1
|
Jafarinia H, Khalilimeybodi A, Barrasa-Fano J, Fraley SI, Rangamani P, Carlier A. Insights gained from computational modeling of YAP/TAZ signaling for cellular mechanotransduction. NPJ Syst Biol Appl 2024; 10:90. [PMID: 39147782 PMCID: PMC11327324 DOI: 10.1038/s41540-024-00414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
YAP/TAZ signaling pathway is regulated by a multiplicity of feedback loops, crosstalk with other pathways, and both mechanical and biochemical stimuli. Computational modeling serves as a powerful tool to unravel how these different factors can regulate YAP/TAZ, emphasizing biophysical modeling as an indispensable tool for deciphering mechanotransduction and its regulation of cell fate. We provide a critical review of the current state-of-the-art of computational models focused on YAP/TAZ signaling.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA.
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Kazimierczak U, Przybyla A, Smielowska M, Kolenda T, Mackiewicz A. Targeting the Hippo Pathway in Cutaneous Melanoma. Cells 2024; 13:1062. [PMID: 38920690 PMCID: PMC11201827 DOI: 10.3390/cells13121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer. In the advanced stage of development, it is resistant to currently available therapeutic modalities. Increased invasiveness and metastatic potential depend on several proteins involved in various signal transduction pathways. Hippo signaling plays a vital role in malignant transformation. Dysfunctions of the Hippo pathway initiate the expression of tumor growth factors and are associated with tumor growth and metastasis formation. This review summarizes the recent achievements in studying the role of the Hippo pathway in melanoma pathogenesis and points to the potential specific targets for anti-melanoma therapy.
Collapse
Affiliation(s)
- Urszula Kazimierczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Anna Przybyla
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Marianna Smielowska
- Department of Genome Engineering, The Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland
| |
Collapse
|
3
|
Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, Almurshedi AS, Alsharidah M, Rugaie OA, Davies MPA, Liloglou T, Ross K, Saleem I. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf B Biointerfaces 2023; 229:113466. [PMID: 37515959 DOI: 10.1016/j.colsurfb.2023.113466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Giulia Scagnetti
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Medical Clinic, Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, Al Qassim 51911, Saudi Arabia
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | | | - Kehinde Ross
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
4
|
Wang C, Chen S, Li X, Fan L, Zhou Z, Zhang M, Shao Y, Shang Z, Niu Y. TEAD3 inhibits the proliferation and metastasis of prostate cancer via suppressing ADRBK2. Biochem Biophys Res Commun 2023; 654:120-127. [PMID: 36907139 DOI: 10.1016/j.bbrc.2023.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
TEAD3 acts as a transcription factor in many tumors to promote tumor occurrence and development. But in prostate cancer (PCa), it appears as a tumor suppressor gene. Recent studies have shown that this may be related to subcellular localization and posttranslational modification. We found that TEAD3 was down-expressed in PCa. Immunohistochemistry of clinical PCa specimens confirmed that TEAD3 expression was the highest in benign prostatic hyperplasia (BPH) tissues, followed by primary PCa tissues, and the lowest in metastatic PCa tissues, and its expression level was positively correlated with overall survival. MTT assay, clone formation assay, and scratch assay confirmed that overexpression of TEAD3 could significantly inhibit the proliferation and migration of PCa cells. Next-generation sequencing results indicated that Hedgehog (Hh) signaling pathway was significantly inhibited after overexpression of TEAD3. Rescue assays suggested that ADRBK2 could reverse the proliferation and migration ability caused by overexpression of TEAD3. TEAD3 is downregulated in PCa and associated with poor patient prognosis. Overexpression of TEAD3 inhibits the proliferation and migration ability of PCa cells via restraining the mRNA level of ADRBK2. These results indicate that TEAD3 was down-expressed in PCa patients and was positively correlated with a high Gleason score and poor prognosis. Mechanistically, we found that the upregulation of TEAD3 inhibits the proliferation and metastasis of prostate cancer by inhibiting the expression of ADRBK2.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Songmao Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoli Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lin Fan
