astro V, Alowaysi M, Fiacco E, Saera-Vila A, Cardona-Londoño KJ, Aiese Cigliano R, Adamo A. Pseudoautosomal Region 1 Overdosage Affects the Global Transcriptome in iPSCs From Patients With Klinefelter Syndrome and High-Grade X Chromosome Aneuploidies. Front Cell Dev Biol 2022; 9:801597. [PMID: 35186953 PMCID: PMC8850648 DOI: 10.3389/fcell.2021.801597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/28/2021] [Indexed: 01/19/2023] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by a 47,XXY karyotype. Less frequently, higher grade sex chromosome aneuploidies (HGAs) can also occur. Here, using a paradigmatic cohort of KS and HGA induced pluripotent stem cells (iPSCs) carrying 49,XXXXY, 48,XXXY, and 47,XXY karyotypes, we identified the genes within the pseudoautosomal region 1 (PAR1) as the most susceptible to dosage-dependent transcriptional dysregulation and therefore potentially responsible for the progressively worsening phenotype in higher grade X aneuploidies. By contrast, the biallelically expressed non-PAR escape genes displayed high interclonal and interpatient variability in iPSCs and differentiated derivatives, suggesting that these genes could be associated with variable KS traits. By interrogating KS and HGA iPSCs at the single-cell resolution we showed that PAR1 and non-PAR escape genes are not only resilient to the X-inactive specific transcript (XIST)-mediated inactivation but also that their transcriptional regulation is disjointed from the absolute XIST expression level. Finally, we explored the transcriptional effects of X chromosome overdosage on autosomes and identified the nuclear respiratory factor 1 (NRF1) as a key regulator of the zinc finger protein X-linked (ZFX). Our study provides the first evidence of an X-dosage-sensitive autosomal transcription factor regulating an X-linked gene in low- and high-grade X aneuploidies.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maryam Alowaysi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elisabetta Fiacco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Kelly J. Cardona-Londoño
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Antonio Adamo,
| |
Collapse
|
20
|
Mahyari E, Guo J, Lima AC, Lewinsohn DP, Stendahl AM, Vigh-Conrad KA, Nie X, Nagirnaja L, Rockweiler NB, Carrell DT, Hotaling JM, Aston KI, Conrad DF. Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. Am J Hum Genet 2021; 108:1924-1945. [PMID: 34626582 DOI: 10.1016/j.ajhg.2021.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
Klinefelter syndrome (KS), also known as 47, XXY, is characterized by a distinct set of physiological abnormalities, commonly including infertility. The molecular basis for Klinefelter-related infertility is still unclear, largely because of the cellular complexity of the testis and the intricate endocrine and paracrine signaling that regulates spermatogenesis. Here, we demonstrate an analysis framework for dissecting human testis pathology that uses comparative analysis of single-cell RNA-sequencing data from the biopsies of 12 human donors. By comparing donors from a range of ages and forms of infertility, we generate gene expression signatures that characterize normal testicular function and distinguish clinically distinct forms of male infertility. Unexpectedly, we identified a subpopulation of Sertoli cells within multiple individuals with KS that lack transcription from the XIST locus, and the consequence of this is increased X-linked gene expression compared to all other KS cell populations. By systematic assessment of known cell signaling pathways, we identify 72 pathways potentially active in testis, dozens of which appear upregulated in KS. Altogether our data support a model of pathogenic changes in interstitial cells cascading from loss of X inactivation in pubertal Sertoli cells and nominate dosage-sensitive factors secreted by Sertoli cells that may contribute to the process. Our findings demonstrate the value of comparative patient analysis in mapping genetic mechanisms of disease and identify an epigenetic phenomenon in KS Sertoli cells that may prove important for understanding causes of infertility and sex chromosome evolution.
Collapse
|
21
|
Reynoso S, Castillo V, Katkar GD, Lopez-Sanchez I, Taheri S, Espinoza C, Rohena C, Sahoo D, Gagneux P, Ghosh P. GIV/Girdin, a non-receptor modulator for Gαi/s, regulates spatiotemporal signaling during sperm capacitation and is required for male fertility. eLife 2021; 10:69160. [PMID: 34409938 PMCID: PMC8376251 DOI: 10.7554/elife.69160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.
