1
|
AlMotwaa SM, Al-Otaibi WA. Nano-emulsion based on Santolina chamaecyparissus essential oil potentiates the cytotoxic and apoptotic effects of Doxorubicin: an in vitro study. J Microencapsul 2024; 41:503-518. [PMID: 39092777 DOI: 10.1080/02652048.2024.2386287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
AIM This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of Santolina chamaecyparissus L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines. METHODS A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in in vitro tests for apoptosis detection. RESULTS Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed. CONCLUSION The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Sahar M AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Waad A Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
2
|
Suthivanich P, Boonhoh W, Sumneang N, Punsawad C, Cheng Z, Phungphong S. Aerobic Exercise Attenuates Doxorubicin-Induced Cardiomyopathy by Suppressing NLRP3 Inflammasome Activation in a Rat Model. Int J Mol Sci 2024; 25:9692. [PMID: 39273638 PMCID: PMC11395441 DOI: 10.3390/ijms25179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent with well-documented dose-dependent cardiotoxicity. Regular exercise is recognized for its cardioprotective effects against DOX-induced cardiac inflammation, although the precise mechanisms remain incompletely understood. The activation of inflammasomes has been implicated in the pathogenesis and treatment of DOX-induced cardiotoxicity, with the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome emerging as a key mediator in cardiovascular inflammation. This study aimed to investigate the role of exercise in modulating the NLRP3 inflammasome to protect against DOX-induced cardiac inflammation. Male Sprague-Dawley rats were randomly assigned to receive a 10-day course of DOX or saline injections, with or without a preceding 10-week treadmill running regimen. Cardiovascular function and histological changes were subsequently evaluated. DOX-induced cardiotoxicity was characterized by cardiac atrophy, systolic dysfunction, and hypotension, alongside activation of the NLRP3 inflammasome. Our findings revealed that regular exercise preserved cardiac mass and hypertrophic indices and prevented DOX-induced cardiac dysfunction, although it did not fully preserve blood pressure. These results underscore the significant cardioprotective effects of exercise against DOX-induced cardiotoxicity. While regular exercise did not entirely prevent DOX-induced hypotension, our findings demonstrate that it confers protection against DOX-induced cardiotoxicity by suppressing NLRP3 inflammasome activation in the heart, underscoring its anti-inflammatory role. Further research should explore the temporal dynamics and interactions among exercise, pyroptosis, and other pathways in DOX-induced cardiotoxicity to enhance translational applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Phichaya Suthivanich
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Natticha Sumneang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sukanya Phungphong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Qiao X, van der Zanden SY, Li X, Tan M, Zhang Y, Song JY, van Gelder MA, Hamoen FL, Janssen L, Zuur CL, Pang B, van Tellingen O, Li J, Neefjes J. Diversifying the anthracycline class of anti-cancer drugs identifies aclarubicin for superior survival of acute myeloid leukemia patients. Mol Cancer 2024; 23:120. [PMID: 38831402 PMCID: PMC11149191 DOI: 10.1186/s12943-024-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.
Collapse
Affiliation(s)
- Xiaohang Qiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minkang Tan
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Merle A van Gelder
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Feija L Hamoen
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte L Zuur
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Baoxu Pang
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Wuxi Branch of Ruijin Hospital, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai , 200025, China.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
El-Gohary RM, Okasha AH, Abd El-Azeem AH, Abdel Ghafar MT, Ibrahim S, Hegab II, Farghal EE, Shalaby SAF, Elshora OA, ElMehy AE, Barakat AN, Amer BS, Sobeeh FG, AboEl-Magd GH, Ghalwash AA. Uncovering the Cardioprotective Potential of Diacerein in Doxorubicin Cardiotoxicity: Mitigating Ferritinophagy-Mediated Ferroptosis via Upregulating NRF2/SLC7A11/GPX4 Axis. Antioxidants (Basel) 2024; 13:493. [PMID: 38671940 PMCID: PMC11047461 DOI: 10.3390/antiox13040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a life-threatening clinical issue with limited preventive approaches, posing a substantial challenge to cancer survivors. The anthraquinone diacerein (DCN) exhibits significant anti-inflammatory, anti-proliferative, and antioxidant actions. Its beneficial effects on DIC have yet to be clarified. Therefore, this study investigated DCN's cardioprotective potency and its conceivable molecular targets against DIC. Twenty-eight Wister rats were assigned to CON, DOX, DCN-L/DOX, and DCN-H/DOX groups. Serum cardiac damage indices, iron assay, oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis, ferritinophagy, and ferroptosis-related biomarkers were estimated. Nuclear factor E2-related factor 2 (NRF2) DNA-binding activity and phospho-p53 immunoreactivity were assessed. DCN administration effectively ameliorated DOX-induced cardiac cytomorphological abnormalities. Additionally, DCN profoundly combated the DOX-induced labile iron pool expansion alongside its consequent lethal lipid peroxide overproduction, whereas it counteracted ferritinophagy and enhanced iron storage. Indeed, DCN valuably reinforced the cardiomyocytes' resistance to ferroptosis, mainly by restoring the NRF2/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling axis. Furthermore, DCN abrogated the cardiac oxidative damage, inflammatory response, ER stress, and cardiomyocyte apoptosis elicited by DOX. In conclusion, for the first time, our findings validated DCN's cardioprotective potency against DIC based on its antioxidant, anti-inflammatory, anti-ferroptotic, and anti-apoptotic imprint, chiefly mediated by the NRF2/SLC7A11/GPX4 axis. Accordingly, DCN could represent a promising therapeutic avenue for patients under DOX-dependent chemotherapy.