- Department of Clinical Laboratory, Tianjin People's Hospital, Tianjin, China
| | - Zhe Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Rubanov A, Berico P, Hernando E. Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies. Cancers (Basel) 2022; 14:cancers14235858. [PMID: 36497341 PMCID: PMC9738385 DOI: 10.3390/cancers14235858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
Collapse
Affiliation(s)
- Andrey Rubanov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Pietro Berico
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
6
|
The Roles of MiRNAs (MicroRNAs) in Melanoma Immunotherapy. Int J Mol Sci 2022; 23:ijms232314775. [PMID: 36499102 PMCID: PMC9736803 DOI: 10.3390/ijms232314775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer, characterized by life-threatening and rapidly spreading progression. Traditional targeted therapy can alleviate tumors by inactivating hyperactive kinases such as BRAF or MEK but inevitably encounters drug resistance. The advent of immunotherapy has revolutionized melanoma treatment and significantly improved the prognosis of melanoma patients. MicroRNAs (miRNAs) are intricately involved in innate and adaptive immunity and are implicated in melanoma immunotherapy. This systematic review describes the roles of miRNAs in regulating the functions of immune cells in skin and melanoma, as well as the involvement of miRNAs in pharmacology including the effect, resistance and immune-related adverse events of checkpoint inhibitors such as PD-1 and CTLA-4 inhibitors, which are used for treating cutaneous, uveal and mucosal melanoma. The expressions and functions of miRNAs in immunotherapy employing tumor-infiltrating lymphocytes and Toll-like receptor 9 agonists are also discussed. The prospect of innovative therapeutic strategies such as the combined administration of miRNAs and immune checkpoint inhibitors and the nanotechnology-based delivery of miRNAs are also provided. A comprehensive understanding of the interplay between miRNAs and immunotherapy is crucial for the discovery of reliable biomarkers and for the development of novel miRNA-based therapeutics against melanoma.
Collapse
|
7
|
Piquer-Gil M, Domenech-Dauder S, Sepúlveda-Gómez M, Machí-Camacho C, Braza-Boïls A, Zorio E. Non Coding RNAs as Regulators of Wnt/β-Catenin and Hippo Pathways in Arrhythmogenic Cardiomyopathy. Biomedicines 2022; 10:2619. [PMID: 36289882 PMCID: PMC9599412 DOI: 10.3390/biomedicines10102619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy histologically characterized by the replacement of myocardium by fibrofatty infiltration, cardiomyocyte loss, and inflammation. ACM has been defined as a desmosomal disease because most of the mutations causing the disease are located in genes encoding desmosomal proteins. Interestingly, the instable structures of these intercellular junctions in this disease are closely related to a perturbed Wnt/β-catenin pathway. Imbalance in the Wnt/β-catenin signaling and also in the crosslinked Hippo pathway leads to the transcription of proadipogenic and profibrotic genes. Aiming to shed light on the mechanisms by which Wnt/β-catenin and Hippo pathways modulate the progression of the pathological ACM phenotype, the study of non-coding RNAs (ncRNAs) has emerged as a potential source of actionable targets. ncRNAs comprise a wide range of RNA species (short, large, linear, circular) which are able to finely tune gene expression and determine the final phenotype. Some share recognition sites, thus referred to as competing endogenous RNAs (ceRNAs), and ensure a coordinating action. Recent cancer research studies regarding the key role of ceRNAs in Wnt/β-catenin and Hippo pathways modulation pave the way to better understanding the molecular mechanisms underlying ACM.