Collapse
Affiliation(s)
- Sequoyah Reynoso
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States
| | - Celia Espinoza
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Cristina Rohena
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, United States
| | - Pascal Gagneux
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Veterans Affairs Medical Center, Washington DC, United States
| |
Collapse
|
22
|
Shepherd S, Oates R. At what age should we attempt to retrieve sperm from males with Klinefelter syndrome. Transl Androl Urol 2021; 10:1432-1441. [PMID: 33850778 PMCID: PMC8039581 DOI: 10.21037/tau-19-858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Klinefelter syndrome (KS) is a common disorder and almost every clinician in almost every sub-specialty of medicine will knowingly or unwittingly treat boys or men with a 47,XXY chromosomal constitution. Although there are numerous aspects of KS worthy of discussion, this contribution will focus specifically on the controversial, and as yet unresolved, issue of whether it is advantageous to harvest testis tissue from peri-pubertal or adolescent boys with KS in a heroic effort to preserve that child’s chances of reproduction in his future adult life. What would be the rationale for that, how does the biology of spermatogenesis in the Klinefelter testis impact that decision, and what does the data show? The answer, assembled from a selection of seemingly disparate sources and directions, appears to be “No”. We do not have to advocate for an aggressive approach, we do not have to preemptively preserve future fertility. We can justifiably wait until adulthood with equivalent chances of success.
Collapse
Affiliation(s)
- Shanta Shepherd
- Department of Urology, Boston University School of Medicine, Boston, MA, USA
| | - Robert Oates
- Department of Urology, Boston University School of Medicine, Boston, MA, USA.,Department of Urology, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
23
|
Zhou X, He J, Chen J, Cui Y, Ou Z, Zu X, Liu N. Silencing of MEG3 attenuated the role of lipopolysaccharides by modulating the miR-93-5p/PTEN pathway in Leydig cells. Reprod Biol Endocrinol 2021; 19:33. [PMID: 33639974 PMCID: PMC7913434 DOI: 10.1186/s12958-021-00712-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leydig cells reflect the activation of inflammation, decrease of androgen production, inhibition of cell growth and promotion of cell apoptosis under orchitis. Maternally expressed gene 3 (MEG3) exerts a crucial role in various human diseases, but under orchitis, the role and underlying molecular mechanism of MEG3 in Leydig cells remain unclear. METHODS Lipofectamine 2000 was used for the cell transfections. qPCR and western blots assay were applied to assess the gene expression. ELISA assay was used to measure the TNFα, IL6 and testosterone secretion. CCK8 and EdU assay was employ to test the cell viability and proliferation respectively. Luciferase reporter and RIP assay were introduced to detect the binding of miR-93-5p with MEG3 and PTEN. RESULTS Lipopolysaccharides (LPS) induced TNFα and IL6 secretion, lowered testosterone production, inhibited cell viability and proliferation, and induced cell apoptosis in Leydig cells. MEG3 was upregulated in Leydig cells treated with LPS and that knockdown of MEG3 inhibited the role of LPS in Leydig cells. MEG3 absorbed miR-93-5p and that suppression of miR-93-5p restored the role of silenced MEG3 in Leydig cells under LPS treatment. miR-93-5p inhibited PTEN expression and that over-expressed PTEN alleviated the effect of miR-93-5p in Leydig cells treated with LPS. LPS activated the MEG3/miR-93-5p/PTEN signalling pathway in Leydig cells. CONCLUSIONS This study revealed that MEG3 serves as a molecular sponge to absorb miR-93-5p, thus leading to elevation of PTEN expression in Leydig cells under LPS treatment, offering a theoretical basis on which to establish potential new treatment strategies for orchitis.
Collapse
Affiliation(s)
- Xu Zhou
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jingliang He
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Nenghui Liu
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Cannarella R, Salemi M, Condorelli RA, Cimino L, Giurato G, Marchese G, Cordella A, Romano C, La Vignera S, Calogero AE. SOX13 gene downregulation in peripheral blood mononuclear cells of patients with Klinefelter syndrome. Asian J Androl 2021; 23:157-162. [PMID: 33109779 PMCID: PMC7991811 DOI: 10.4103/aja.aja_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Klinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 diabetes mellitus (DM) and primary biliary cirrhosis. Sox13 expression has never been investigated in patients with KS. In this age-matched, case-control study performed on ten patients with KS and ten controls, we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with KS. However, the role of Sox13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients with KS deserves to be further explored.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Giorgio Giurato
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Angela Cordella
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Corrado Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
25
|
Skakkebaek A, Viuff M, Nielsen MM, Gravholt CH. Epigenetics and genomics in Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:216-225. [PMID: 32484281 DOI: 10.1002/ajmg.c.31802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Since the first description of Klinefelter syndrome (KS) was published in 1942 in The Journal of Clinical Endocrinology, large inter-individual variability in the phenotypic presentation has been demonstrated. However, our understanding of the global impact of the additional X chromosome on the genome remains an enigma. Evidence from the existing literature of KS indicates that not just one single genetic mechanism can explain the phenotype and the variable expressivity, but several mechanisms may be at play concurrently. In this review, we describe different genetic mechanisms and recent advances in the understanding of the genome, epigenome, and transcriptome of KS and the link to the phenotype and clinical heterogeneity. Future studies are needed to unite clinical data, genomic data, and basic research attempting to understand the genetics behind KS. Unraveling the genetics of KS will be of clinical relevance as it may enable the use of polygenic risk scores to predict future disease susceptibility and enable clinical risk stratification of KS patients in the future.