Collapse
Affiliation(s)
- Rehab M. El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| | - Asmaa H. Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| | - Alaa H. Abd El-Azeem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Muhammad T. Abdel Ghafar
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Islam I. Hegab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
| | - Eman E. Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | | | - Ola A. Elshora
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | - Aisha E. ElMehy
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.E.E.); (F.G.S.)
| | - Amany Nagy Barakat
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Basma Saed Amer
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Fatma G. Sobeeh
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.E.E.); (F.G.S.)
| | - Gehan H. AboEl-Magd
- Chest Diseases Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Asmaa A. Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| |
Collapse
|
5
|
Usui Y, Hanashima A, Hashimoto K, Kimoto M, Ohira M, Mohri S. Comparative analysis of ventricular stiffness across species. Physiol Rep 2024; 12:e16013. [PMID: 38644486 PMCID: PMC11033294 DOI: 10.14814/phy2.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge. As one of the solutions to this problem, we propose calculating a relative ventricular stiffness index by applying an exponential approximation formula to the EDPVR plot data of the relationship between ventricular pressure and values of normalized ventricular volume by the ventricular weight. This article reviews the potential, utility, and limitations of using normalized EDPVR analysis in recent studies. Herein, we measured and ranked ventricular stiffness in differently sized and shaped chambers using ex vivo ventricular pressure-volume analysis data from four animals: Wistar rats, red-eared slider turtles, masu salmon, and cherry salmon. Furthermore, we have discussed the mechanical effects of intracellular and extracellular viscoelastic components, Titin (Connectin) filaments, collagens, physiological sarcomere length, and other factors that govern ventricular stiffness. Our review provides insights into the comparison of ventricular stiffness in different-sized ventricles between heterologous and homologous species, including non-model organisms.
Collapse
Grants
- JP22K15155 Japan Society for the Promotion of Science, Grant/Award Number
- JP20K21453 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04508 Japan Society for the Promotion of Science, Grant/Award Number
- JP21K19933 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04521 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H02092 Japan Society for the Promotion of Science, Grant/Award Number
- JP23H00556 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H06272 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H00859 Japan Society for the Promotion of Science, Grant/Award Number
- JP25560214 Japan Society for the Promotion of Science, Grant/Award Number
- JP16K01385 Japan Society for the Promotion of Science, Grant/Award Number
- JP26282127 Japan Society for the Promotion of Science, Grant/Award Number
- The Futaba research grant program
- Research Grant from the Kawasaki Foundation in 2016 from Medical Science and Medical Welfare
- Medical Research Grant in 2010 from Takeda Science Foundation
- R03S005 Research Project Grant from Kawasaki Medical School
- R03B050 Research Project Grant from Kawasaki Medical School
- R01B054 Research Project Grant from Kawasaki Medical School
- H30B041 Research Project Grant from Kawasaki Medical School
- H30B016 Research Project Grant from Kawasaki Medical School
- H27B10 Research Project Grant from Kawasaki Medical School
- R02B039 Research Project Grant from Kawasaki Medical School
- H28B80 Research Project Grant from Kawasaki Medical School
- R05B016 Research Project Grant from Kawasaki Medical School
- Japan Society for the Promotion of Science, Grant/Award Number
Collapse
Affiliation(s)
- Yuu Usui
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Akira Hanashima
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Ken Hashimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Misaki Kimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Momoko Ohira
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Satoshi Mohri
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| |
Collapse
|
6
|
Tian W, Zhang P, Yang L, Song P, Zhao J, Wang H, Zhao Y, Cao L. Astragaloside IV Alleviates Doxorubicin-Induced Cardiotoxicity by Inhibiting Cardiomyocyte Pyroptosis through the SIRT1/NLRP3 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:453-469. [PMID: 38490806 DOI: 10.1142/s0192415x24500198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.
Collapse
Affiliation(s)
- Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Ping Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin 300100, P. R. China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated, Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin 300100, P. R. China
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Hongzhi Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| |
Collapse
|
7
|
Cui Y, Li Y, Meng S, Song Y, Xie K. Molecular hydrogen attenuates sepsis-induced cardiomyopathy in mice by promoting autophagy. BMC Anesthesiol 2024; 24:72. [PMID: 38395800 PMCID: PMC10885652 DOI: 10.1186/s12871-024-02462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Approximately 40 to 60% of patients with sepsis develop sepsis-induced cardiomyopathy (SIC), which is associated with a substantial increase in mortality. We have found that molecular hydrogen (H2) inhalation improved the survival rate and cardiac injury in septic mice. However, the mechanism remains unclear. This study aimed to explore the regulatory mechanism by which hydrogen modulates autophagy and its role in hydrogen protection of SIC. METHODS Cecal ligation and puncture (CLP) was used to induce sepsis in adult C57BL/6J male mice. The mice were randomly divided into 4 groups: Sham, Sham + 2% hydrogen inhalation (H2), CLP, and CLP + H2 group. The 7-day survival rate was recorded. Myocardial pathological scores were calculated. Myocardial troponin I (cTnI) levels in serum were detected, and the levels of autophagy- and mitophagy-related proteins in myocardial tissue were measured. Another four groups of mice were also studied: CLP, CLP + Bafilomycin A1 (BafA1), CLP + H2, and CLP + H2 + BafA1 group. Mice in the BafA1 group received an intraperitoneal injection of the autophagy inhibitor BafA1 1 mg/kg 1 h after operation. The detection indicators remained the same as before. RESULTS The survival rate of septic mice treated with H2 was significantly improved, myocardial tissue inflammation was improved, serum cTnI level was decreased, autophagy flux was increased, and mitophagy protein content was decreased (P < 0.05). Compared to the CLP + H2 group, the CLP + H2 + BafA1 group showed a decrease in autophagy level and 7-day survival rate, an increase in myocardial tissue injury and cTnI level, which reversed the protective effect of hydrogen (P < 0.05). CONCLUSION Hydrogen exerts protective effect against SIC, which may be achieved through the promotion of autophagy and mitophagy.