Collapse
Affiliation(s)
- Marina Piquer-Gil
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Sofía Domenech-Dauder
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Marta Sepúlveda-Gómez
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Carla Machí-Camacho
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Aitana Braza-Boïls
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), 28015 Madrid, Spain
| | - Esther Zorio
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), 28015 Madrid, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
8
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
9
|
Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Fragasso A, Schmitt A, Nieß AM, Munz B. miRNAs as markers for the development of individualized training regimens: A pilot study. Physiol Rep 2022; 10:e15217. [PMID: 35274816 PMCID: PMC8915711 DOI: 10.14814/phy2.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Small, non‐coding RNAs (microRNAs) have been shown to regulate gene expression in response to exercise in various tissues and organs, thus possibly coordinating their adaptive response. Thus, it is likely that differential microRNA expression might be one of the factors that are responsible for different training responses of different individuals. Consequently, determining microRNA patterns might be a promising approach toward the development of individualized training strategies. However, little is known on (1) microRNA patterns and their regulation by different exercise regimens and (2) possible correlations between these patterns and individual training adaptation. Here, we present microarray data on skeletal muscle microRNA patterns in six young, female subjects before and after six weeks of either moderate‐intensity continuous or high‐intensity interval training on a bicycle ergometer. Our data show that n = 36 different microRNA species were regulated more than twofold in this cohort (n = 28 upregulated and n = 8 downregulated). In addition, we correlated baseline microRNA patterns with individual changes in VO2max and identified some specific microRNAs that might be promising candidates for further testing and evaluation in the future, which might eventually lead to the establishment of microRNA marker panels that will allow individual recommendations for specific exercise regimens.
Collapse
Affiliation(s)
- Manuel Widmann
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Felipe Mattioni Maturana
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christof Burgstahler
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gunnar Erz
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Philipp Schellhorn
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Angelika Schmitt
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Lui JW, Moore SP, Huang L, Ogomori K, Li Y, Lang D. YAP facilitates melanoma migration through regulation of actin-related protein 2/3 complex subunit 5 (ARPC5). Pigment Cell Melanoma Res 2022; 35:52-65. [PMID: 34468072 PMCID: PMC8958630 DOI: 10.1111/pcmr.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/31/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023]
Abstract
Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators that have been implicated in driving metastasis and progression in many cancers, mainly through their transcriptional regulation of downstream targets. Although YAP and TAZ have shown redundancy in many contexts, it is still unknown whether or not this is true in melanoma. Here, we show that while both YAP and TAZ are expressed in a panel of melanoma cell lines, depletion of YAP results in decreased cell numbers, focal adhesions, and the ability to invade matrigel. Using non-biased RNA-sequencing analysis, we find that melanoma cells depleted of YAP, TAZ, or YAP/TAZ exhibit drastically different transcriptomes. We further uncover the ARP2/3 subunit ARPC5 as a specific target of YAP but not TAZ and that ARPC5 is essential for YAP-dependent maintenance of melanoma cell focal adhesion numbers. Our findings suggest that in melanoma, YAP drives melanoma progression, survival, and invasion.
Collapse
Affiliation(s)
- Jason W. Lui
- Department of Dermatology, Boston University, Boston MA, 02118,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637,These authors contributed equally
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston MA, 02118,These authors contributed equally
| | - Lee Huang
- Department of Dermatology, Boston University, Boston MA, 02118
| | - Kelsey Ogomori
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago Il, 60637
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston MA, 02118
| |
Collapse
|
11