Collapse
Affiliation(s)
- Anne Skakkebaek
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Morten M Nielsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
26
|
Winge SB, Soraggi S, Schierup MH, Rajpert-De Meyts E, Almstrup K. Integration and reanalysis of transcriptomics and methylomics data derived from blood and testis tissue of men with 47,XXY Klinefelter syndrome indicates the primary involvement of Sertoli cells in the testicular pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:239-255. [PMID: 32449318 DOI: 10.1002/ajmg.c.31793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Klinefelter syndrome (KS; 47,XXY) is the most common sex chromosomal anomaly and causes a multitude of symptoms. Often the most noticeable symptom is infertility caused by azoospermia with testicular histology showing hyalinization of tubules, germ cells loss, and Leydig cell hyperplasia. The germ cell loss begins early in life leading to partial hyalinization of the testis at puberty, but the mechanistic drivers behind this remain poorly understood. In this systematic review, we summarize the current knowledge on developmental changes in the cellularity of KS gonads supplemented by a comparative analysis of the fetal and adult gonadal transcriptome, and blood transcriptome and methylome of men with KS. We identified a high fraction of upregulated genes that escape X-chromosome inactivation, thus supporting previous hypotheses that these are the main drivers of the testicular phenotype in KS. Enrichment analysis showed overrepresentation of genes from the X- and Y-chromosome and testicular transcription factors. Furthermore, by re-evaluation of recent single cell RNA-sequencing data originating from adult KS testis, we found novel evidence that the Sertoli cell is the most affected cell type. Our results are consistent with disturbed cross-talk between somatic and germ cells in the KS testis, and with X-escapee genes acting as mediators.
Collapse
Affiliation(s)
- Sofia B Winge
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Samuele Soraggi
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Willems M, Gies I, Van Saen D. Germ cell loss in Klinefelter syndrome: When and why? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:356-370. [PMID: 32412180 DOI: 10.1002/ajmg.c.31787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
Klinefelter syndrome (KS) is a quite common disorder with an incidence of 1-2 in 1,000 new-born males. Most patients are diagnosed in the light of a clinical checkup when consulting a fertility clinic with an unfulfilled child wish. Infertility in KS patients is caused by a massive germ cell loss, leading to azoospermia in more than 90% of the adult patients. Most seminiferous tubules in the adult KS testis are degenerated or hyalinized and testicular fibrosis can be observed, starting from puberty. However, focal spermatogenesis can be found in the testis of some patients. This offers the opportunity to extract spermatozoa from the testis by testicular sperm extraction (TESE). Nevertheless, TESE is only successful in about half of the KS adults seeking to father children. The reason for the germ cell loss remains unclear. To date, it is still debated whether the testicular tissue changes and the germ cell loss seen in KS is directly caused by an altered X-linked gene expression, the altered somatic environment, or a deficiency in the germ cells. In this review, we provide an overview of the current knowledge about the germ cell loss in KS patients.
Collapse
Affiliation(s)
- Margo Willems
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Inge Gies
- Department of Pediatrics, Division of Pediatric Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Dorien Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
28
|
Van Saen D, Vloeberghs V, Gies I, De Schepper J, Tournaye H, Goossens E. Characterization of the stem cell niche components within the seminiferous tubules in testicular biopsies of Klinefelter patients. Fertil Steril 2020; 113:1183-1195.e3. [PMID: 32418646 DOI: 10.1016/j.fertnstert.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize the tubular environment in testicular biopsy tissues from patients with Klinefelter syndrome (KS). DESIGN Observational immunohistochemical study. SETTING Academic research unit. PATIENT(S) Males with KS and controls at different developmental time points: fetal, prepubertal, peripubertal, and adult. INTERVENTION(S) Immunohistochemical analysis of testicular biopsies samples to characterize maturation of Sertoli cells and tubular wall components-peritubular myoid cells (PTMC) and extracellular matrix (ECM) proteins. MAIN OUTCOME MEASURE(S) Intensity of antimüllerian hormone staining; proportion of Sertoli cells expressing androgen receptor (AR); and expression of tubular wall markers as characterized by identifying abnormal staining patterns. RESULT(S) Decreased expression for alpha smooth muscle actin 2 (ACTA2) was observed in peripubertal and adult KS as well as in Sertoli cell only (SCO) patients. Altered expression patterns for all ECM proteins were observed in SCO and KS biopsy tissues compared with controls. Only for collagen I and IV were altered expression patterns observed between KS and SCO patients. In peripubertal samples, no statistically significant differences were observed in the maturation markers, but altered ECM patterns were already present in some samples. CONCLUSION(S) The role of loss of ACTA2 expression in PTMC in the disintegration of tubules in KS patients should be further investigated. Future research is necessary to identify the causes of testicular fibrosis in KS patients. If the mechanism behind this fibrotic process could be identified, this process might be altered toward increasing the chances of fertility in KS patients.