Collapse
Affiliation(s)
- Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yingning Li
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Shuqi Meng
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
8
|
Zhang L, Jiang Q, Wang X, Jaisi A, Olatunji OJ. Boesenbergia rotunda displayed anti-inflammatory, antioxidant and anti-apoptotic efficacy in doxorubicin-induced cardiotoxicity in rats. Sci Rep 2023; 13:11398. [PMID: 37452121 PMCID: PMC10349041 DOI: 10.1038/s41598-023-38560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study evaluated the cardioprotective properties of Boesenbergia rotunda extract (BrE) against doxorubicin (DOX) induced cardiotoxicity. Rats received oral gavage of BrE for 28 days and DOX (5 mg/kg/week for 3 weeks). Thereafter the animals were sacrificed, blood and cardiac samples were collected for biochemical, histological and immunohistochemical analyses. The results indicated that BrE attenuated DOX triggered body and cardiac weight loss and prevented against cardiac injury by mitigating histopathological alterations in cardiac tissues as well as serum cardiac function enzymes. BrE significantly reduced serum levels of aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), troponin T (TnT) and creatine kinase-MB (CK-MB) in DOX-treated rats. Furthermore, BrE alleviated cardiotoxicity by reducing DOX instigated oxidative stress and potentiating the level of glutathione, as well as the activities superoxide dismutase and catalase in cardiac tissues. In addition, BrE significantly decreased the characteristic indices of DOX-induced cardiac inflammation and apoptosis. Immuno-histochemical analysis revealed that BrE decreased the stain intensity of p53 and myeloperoxidase (MPO) proteins compared to the DXB alone group. In conclusion, our results indicated that BrE modulated oxidative stress, inflammation and apoptosis to attenuate DOX-induced cardiac damage.
Collapse
Affiliation(s)
- Linye Zhang
- The Second Peoples Hospital of Wuhu, Wuhu City, 241001, Anhui, China
| | - Qihong Jiang
- The Second Peoples Hospital of Wuhu, Wuhu City, 241001, Anhui, China
| | - Xiuming Wang
- The Second Peoples Hospital of Wuhu, Wuhu City, 241001, Anhui, China
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, 80160, Nakhon Si Thammarat, Thailand
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, 43150, Ben Guerir, Morocco.
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
9
|
Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 158:114055. [PMID: 36495663 DOI: 10.1016/j.biopha.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox)-induced cardiotoxicity has limited its use. Inflammation, oxidative stress, and apoptosis have important roles in Dox-induced cardiotoxicity. Minocycline (Min) is an antibiotic with anti-inflammatory, anti-oxidant and anti-apoptotic properties. Here, the cardioprotective effects of Min against Dox-induced cardiotoxicity in adult male rats were evaluated. METHODS Forty-two adult male rats were divided into six groups including control group (normal saline), Dox group, Min groups (Min 45 mg/kg and Min 90 mg/kg), and treatment groups (Dox + Min 45 mg/kg and Dox + Min 90 mg/kg). Dox (2.5 mg/kg) was administered three times a week for two weeks, and Min once a day for three weeks via intraperitoneal route. Cardiac tissue sections were stained with hematoxylin and eosin for histological examination. The activities of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) in serum as well as the activity of catalase and superoxide dismutase (SOD) in cardiac tissue were measured. Cardiac tissue levels of malondialdehyde (MDA), TNF-α, and IL-1β were also measured using ELISA. RESULTS Compared with the Dox group, treatment with Min significantly decreased the activity of LDH and CK-MB. Min also increased the activity of catalase and SOD in the tissue samples. The results showed that the levels of MDA, TNF-α, and IL-1β in cardiac tissue samples were significantly lower in the Min groups compared with the Dox group. In addition, histopathological results showed that Min reduced the tissue damage caused by Dox. CONCLUSION Min reduced Dox-induced cardiotoxicity. The anti-oxidant and anti-inflammatory properties of Min may contribute to its protective effects.
Collapse
|
10
|
Zou Z, Zhao T, Zeng Z, An Y. Serum and glucocorticoid inducible kinase 1 modulates mitochondrial dysfunction and oxidative stress in doxorubicin-induced cardiomyocytes by regulating Hippo pathway via Neural precursor cell-expressed developmentally down-regulated 4 type 2. Hum Exp Toxicol 2023; 42:9603271231158039. [PMID: 36781297 DOI: 10.1177/09603271231158039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Doxorubicin (Dox) was reported to cause mitochondrial dysfunction and oxidative stress in cardiomyocytes, leading to cardiomyocyte apoptosis and ultimately heart failure. Serum and glucocorticoid inducible kinase 1 (SGK1) participates in the progression of various cardiovascular diseases. Thus, we aimed to explore the role and regulatory mechanism of SGK1 in Dox-induced cardiomyocyte injury. The expression of SGK1 was evaluated in blood samples of heart failure children, and in myocardial tissues and blood samples of Dox-induced rats. Subsequently, we treated cardiomyocytes with Dox in vitro. A gain-of-function assay was performed to assess the effects of SGK1 on mitochondrial dysfunction and oxidative stress in Dox-induced cardiomyocytes. Furthermore, the modulation of SGK1 on Neural precursor cell-expressed developmentally down-regulated 4 type 2 (NEDD4-2) expression and the subsequent Hippo pathway was validated. In our study, we found that SGK1 was downregulated in blood samples of heart failure children, as well as myocardial tissues and blood samples of Dox-induced rats. SGK1 overexpression alleviated the decreases of mitochondrial complex activity, mitochondrial membrane potential, adenosine triphosphate (ATP) content and ATP synthetase activity stimulated by Dox. Besides, SGK1 overexpression reversed the promoting effects of Dox on oxidative stress and apoptosis. Mechanistically, SGK1 overexpression inhibited the expression of NEDD4-2 and blocked the subsequent activation of Hippo pathway. NEDD4-2 overexpression or activation of Hippo reversed the protective effects of SGK1 overexpression on Dox-induced cardiomyocyte injury. In conclusion, our results revealed that SGK1 modulated mitochondrial dysfunction and oxidative stress in Dox-induced cardiomyocytes by regulating Hippo pathway via NEDD4-2.