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Wei L, Wang G, Yang C, Zhang Y, Chen Y, Zhong C, Li Q. MicroRNA-550a-3-5p controls the brain metastasis of lung cancer by directly targeting YAP1. Cancer Cell Int 2021; 21:491. [PMID: 34530822 PMCID: PMC8444378 DOI: 10.1186/s12935-021-02197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Background This study aimed to explore the potential regulatory mechanisms of brain metastasis and to identify novel underlying targets of lung cancer with brain metastasis. Methods Exosomes were isolated from the plasma of lung cancer patients with or without brain metastasis and low or high metastatic lung cancer cells, and small RNA from plasma-derived exosomes were sequenced. Differentially expressed miRNAs (DE-miRNAs) were identified. Human brain microvascular endothelial cells (HBMECs) were transfected with miR-550a-3-5p mimics or inhibitors and exosomes. Cell viability, migration, and apoptosis/cycle were determined using Cell Counting Kit-8 (CCK-8), Transwell, and flow cytometry, respectively. Western blotting was used to measure the expression of the associated proteins. Finally, a dual-luciferase reporter gene assay was performed to confirm the miR-550a-3-5p target. Results Transmission electron microscopy, NanoSight, and western blotting showed that exosomes were successfully isolated and cell-derived exosomes could be taken up by HBMECs. Sequencing identified 22 DE-miRNAs which were enriched in the MAPK, chemokine, PPAR, and Wnt signaling pathways. MiR-550a-3-5p was significantly enriched in brain metastatic exosomes. Cellular experiments showed that miR-550a-3-5p and exosome enrichment significantly inhibited cell viability and migration, promoted apoptosis, and regulated the cell cycle of HBMECs compared with the controls (P < 0.05). Compared with the controls, high levels of both miR-550a-3-5p and exosomes markedly upregulated cleaved-PARP expression, but downregulated the expression of pRB, CDK6, YAP1, CTGF, and CYR61 (P < 0.05). Finally, YAP1 was confirmed to bind directly to miR-550a-3-5p. Conclusion Our results indicate that miR-550a-3-5p and YAP1 may be novel potential targets for controlling brain metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02197-z.
Collapse
Affiliation(s)
- Liang Wei
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Cheng Yang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yiming Chen
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Chunlong Zhong
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Qinchuan Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China. .,Department of Cardiothoracic Surgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
13
|
Crudele F, Bianchi N, Astolfi A, Grassilli S, Brugnoli F, Terrazzan A, Bertagnolo V, Negrini M, Frassoldati A, Volinia S. The Molecular Networks of microRNAs and Their Targets in the Drug Resistance of Colon Carcinoma. Cancers (Basel) 2021; 13:cancers13174355. [PMID: 34503164 PMCID: PMC8431668 DOI: 10.3390/cancers13174355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary We systematically reviewed the recent scientific publications describing the role of microRNAs in the regulation of drug resistance in colon cancer. To clarify the intricate web of resulting genetic and biochemical interactions, we used a machine learning approach aimed at creating: (i) networks of validated miRNA/target interactions involved in drug resistances and (ii) drug-centric networks, from which we identified the major clusters of proteins affected by drugs used in the treatment of colon cancer. Finally, to facilitate a high-level interpretation of these molecular interactions, we determined the cellular pathways related with drug resistance and regulated by the miRNAs in colon cancer. Abstract Drug resistance is one of the major forces driving a poor prognosis during the treatment and progression of human colon carcinomas. The molecular mechanisms that regulate the diverse processes underlying drug resistance are still under debate. MicroRNAs (miRNAs) are a subgroup of non-coding RNAs increasingly found to be associated with the regulation of tumorigenesis and drug resistance. We performed a systematic review of the articles concerning miRNAs and drug resistance in human colon cancer published from 2013 onwards in journals with an impact factor of 5 or higher. First, we built a network with the most studied miRNAs and targets (as nodes) while the drug resistance/s are indicated by the connections (edges); then, we discussed the most relevant miRNA/targets interactions regulated by drugs according to the network topology and statistics. Finally, we considered the drugs as nodes in the network, to allow an alternative point of view that could flow through the treatment options and the associated molecular pathways. A small number of microRNAs and proteins appeared as critically involved in the most common drugs used for the treatment of patients with colon cancer. In particular, the family of miR-200, miR34a, miR-155 and miR-17 appear as the most relevant microRNAs. Thus, regulating these miRNAs could be useful for interfering with some drug resistance mechanisms in colorectal carcinoma.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Antonio Frassoldati
- Department of Oncology, Azienda Ospedaliero-Universitaria St. Anna di Ferrara, Via A. Moro 8, 44124 Ferrara, Italy;
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
14
|
Su M, Zhan L, Zhang Y, Zhang J. Yes-activated protein promotes primary resistance of BRAF V600E mutant metastatic colorectal cancer cells to mitogen-activated protein kinase pathway inhibitors. J Gastrointest Oncol 2021; 12:953-963. [PMID: 34295548 DOI: 10.21037/jgo-21-258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