Collapse
Affiliation(s)
- Dorien Van Saen
- Biology of the Testis, Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Veerle Vloeberghs
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Inge Gies
- Department of Pediatrics, Division of Pediatric Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jean De Schepper
- Biology of the Testis, Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Pediatrics, Division of Pediatric Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium; Pediatric Endocrinology, Universitair Ziekenhuis Gent, Gent, Belgium
| | - Herman Tournaye
- Biology of the Testis, Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Department of Surgical and Clinical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ellen Goossens
- Biology of the Testis, Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
29
|
Laurentino S, Heckmann L, Di Persio S, Li X, Meyer Zu Hörste G, Wistuba J, Cremers JF, Gromoll J, Kliesch S, Schlatt S, Neuhaus N. High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin Epigenetics 2019; 11:127. [PMID: 31462300 PMCID: PMC6714305 DOI: 10.1186/s13148-019-0720-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background The most common sex chromosomal aneuploidy in males is Klinefelter syndrome, which is characterized by at least one supernumerary X chromosome. While these men have long been considered infertile, focal spermatogenesis can be observed in some patients, and sperm can be surgically retrieved and used for artificial reproductive techniques. Although these gametes can be used for fertility treatments, little is known about the molecular biology of the germline in Klinefelter men. Specifically, it is unclear if germ cells in Klinefelter syndrome correctly establish the androgenetic DNA methylation profile and transcriptome. This is due to the low number of germ cells in the Klinefelter testes available for analysis. Results Here, we overcame these difficulties and successfully investigated the epigenetic and transcriptional profiles of germ cells in Klinefelter patients employing deep bisulfite sequencing and single-cell RNA sequencing. On the transcriptional level, the germ cells from Klinefelter men clustered together with the differentiation stages of normal spermatogenesis. Klinefelter germ cells showed a normal DNA methylation profile of selected germ cell-specific markers compared with spermatogonia and sperm from men with normal spermatogenesis. However, germ cells from Klinefelter patients showed variations in the DNA methylation of imprinted regions. Conclusions These data indicate that Klinefelter germ cells have a normal transcriptome but might present aberrant imprinting, showing impairment in germ cell development that goes beyond mere germ cell loss. Electronic supplementary material The online version of this article (10.1186/s13148-019-0720-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Laura Heckmann
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Xiaolin Li
- Department of Neurology, Institute of Translational Neurology, University Hospital of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology, Institute of Translational Neurology, University Hospital of Münster, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Jann-Frederik Cremers
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Klinefelter syndrome is the most common sex chromosome abnormality in men. Hypogonadism and testicular degeneration are almost universal. Truncal adiposity, metabolic syndrome and low bone mass occur frequently. This review summarizes the most recent advances in the pathogenesis and management of the endocrine abnormalities in Klinefelter syndrome. It is expected that optimal endocrine management will improve outcomes and quality of life in Klinefelter syndrome. RECENT FINDINGS In Klinefelter syndrome, testosterone replacement is routinely prescribed despite lack of evidence on the optimal dose and time for initiation of therapy. Cross-sectional studies have linked hypogonadism to the development of metabolic abnormalities and low bone mass. Testosterone therapy, however, is not consistently associated with improved metabolic and bone outcomes. Increased truncal adiposity and high rates of metabolic syndrome are present in prepubertal children. A randomized trial of oxandrolone in prepubertal boys showed improvement in visual-motor function, socialization and cardiometabolic health. Testicular sperm extraction (TESE) has success rates similar to other causes of nonobstructive azoospermia when performed between 16 and 35 years of age. SUMMARY Endocrine care in Klinefelter syndrome should start in childhood and include evaluation of metabolic risk factors and bone health. Further research to guide evidence-based endocrine care is very much needed.
Collapse
Affiliation(s)
- Adriana Herrera Lizarazo
- Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
31
|
Abstract
Klinefelter syndrome can present as a wide spectrum of clinical manifestations at various stages in life, making it a chromosomal disorder with no standardized set of guidelines for appropriate management. Understanding the genetic and hormonal causes of this syndrome can allow physicians to treat each patient on a more individualized basis. The timing of diagnosis and degree of symptoms can guide management. This report will provide an updated review of the clinical presentation at various stages in life and the implications for management.
Collapse
Affiliation(s)
- Priyanka Bearelly
- Urology, Boston University School of Medicine, 725 Albany Street, Suite 3B, Boston, MA, 02118, USA
| | - Robert Oates
- Urology, Boston University School of Medicine, 725 Albany Street, Suite 3B, Boston, MA, 02118, USA
| |
Collapse
|