Collapse
Affiliation(s)
- Zongyi Zou
- Department of Emergency, 611822Xi'an Children's Hospital, Xi'an, China
| | - Tingting Zhao
- Department of Cardiovascular Medicine, Xi'an No.1 Hospital, Xi'an, China
| | - Zhu Zeng
- Department of Emergency, 611822Xi'an Children's Hospital, Xi'an, China
| | - Yuan An
- Department of Pediatric Intensive Care Unit, 611822Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
11
|
Hanna M, Seddiek H, Aboulhoda BE, Morcos GNB, Akabawy AMA, Elbaset MA, Ibrahim AA, Khalifa MM, Khalifah IM, Fadel MS, Shoukry T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front Physiol 2022; 13:1050598. [PMID: 36531171 PMCID: PMC9748574 DOI: 10.3389/fphys.2022.1050598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/08/2023] Open
Abstract
Ferritinophagy is one of the most recent molecular mechanisms affecting cardiac function. In addition, it is one of the pathways by which doxorubicin, one of the anticancer drugs commonly used, negatively impacts the cardiac muscle, leading to cardiac function impairment. This side effect limits the use of doxorubicin. Iron chelators play an important role in hindering ferritinophagy. Antioxidants can also impact ferritinophagy by improving oxidative stress. In this study, it was assumed that the antioxidant function of melatonin could promote the action of deferoxamine, an iron chelator, at the level of ferritinophagy. A total of 42 male Wistar rats (150-200 g) were divided into seven groups (n = 6) which consisted of group I: control normal, group II: doxorubicin (Dox), group III: melatonin (Mel), group IV: deferoxamine (Des), group V: Mel + Dox, group VI: Des + Dox, and group VII: Mel + Des + Dox. Groups III, V and VII were orally pretreated with melatonin 20 mg/kg/day for 7 days. Groups IV, VI and VII were treated with deferoxamine at a 250 mg/kg/dose once on D4 before Dox was given. Doxorubicin was given at a 20 mg/kg ip single dose. On the 8th day, the rats were lightly anaesthetized for electrocardiography analysis and echocardiography. Serum samples were collected and then sacrificed for tissue sampling. The following biochemical assessments were carried out: PCR of NCOA4, IREB2, FTH1, SLC7A11, and GPX4; and ELISA for serum cTnI, serum transferrin, tissue GSH, and malondialdehyde. In addition, histopathological assessment of heart injury; immunostaining of caspase-3, Bax, and Bcl2; and physiological function assessment by ECG and ECHO were carried out. Doxorubicin-induced acute significant cardiac injury with increased ferritinophagy and apoptosis responded to single and combined prophylactic treatment, in which the combined treatment showed mostly the best results. In conclusion, using melatonin as an antioxidant with an iron chelator, deferoxamine, could hinder the hazardous cardiotoxic effect of doxorubicin. However, further studies are needed to detect the impact of higher doses of melatonin and deferoxamine with a prolonged treatment period.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Hanan Seddiek
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - George N. B. Morcos
- Department of Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | | | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Ibtesam Mahmoud Khalifah
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Sciences, Faculty of Medicine, Fakeeh College for Medical Sciences, Riyadh, Saudi Arabia
| | - Mostafa Said Fadel
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Tarek Shoukry
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| |
Collapse
|
12
|
He W, McCarroll CS, Nather K, Ford K, Mangion K, Riddell A, O’Toole D, Zaeri A, Corcoran D, Carrick D, Lee MMY, McEntegart M, Davie A, Good R, Lindsay MM, Eteiba H, Rocchiccioli P, Watkins S, Hood S, Shaukat A, McArthur L, Elliott EB, McClure J, Hawksby C, Martin T, Petrie MC, Oldroyd KG, Smith GL, Channon KM, Berry C, Nicklin SA, Loughrey CM. Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size. Cardiovasc Res 2022; 118:1535-1547. [PMID: 34132807 PMCID: PMC9074968 DOI: 10.1093/cvr/cvab204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS Identifying novel mediators of lethal myocardial reperfusion injury that can be targeted during primary percutaneous coronary intervention (PPCI) is key to limiting the progression of patients with ST-elevation myocardial infarction (STEMI) to heart failure. Here, we show through parallel clinical and integrative preclinical studies the significance of the protease cathepsin-L on cardiac function during reperfusion injury. METHODS AND RESULTS We found that direct cardiac release of cathepsin-L in STEMI patients (n = 76) immediately post-PPCI leads to elevated serum cathepsin-L levels and that serum levels of cathepsin-L in the first 24 h post-reperfusion are associated with reduced cardiac contractile function and increased infarct size. Preclinical studies demonstrate that inhibition of cathepsin-L release following reperfusion injury with CAA0225 reduces infarct size and improves cardiac contractile function by limiting abnormal cardiomyocyte calcium handling and apoptosis. CONCLUSION Our findings suggest that cathepsin-L is a novel therapeutic target that could be exploited clinically to counteract the deleterious effects of acute reperfusion injury after an acute STEMI.