Background Most colorectal cancer (CRC) patients with the BRAF V600E mutation display resistance to chemotherapy and targeted medicinal treatments. Thus, exploring new drugs and drug resistance mechanisms for the BRAF V600E mutation has become an urgent clinical priority. Methods MTS experiment, cell cloning experiment, cell scratching experiment, Transwell experiment, chromatin immunoprecipitation (ChIP), quantitative polymerase chain reaction (qPCR) and flow cytometry are used. Detect the transcription and protein expression of YAP in colorectal cancer cell lines, establish a transient cell line with YAP gene overexpression and knockdown, and detect the effect of YAP gene expression on the biological functions of colorectal cancer cells RKO and HT-29. And further study the mechanism of YAP regulating the response of RAF and MEK targeted therapy. Results In this study, for the first time, we verified that the expression of transcription factor yes-associated protein (YAP) was upregulated in BRAF V600E mutant CRC cells. After knocking down YAP, we observed a reduction in the growth rate, proliferation, and invasion ability of colon cancer cells. We further verified that YAP knockdown increased sensitivity of BRAF V600E mutant CRC cells to mitogen-activated protein kinase (MAPK) pathway inhibitors. In addition, we clarified the mechanism underlying YAP regulation of RAF and MAPK/extracellular signal-regulated kinase (MEK)-targeted therapy response: YAP cooperates with RAF→MEK pathway inhibitors to regulate the cell cycle, increase cell G1/S phase arrest, and increase apoptosis. Conclusions These results suggest that YAP expression may be related to the primary resistance of MAPK inhibitors in metastatic CRC with the BRAF V600E mutation. Therefore, the combination of YAP and MAPK pathway inhibitors in BRAF V600E mutant metastatic CRC may present a promising treatment method.
Collapse
Affiliation(s)
- Meng Su
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lei Zhan
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
15
|
MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020136. [PMID: 33567635 PMCID: PMC7915952 DOI: 10.3390/ph14020136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Although therapeutic approaches for patients with colorectal cancer (CRC) have improved in the past decades, the problem of drug resistance still persists and acts as a major obstacle for effective therapy. Many studies have shown that drug resistance is related to reduced drug uptake, modification of drug targets, and/or transformation of cell cycle checkpoints. A growing body of evidence indicates that several microRNAs (miRNAs) may contribute to the drug resistance to chemotherapy, targeted therapy, and immunotherapy by regulating the drug resistance-related target genes in CRC. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with CRC. In this review, we summarized the recent discoveries regarding anti-cancer drug-related miRNAs and their molecular mechanisms in CRC. Furthermore, we discussed the challenges associated with the clinical application of miRNAs as biomarkers for the diagnosis of drug-resistant patients and as therapeutic targets for CRC treatment.
Collapse
|
16
|
Martins JRB, de Moraes LN, Cury SS, Dadalto J, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama PDOM. Comparison of microRNA Expression Profile in Chronic Myeloid Leukemia Patients Newly Diagnosed and Treated by Allogeneic Hematopoietic Stem Cell Transplantation. Front Oncol 2020; 10:1544. [PMID: 33014798 PMCID: PMC7500210 DOI: 10.3389/fonc.2020.01544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) results from a translocation between chromosomes 9 and 22, which generates the Philadelphia chromosome. This forms BCR/ABL1, an active tyrosine kinase protein that promotes cell growth and replication. Despite great progress in CML treatment in the form of tyrosine kinase inhibitors, allogeneic-hematopoietic stem cell transplantation (allo-HSCT) is currently used as an important treatment alternative for patients resistant to these inhibitors. Studies have shown that unregulated expression of microRNAs, which act as oncogenes or tumor suppressors, is associated with human cancers. This contributes to tumor formation and development by stimulating proliferation, angiogenesis, and invasion. Research has demonstrated the potential of microRNAs as biomarkers for cancer diagnosis, prognosis, and therapeutic targets. In the present study, we compared the circulating microRNA expression profiles of 14 newly diagnosed patients with chronic phase-CML and 14 Philadelphia chromosome-negative patients after allo-HSCT. For each patient, we tested 758 microRNAs by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis. The global expression profile of microRNAs revealed 16 upregulated and 30 downregulated microRNAs. Target genes were analyzed, and key pathways were extracted and compared. Bioinformatics tools were used to analyze data. Among the downregulated miRNA target genes, some genes related to cell proliferation pathways were identified. These results reveal the comprehensive microRNA profile of CML patients and the main pathways related to the target genes of these miRNAs in cytogenetic remission after allo-HSCT. These results provide new resources for exploring stem cell transplantation-based CML treatment strategies.
Collapse
Affiliation(s)
| | | | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, São Paulo State University (UNESP-IBB), Botucatu, Brazil
| | - Juliane Dadalto
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | - Juliana Capannacci
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, São Paulo State University (UNESP-IBB), Botucatu, Brazil
| | - Célia Regina Nogueira
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | - Newton Key Hokama
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | | |
Collapse
|
17
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
18
|
Liang Y, Liang Q, Qiao L, Xiao F. MicroRNAs Modulate Drug Resistance-Related Mechanisms in Hepatocellular Carcinoma. Front Oncol 2020; 10:920. [PMID: 32695666 PMCID: PMC7338562 DOI: 10.3389/fonc.2020.00920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer [hepatocellular carcinoma (HCC)] is one of the most common malignant tumors worldwide, causing serious health threats because of its high morbidity and mortality, rapid growth, and strong invasiveness. Patients with HCC frequently develop resistance to the current chemotherapeutic drugs, and this is largely attributed to the high-level heterogeneity of the tumor tissue. MicroRNAs (miRNAs) are a group of master regulators for multiple physiological and pathological processes and play important roles in the tumorigenesis. More recent studies have indicated that miRNAs also play a non-negligible role in the development of drug resistance in liver cancer. In this review, we summarize the data from the latest studies on the mechanisms of drug resistance in liver cancer, including autophagy, membrane transporters, epithelial-mesenchymal transitions (EMTs), tumor microenvironment, and genes and proteins that are associated with apoptosis. The data herein will provide valuable information for the development of novel approaches to tackle drug resistance in the management of liver cancer.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liang Qiao
- Storr Liver Center, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
19
|
MicroRNAs as Key Players in Melanoma Cell Resistance to MAPK and Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21124544. [PMID: 32604720 PMCID: PMC7352536 DOI: 10.3390/ijms21124544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Advances in the use of targeted and immune therapies have revolutionized the clinical management of melanoma patients, prolonging significantly their overall and progression-free survival. However, both targeted and immune therapies suffer limitations due to genetic mutations and epigenetic modifications, which determine a great heterogeneity and phenotypic plasticity of melanoma cells. Acquired resistance of melanoma patients to inhibitors of BRAF (BRAFi) and MEK (MEKi), which block the mitogen-activated protein kinase (MAPK) pathway, limits their prolonged use. On the other hand, immune checkpoint inhibitors improve the outcomes of patients in only a subset of them and the molecular mechanisms underlying lack of responses are under investigation. There is growing evidence that altered expression levels of microRNAs (miRNA)s induce drug-resistance in tumor cells and that restoring normal expression of dysregulated miRNAs may re-establish drug sensitivity. However, the relationship between specific miRNA signatures and acquired resistance of melanoma to MAPK and immune checkpoint inhibitors is still limited and not fully elucidated. In this review, we provide an updated overview of how miRNAs induce resistance or restore melanoma cell sensitivity to mitogen-activated protein kinase inhibitors (MAPKi) as well as on the relationship existing between miRNAs and immune evasion by melanoma cell resistant to MAPKi.