Collapse
Affiliation(s)
- Weihong He
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Kristopher Ford
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Dylan O’Toole
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Ali Zaeri
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - David Corcoran
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - David Carrick
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Mathew M Y Lee
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Margaret McEntegart
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Andrew Davie
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Richard Good
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Mitchell M Lindsay
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Hany Eteiba
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Paul Rocchiccioli
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart Hood
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Aadil Shaukat
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Elspeth B Elliott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - John McClure
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Catherine Hawksby
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Tamara Martin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Mark C Petrie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Keith G Oldroyd
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | | | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| |
Collapse
|
13
|
Meng X, Huang Z, Inoue A, Wang H, Wan Y, Yue X, Xu S, Jin X, Shi GP, Kuzuya M, Cheng XW. Cathepsin K activity controls cachexia-induced muscle atrophy via the modulation of IRS1 ubiquitination. J Cachexia Sarcopenia Muscle 2022; 13:1197-1209. [PMID: 35098692 PMCID: PMC8978007 DOI: 10.1002/jcsm.12919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia is a complicated metabolic disorder that is characterize by progressive atrophy of skeletal muscle. Cathepsin K (CTSK) is a widely expressed cysteine protease that has garnered attention because of its enzymatic and non-enzymatic functions in signalling in various pathological conditions. Here, we examined whether CTSK participates in cancer-induced skeletal muscle loss and dysfunction, focusing on protein metabolic imbalance. METHODS Male 9-week-old wild-type (CTSK+/+ , n = 10) and CTSK-knockout (CTSK-/- , n = 10) mice were injected subcutaneously with Lewis lung carcinoma cells (LLC; 5 × 105 ) or saline, respectively. The mice were then subjected to muscle mass and muscle function measurements. HE staining, immunostaining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting were used to explore the CTSK expression and IRS1/Akt pathway in the gastrocnemius muscle at various time points. In vitro measurements included CTSK expression, IRS1/Akt pathway-related target molecule expressions, and the diameter of C2C12 myotubes with or without LLC-conditioned medium (LCM). An IRS1 ubiquitin assay, and truncation, co-immunoprecipitation, and co-localization experiments were also performed. RESULTS CTSK+/+ cachectic animals exhibited loss of skeletal muscle mass (muscle weight loss of 15%, n = 10, P < 0.01), muscle dysfunction (grip strength loss > 15%, n = 10, P < 0.01), and fibre area (average area reduction > 30%, n = 5, P < 0.01). Compared with that of non-cachectic CTSK+/+ mice, the skeletal muscle of cachectic CTSK+/+ mice exhibited greater degradation of insulin receptor substrate 1 (IRS1, P < 0.01). In this setting, cachectic muscles exhibited decreases in the phosphorylation levels of protein kinase B (Akt308 , P < 0.01; Akt473 , P < 0.05) and anabolic-related proteins (the mammalian target of rapamycin, P < 0.01) and increased levels of catabolism-related proteins (muscle RING-finger protein-1, P < 0.01; MAFbx1, P < 0.01) in CTSK+/+ mice (n = 3). Although there was no difference in LLC tumour growth (n = 10, P = 0.44), CTSK deletion mitigated the IRS1 degradation, loss of the skeletal muscle mass (n = 10, P < 0.01), and dysfunction (n = 10, P < 0.01). In vitro, CTSK silencing prevented the IRS1 ubiquitination and loss of the myotube myosin heavy chain content (P < 0.01) induced by LCM, and these changes were accelerated by CTSK overexpression even without LCM. Immunoprecipitation showed that CTSK selectively acted on IRS1 in the region of amino acids 268 to 574. The results of co-transfection of IRS1-N-FLAG or IRS1-C-FLAG with CTSK suggested that CTSK selectively cleaves IRS1 and causes ubiquitination-related degradation of IRS1. CONCLUSIONS These results demonstrate that CTSK plays a novel role in IRS1 ubiquitination in LLC-induced muscle wasting, and suggest that CTSK could be an effective therapeutic target for cancer-related cachexia.
Collapse
Affiliation(s)
- Xiangkun Meng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zhe Huang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China.,Department of Human Cord Stem Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hailong Wang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ying Wan
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xueling Yue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shengnan Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xueying Jin
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China.,Department of Human Cord Stem Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Chen Y, Yang J, Wang Y, Shen W, Liu J, Yuan M, Hao X, Zhong L, Guo R. Identification and Analysis of Hub Genes in Diabetic Cardiomyopathy: Potential Role of Cytochrome P450 1A1 in Mitochondrial Metabolism and STZ-Induced Myocardial Dysfunction. Front Cardiovasc Med 2022; 9:835244. [PMID: 35387435 PMCID: PMC8977650 DOI: 10.3389/fcvm.2022.835244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a primary cause of death in diabetic patients; however, its molecular mechanism is not yet clear, and there is no uniform standard for diagnosis. The aim of this study is to discover the pathogenesis and potential therapeutic targets of DCM through screening and analysis of differentially expressed genes (DEGs) in heart ventricles of DCM, and to testify the role of key hub genes in DCM-induced myocardial dysfunction. Datasets GSE4745 and GSE6880 were downloaded from the GEO database. The difference analysis, visual analysis, cluster analysis and enrichment analysis were performed by using R language, python scripts and bioinformatics software followed by the construction of protein-protein interaction (PPI) network to obtain hub genes. The DCM models were established by streptozocin (STZ) injection to the male mice. The cardiac function and the expressions of hub genes were examined by using echocardiography and real-time quantitative poly-merase chain reaction (RT-qPCR), followed by multiple statistical analyses. Bioinformatic results indicate that mitochondrial dysfunction, disturbed lipid metabolism and decreased collagen synthesis are the main causes of the DCM development. In particular, the hub gene Cyp1a1 that encodes Cytochrome P450 1A1 (CYP4501A1) enzyme has the highest connectivity in the interaction network, and is associated with mitochondrial homeostasis and energy metabolism. It plays a critical role in the oxidation of endogenous or exogenous substrates. Our RT-qPCR results confirmed that ventricular Cyp1a1 mRNA level was nearly 12-fold upregulated in DCM model compared to normal control, which was correlated with abnormal cardiac function in diabetic individuals. CYP4501A1 protein expression in mitochondria was also increased in diabetic hearts. However, we found no significant changes in collagen expressions in cardiac ventricles of mice with DCM. This study provided compact data support for understanding the pathogenesis of DCM. CYP4501A1 might be considered as a potential candidate targeting for DCM therapy. Follow-up animal and clinical verifications need to be further explored.
Collapse
Affiliation(s)
- Yinliang Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jinbao Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ying Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Weike Shen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Meng Yuan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiaoyu Hao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
- *Correspondence: Rui Guo
| |
Collapse
|
15
|
Zhao M, Lian A, Zhong L, Guo R. The regulatory mechanism between lysosomes and mitochondria in the aetiology of cardiovascular diseases. Acta Physiol (Oxf) 2022; 234:e13757. [PMID: 34978753 DOI: 10.1111/apha.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Coordinated action among various organelles maintains cellular functions. For instance, mitochondria and lysosomes are the main organelles contributing to cellular metabolism and provide energy for cardiomyocyte contraction. They also provide essential signalling platforms in the cell that regulate many key processes such as autophagy, apoptosis, oxidative stress, inflammation and cell death. Often, abnormalities in mitochondrial or lysosomal structures and functions bring about cardiovascular diseases (CVDs). Although the communication between mitochondria and lysosomes throughout the cardiovascular system is intensely studied, the regulatory mechanisms have not been completely understood. Thus, we summarize the most recent studies related to mitochondria and lysosomes' role in CVDs and their potential connections and communications under cardiac pathophysiological conditions. Further, we discuss limitations and future perspectives regarding diagnosis, therapeutic strategies and drug discovery in CVDs.