Collapse
|
20
|
Cao MX, Zhang WL, Yu XH, Wu JS, Qiao XW, Huang MC, Wang K, Wu JB, Tang YJ, Jiang J, Liang XH, Tang YL. Interplay between cancer cells and M2 macrophages is necessary for miR-550a-3-5p down-regulation-mediated HPV-positive OSCC progression. J Exp Clin Cancer Res 2020; 39:102. [PMID: 32493454 PMCID: PMC7268480 DOI: 10.1186/s13046-020-01602-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV)-positive oral squamous cell carcinoma (OSCC) is increasing worldwide with typically higher grade and stage, while better prognosis. microRNAs (miRNAs) has been shown to play a critical role in cancer, however, their role in HPV-positive OSCC progression remains unclear. METHODS miRNA microarray was performed to identify differentially expressed miRNAs. qRT-PCR and FISH were performed to determine the relative expression of miR-550a-3-5p. CCK-8, Flow cytometry, Wound healing, Cell invasion assays and xenograft experiments were conducted to analyze the biological roles of miR-550a-3-5p. Tumor-associated macrophages (TAMs) generation, co-culturing of cancer cells with TAMs, Western blot, Dual-luciferase reporter gene assay, Immunohistochemistry and animal studies were performed to explore the mechanisms underlying the functions of miR-550a-3-5p. RESULTS We identified 19 miRNAs differentially expressed in HPV-positive OSCC specimens and miR-550a-3-5p was down-regulated. The low expression of miR-550a-3-5p correlated with higher tumor size and nodal metastasis of HPV-positive OSCC patients. Then, we found that miR-550a-3-5p suppressed the migration, invasion and EMT of HPV-positive OSCC cells dependent on decreasing M2 macrophages polarization. Moreover, miR-550a-3-5p, down-regulated by E6 oncoprotein, inhibited M2 macrophages polarization by YAP/CCL2 signaling, which in turn abrogating EMT program in HPV-positive OSCC cells. In addition, in both xenografts and clinical HPV-positive OSCC samples, miR-550a-3-5p levels were inversely associated with YAP, CCL2 expressions and the number of M2 macrophages. CONCLUSIONS E6/miR-550a-3-5p/YAP/CCL2 signaling induces M2 macrophages polarization to enhance EMT and progression, revealing a novel crosstalk between cancer cells and immune cells in HPV-positive OSCC microenvironment.
Collapse
Affiliation(s)
- Ming-Xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin-Wei Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
An HJ, Park M, Kim J, Han YH. miR‑5191 functions as a tumor suppressor by targeting RPS6KB1 in colorectal cancer. Int J Oncol 2019. [PMID: 31485593 DOI: 10.3892/ijo.2019.4865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small non‑coding RNAs that play pivotal roles in cancer physiology as important epigenetic regulators of gene expression. Several miRNAs have been previously discovered that regulate the proliferation of the colorectal cancer (CRC) cell line HCT116. In the present study, one of these miRNAs, miR‑5191, was characterized as a tumor suppressor in CRC cells. Transfection with miR‑5191 led to a significant decrease in cell proliferation, invasiveness, tumor sphere‑forming ability and tumor organoid growth, as determined via trypan blue, Transwell, sphere culture and organoid culture assays, respectively. Flow cytometric analyses revealed that miR‑5191 induced the cell cycle arrest and apoptosis of CRC cells. Additionally, the expression of miR‑5191 was downregulated in CRC tumor tissues compared with in normal tissues, as measured by reverse transcription‑quantitative PCR analysis. Ribosomal protein S6 kinase β1 (RPS6KB1) was identified as a direct target of miR‑5191. Ectopic expression of RPS6KB1 suppressed the function of miR‑5191. Intratumoral injection of miR‑5191 mimic suppressed tumor growth in HCT116 xenografts. These findings suggested a novel tumor‑suppressive function for miR‑5191 in CRC, and its potential applicability for the development of anticancer miRNA therapeutics.