Collapse
Affiliation(s)
- Mengxue Zhao
- College of Life Sciences Institute of Life Science and Green Development Hebei University Baoding China
| | - Andrew Lian
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona California USA
| | - Li Zhong
- College of Life Sciences Institute of Life Science and Green Development Hebei University Baoding China
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona California USA
| | - Rui Guo
- College of Life Sciences Institute of Life Science and Green Development Hebei University Baoding China
- The Key Laboratory of Zoological Systematics and Application College of Life Sciences Hebei University Baoding China
| |
Collapse
|
16
|
da Silva FS, Aquino de Souza NCS, de Moraes MV, Abreu BJ, de Oliveira MF. CmyoSize: An ImageJ macro for automated analysis of cardiomyocyte size in images of routine histology staining. Ann Anat 2022; 241:151892. [DOI: 10.1016/j.aanat.2022.151892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
|
17
|
Huang J, Lei Y, Lei S, Gong X. Cardioprotective effects of corilagin on doxorubicin induced cardiotoxicity via P13K/Akt and NF-κB signaling pathways in rats model. Toxicol Mech Methods 2021; 32:79-86. [PMID: 34369273 DOI: 10.1080/15376516.2021.1965274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Even though doxorubicin (DOX) is a potential chemotherapeutic drug, its usage is restricted due to its ability to induce cardiac damage. In order to prevent this damage, a potent cardioprotective agent should be associated with DOX treatment. Corilagin is a natural polyphenol tannic acid which unveils enormous pharmacological activities predominantly as an antitumor agent. Hence, the current work is designed to study the precise mechanisms of corilagin upon administration in doxorubicin induced cardiotoxicity in experimental rats. DOX treated rats showed diminished level of blood pressures and heart rate, whereas corilagin along with DOX treatment improved the status. Cardiotoxicity enzymes and biomarkers were found to be increased in the serum of DOX induced rats. Upon treatment, corilagin could reduce the cardiotoxicity enzymes and biomarkers in serum. Histopathological examination of cardiac tissue also revealed the anti-toxic effects of corilagin in contrast to DOX. Injection of DOX in rats showed inflammatory cells infiltration, necrosis and fragmented myofibrils. Corilagin treatment reverted the cardiac histology to near normal. Inflammatory mediators and P13K, Akt, and NF-κB were upregulated in DOX administered rats. Corilagin repressed the levels of P13K, Akt, and NF-κB in DOX induced rats. In the present investigations, corilagin improved cardiac function via reducing injury, inflammation and promoting apoptosis thereby suggesting that corilagin would be recommended for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Wuxi No.2 People's Hospital, Wuxi, 214000, China
| | - Ying Lei
- Department of Cardiology, Ankang Hospital of Traditional Chinese Medicine, Ankang, 725000, China
| | - Shengping Lei
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Xinwen Gong
- Department of Cardiology, Ankang Hospital of Traditional Chinese Medicine, Ankang, 725000, China
| |
Collapse
|
18
|
Sritharan S, Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci 2021; 278:119527. [PMID: 33887349 DOI: 10.1016/j.lfs.2021.119527] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Doxorubicin or Adriamycin, is one of the most widely used chemotherapeutic drug for treating a myriad of cancers. It induces cell death through multiple intracellular targets: reactive oxygen species generation, DNA-adduct formation, topoisomerase II inhibition, histone eviction, Ca2+ and iron hemostasis regulation, and ceramide overproduction. Moreover, doxorubicin-treated dying cells undergo cellular modifications that enable neighboring dendritic cell activation and enhanced presentation of tumor antigen. In addition, doxorubicin also aids in the immune-mediated clearance of tumor cells. However, the development of chemoresistance and cardiotoxicity side effect has undermined its widespread applicability. Several formulations of doxorubicin and co-treatments with inhibitors, miRNAs, natural compounds and other chemotherapeutic drugs have been essential in reducing its dosage-dependent toxicity and combating the development of resistance. Further, more advanced research into the molecular mechanism of chemoresistance development would be vital in improving the overall survivability of clinical patients and in preventing cancer relapse.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
19
|
O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020; 76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Adverse cardiac remodelling clinically manifests as deleterious changes to heart architecture (size, mass and geometry) and function. These changes, which include alterations to ventricular wall thickness, chamber dilation and poor contractility, are important because they progressively drive patients with cardiac disease towards heart failure and are associated with poor prognosis. Cysteine cathepsins contribute to key signalling pathways involved in adverse cardiac remodelling including synthesis and degradation of the cardiac extracellular matrix (ECM), cardiomyocyte hypertrophy, impaired cardiomyocyte contractility and apoptosis. In this review, we highlight the role of cathepsins in these signalling pathways as well as their translational potential as therapeutic targets in cardiac disease.
Collapse
Affiliation(s)
- Dylan O'Toole
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Ali Abdullah I Zaeri
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Anne T French
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| |
Collapse
|
20
|
Cheng F, Jiang W, Xiong X, Chen J, Xiong Y, Li Y. Ethanol Extract of Chinese Hawthorn (Crataegus pinnatifida) Fruit Reduces Inflammation and Oxidative Stress in Rats with Doxorubicin-Induced Chronic Heart Failure. Med Sci Monit 2020; 26:e926654. [PMID: 33232307 PMCID: PMC7697658 DOI: 10.12659/msm.926654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chinese hawthorn (Crataegus pinnatifida) fruit is a traditional Chinese medicine for treatment of digestive system and cardiovascular diseases. The fruit contains polyphenol compounds, such as epicatechin, that have anti-inflammatory activity. This study aimed to investigate the effects of an alcohol extract of hawthorn fruit (HAE) on inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure (CHF). Material/Methods Rats were intraperitoneally injected with doxorubicin to induce CHF and subsequently treated with HAE intragastrically once daily for 6 weeks. At the end of the experiment, echocardiographic and hemodynamic parameters were assessed, and enzyme-linked immunoassays were used to detect the levels of cardiac injury markers (brain natriuretic peptide, creatine kinase-MB, aspartate aminotransferase, lactate dehydrogenase, copeptin, and adrenomedullin), oxidative stress markers (glutathione peroxidase and malondialdehyde), and inflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor-α). The IL-1β, IL-6, glutathione peroxidase-1, and catalase mRNA levels were also measured by quantitative real-time polymerase chain reaction. Results Our findings indicated that HAE exerts a cardioprotective effect, as shown by improved echocardiographic and hemodynamic parameters, decreased activity of serum myocardial enzymes, reduced serum levels of CHF markers, and inhibited inflammatory response in cardiac tissue. In addition, HAE treatment downregulated the mRNA expression of IL-1β and tumor necrosis factor-α and upregulated the mRNA expression of glutathione peroxidase-1 and catalase compared with untreated doxorubicin-induced CHF rats. Conclusions HAE shows promise for the prevention and treatment of CHF. The cardioprotective effect of HAE appears to be related to inhibition of both the inflammatory response and oxidative stress in vivo.