Collapse
Affiliation(s)
- Hyun-Ju An
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Misun Park
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136‑701, Republic of Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| |
Collapse
|
22
|
Pan Z, Tian Y, Cao C, Niu G. The Emerging Role of YAP/TAZ in Tumor Immunity. Mol Cancer Res 2019; 17:1777-1786. [PMID: 31308148 DOI: 10.1158/1541-7786.mcr-19-0375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
Yes-associated protein (YAP)/WW domain-containing transcription regulator 1 (TAZ) is an important transcriptional regulator and effector of the Hippo signaling pathway that has emerged as a critical determinant of malignancy in many human tumors. YAP/TAZ expression regulates the cross-talk between immune cells and tumor cells in the tumor microenvironment through its influence on T cells, myeloid-derived suppressor cells, and macrophages. However, the mechanisms underlying these effects are poorly understood. An improved understanding of the role of YAP/TAZ in tumor immunity is essential for exploring innovative tumor treatments and making further breakthroughs in antitumor immunotherapy. This review primarily focuses on the role of YAP/TAZ in immune cells, their interactions with tumor cells, and how this impacts on tumorigenesis, progression, and therapy resistance.
Collapse
Affiliation(s)
- Zhaoji Pan
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| | - Yiqing Tian
- Xinyi People's Hospital, Xinyi, Xuzhou, Jiangsu, P.R. China.
| | - Chengsong Cao
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| | - Guoping Niu
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
23
|
Tang Z, Ma Q, Wang L, Liu C, Gao H, Yang Z, Liu Z, Zhang H, Ji L, Jiang G. A brief review: some compounds targeting YAP against malignancies. Future Oncol 2019; 15:1535-1543. [PMID: 31066301 DOI: 10.2217/fon-2019-0035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
YAP, acting as a crucial transcription factor in nucleus, regulates the organ size, tissue homeostasis and tumorigenesis. Dysregulation of Hippo-YAP pathway brings a significant impact on the occurrence and development of various tumor types. Moreover, regulation of YAP/TAZ far exceeds the core kinase of the Hippo pathway, and gradually opens up new therapeutic targets. For the moment, chemotherapy together with radiotherapy act as routine methods to prolong the lives of cancer patients. Seeking more effective anti-neoplastic agents seems to be the urgent problem. This brief review focuses on the research progress of YAP inhibitors as the antineoplastic targets. Small molecule inhibitors or drugs have been discovered including verteporfin, dasatinib, statins, A35, JQ1, norcantharidin, agave, MLN8237, dobutamine and peptide-based YAP inhibitors. We are trying to seek novel therapies from the relationship between known drugs and potential mechanisms.
Collapse
Affiliation(s)
- Zhenxue Tang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Qingxia Ma
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Luyao Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Chaolong Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Zhantao Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Huimin Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Guohui Jiang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| |
Collapse
|
24
|
Abstract
Cancer is a serious health issue in the world due to a large body of cancer-related human deaths, and there is no current treatment available to efficiently treat the disease as the tumor is often diagnosed at a serious stage. Moreover, Cancer cells are often resistant to chemotherapy, radiotherapy, and molecular-targeted therapy. Upon further knowledge of mechanisms of tumorigenesis, aggressiveness, metastasis, and resistance to treatments, it is necessary to detect the disease at an earlier stage and for a better response to therapy. The hippo pathway possesses the unique capacity to lead to tumorigenesis. Mutations and altered expression of its core components (MST1/2, LATS1/2, YAP and TAZ) promote the migration, invasion, malignancy of cancer cells. The biological significance and deregulation of it have received a large body of interests in the past few years. Further understanding of hippo pathway will be responsible for cancer treatment. In this review, we try to discover the function of hippo pathway in different diversity of cancers, and discuss how Hippo pathway contributes to other cellular signaling pathways. Also, we try to describe how microRNAs, circRNAs, and ZNFs regulate hippo pathway in the process of cancer. It is necessary to find new therapy strategies for cancer.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
25
|
Many ways to resistance: How melanoma cells evade targeted therapies. Biochim Biophys Acta Rev Cancer 2019; 1871:313-322. [DOI: 10.1016/j.bbcan.2019.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/20/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
|