Collapse
Affiliation(s)
- Fangzhou Cheng
- Department of Cardiology, Shenzhen Yantian People's Hospital, ShenzhenShenzhen, Guangdong, China (mainland)
| | - Wenlong Jiang
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xiaoshuan Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Juan Chen
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yunzhi Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yinghong Li
- The Central Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
21
|
Upadhyay S, Gupta KB, Mantha AK, Dhiman M. A short review: Doxorubicin and its effect on cardiac proteins. J Cell Biochem 2020; 122:153-165. [PMID: 32924182 DOI: 10.1002/jcb.29840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a boon for cancer-suffering patients. However, the undesirable effect on health on vital organs, especially the heart, is a limiting factor, resulting in an increased number of patients with cardiac dysfunction. The present review focuses on the contractile machinery and associated factors, which get affected due to DOX toxicity in chemo-patients for which they are kept under life-long investigation for cardiac function. DOX-induced oxidative stress disrupts the integrity of cardiac contractile muscle proteins that alter the rhythmic mechanism and oxygen consumption rate of the heart. DOX is an oxidant and it is further discussed that oxidative stress prompts the damage of contractile components and associated factors, which include Ca2+ load through Ca2+ ATPase, SERCA, ryanodine receptor-2, phospholamban, and calsequestrin, which ultimately results in left ventricular ejection and dilation. Based on data and evidence, the associated proteins can be considered as clinical markers to develop medications for patients. Even with the advancement of various diagnosing tools and modified drugs to mitigate DOX-induced cardiotoxicity, the risk could not be surmounted with survivors of cancer.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
22
|
Zhou J, Zhang W, Wei C, Zhang Z, Yi D, Peng X, Peng J, Yin R, Zheng Z, Qi H, Wei Y, Wen T. Weighted correlation network bioinformatics uncovers a key molecular biosignature driving the left-sided heart failure. BMC Med Genomics 2020; 13:93. [PMID: 32620106 PMCID: PMC7333416 DOI: 10.1186/s12920-020-00750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Left-sided heart failure (HF) is documented as a key prognostic factor in HF. However, the relative molecular mechanisms underlying left-sided HF is unknown. The purpose of this study is to unearth significant modules, pivotal genes and candidate regulatory components governing the progression of left-sided HF by bioinformatical analysis. METHODS A total of 319 samples in GSE57345 dataset were used for weighted gene correlation network analysis (WGCNA). ClusterProfiler package in R was used to conduct functional enrichment for genes uncovered from the modules of interest. Regulatory networks of genes were built using Cytoscape while Enrichr database was used for identification of transcription factors (TFs). The MCODE plugin was used for identifying hub genes in the modules of interest and their validation was performed based on GSE1869 dataset. RESULTS A total of six significant modules were identified. Notably, the blue module was confirmed as the most crucially associated with left-sided HF, ischemic heart disease (ISCH) and dilated cardiomyopathy (CMP). Functional enrichment conveyed that genes belonging to this module were mainly those driving the extracellular matrix-associated processes such as extracellular matrix structural constituent and collagen binding. A total of seven transcriptional factors, including Suppressor of Zeste 12 Protein Homolog (SUZ12) and nuclear factor erythroid 2 like 2 (NFE2L2), adrenergic receptor (AR), were identified as possible regulators of coexpression genes identified in the blue module. A total of three key genes (OGN, HTRA1 and MXRA5) were retained after validation of their prognostic value in left-sided HF. The results of functional enrichment confirmed that these key genes were primarily involved in response to transforming growth factor beta and extracellular matrix. CONCLUSION We uncovered a candidate gene signature correlated with HF, ISCH and CMP in the left ventricle, which may help provide better prognosis and therapeutic decisions and in HF, ISCH and CMP patients.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Chunying Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zhiliang Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Hongmei Qi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Yunfeng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China.
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
23
|
Liang X, Wang S, Wang L, Ceylan AF, Ren J, Zhang Y. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 2020; 157:104846. [PMID: 32339784 DOI: 10.1016/j.phrs.2020.104846] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2023]
Abstract
Doxorubicin (DOX) is one of the most effective antineoplastic drugs. However, its clinical application has been greatly limited due to the development of cardiotoxicity with DOX utilization. A number of theories have been postulated for DOX-induced cardiotoxicity with a pivotal contribution from unchecked (excess) mitophagy and mitochondrial fission. Liensinine (LIEN), a newly identified mitophagy inhibitor, strengthens the antineoplastic efficacy of DOX although its action on hearts remains elusive. This study was designed to examine the effect of LIEN on DOX-induced cardiotoxicity and the underlying mechanisms involved with a focus on mitochondrial dynamics. Our data revealed that LIEN alleviated DOX-induced cardiac dysfunction and apoptosis through inhibition of dynamin-related protein 1 (Drp1)-mediated excess (unchecked) mitochondrial fission. LIEN treatment decreased Drp1 phosphorylation at Ser616 site, inhibited mitochondrial fragmentation, mitophagy (assessed by TOM20 and TIM23), oxidative stress, cytochrome C leakage, cardiomyocyte apoptosis, as well as improved mitochondrial function and cardiomyocyte contractile function in DOX-induced cardiac injury. In DOX-challenged neonatal mouse ventricular myocytes (NMVMs), LIEN-suppressed Drp1 phosphorylation, mitochondrial fragmentation, and apoptosis were blunted by Rab7 overexpression, the effect of which was reversed by the ERK inhibitor U0126. Moreover, activation of ERK or Drp1 abolished the protective effects of LIEN on cardiomyocyte mechanical anomalies. These data shed some lights towards understanding the role of LIEN as a new protective agent against DOX-associated cardiotoxicity without compromising its anti-tumor effects.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Shuyi Wang
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Center for Cardiovascular Research and Alternative Medicine, Laramie, WY 82071, USA
| | - Lifeng Wang
- Center for Cardiovascular Research and Alternative Medicine, Laramie, WY 82071, USA; Department of Physiology, Basic Medicine College, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Asli F Ceylan
- Center for Cardiovascular Research and Alternative Medicine, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Center for Cardiovascular Research and Alternative Medicine, Laramie, WY 82071, USA.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| |
Collapse
|
24
|
Zhang H, Tian Y, Liang D, Fu Q, Jia L, Wu D, Zhu X. The Effects of Inhibition of MicroRNA-375 in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity. Med Sci Monit 2020; 26:e920557. [PMID: 32186283 PMCID: PMC7102408 DOI: 10.12659/msm.920557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Doxorubicin-induced myocardial toxicity is associated with oxidative stress, cardiomyocyte, apoptosis, and loss of contractile function. Previous studies showed that microRNA-375 (miR-375) expression was increased in mouse models of heart failure and clinically, and that inhibition of miR-375 reduced inflammation and increased survival of cardiomyocytes. This study aimed to investigate the effects and mechanisms of inhibition of miR-375 in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro. MATERIAL AND METHODS The mouse model of doxorubicin-induced cardiac toxicity was developed using an intraperitoneal injection of doxorubicin (15 mg/kg diluted in 0.9% saline) for eight days. Treatment was followed by a single subcutaneous injection of miR-375 inhibitor. H9c2 rat cardiac myocytes and adult murine cardiomyocytes (AMCs) were cultured in vitro and treated with doxorubicin, with and without pretreatment with miR-375 inhibitor. RESULTS Doxorubicin significantly upregulated miR-375 expression in vitro and in vivo, and inhibition of miR-375 re-established myocardial redox homeostasis, prevented doxorubicin-induced oxidative stress and cardiomyocyte apoptosis, and activated the PDK1/AKT axis by reducing the direct binding of miR-375 to 3' UTR of the PDK1 gene. Inhibition of PDK1 and AKT abolished the protective role of miR-375 inhibition on doxorubicin-induced oxidative damage. CONCLUSIONS Inhibition of miR-375 prevented oxidative damage in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro through the PDK1/AKT signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Qiang Fu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Liqun Jia
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Dawei Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Xinyuan Zhu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| |
Collapse
|
25
|
Xu H, Yu W, Sun S, Li C, Zhang Y, Ren J. Luteolin Attenuates Doxorubicin-Induced Cardiotoxicity Through Promoting Mitochondrial Autophagy. Front Physiol 2020; 11:113. [PMID: 32116805 PMCID: PMC7033739 DOI: 10.3389/fphys.2020.00113] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 02/02/2023] Open
Abstract
Doxorubicin is a valuable antineoplastic drug although its clinical use is greatly hindered by its severe cardiotoxicity with dismal target therapy available. Luteolin is a natural product extracted from vegetables and fruits with a wide range of biological efficacies including anti-oxidative, anti-tumorigenic, and anti-inflammatory properties. This study was designed to examine the possible effect of luteolin on doxorubicin-induced cardiotoxicity, if any, and the mechanism(s) involved with a focus on mitochondrial autophagy. Luteolin application (10 μM) in adult mouse cardiomyocytes overtly improved doxorubicin-induced cardiomyocyte contractile dysfunction including elevated peak shortening amplitude and maximal velocity of shortening/relengthening along with unchanged duration of shortening and relengthening. Luteolin alleviated doxorubicin-induced cardiotoxicity including apoptosis, accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Furthermore, luteolin attenuated doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy in association with facilitating phosphorylation of Drp1 at Ser616, and upregulating TFEB expression. In addition, luteolin treatment partially attenuated low dose doxorubicin-induced elongation of mitochondria. Treatment of Mdivi-1, a Drp1 GTPase inhibitor, negated the protective effect of luteolin on levels of TFEB, LAMP1, and LC3B, as well as loss of mitochondrial membrane potential and cardiomyocyte contractile dysfunction in the face of doxorubicin challenge. Taken together, these findings provide novel insights for the therapeutic efficacy of luteolin against doxorubicin-induced cardiotoxicity possibly through improved mitochondrial autophagy.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Shiqun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
26
|
Zhang P, Chen Z, Lu D, Wu Y, Fan M, Qian J, Ge J. Overexpression of COX5A protects H9c2 cells against doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun 2020; 524:43-49. [PMID: 31980176 DOI: 10.1016/j.bbrc.2020.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Mitochondrial dysfunction plays a pivotal role in doxorubicin (DOX)-induced cardiomyopathy. Cytochrome c oxidase subunit 5A (COX5A) is a nuclear-encoded subunit of the terminal oxidase involved in mitochondrial electron transport. Although COX5A appears to play a key role in modulating the physiological activity of COX and involve in energy metabolism, the involvement of COX5A in DOX-induced cardiotoxicity remains unclear. In this study, we showed that COX5A was significantly downregulated by DOX treatment of H9c2 cells. Overexpression of COX5A in H9c2 cells effectively attenuated DOX-induced apoptosis. Meanwhile, DOX-induced decrease in mitochondrial membrane potential could be reserved by COX5A overexpression. Furthermore, COX5A overexpression relieved the DOX-induced suppression of mitochondrial respiration, due an increase in basal respiration, maximal respiration, ATP production, and spare respiratory capacity. These findings indicate that up-regulation of COX5A may inhibit the apoptosis and alleviate the mitochondrial dysfunction of DOX-treated H9c2 cells. Thus, COX5A may have potential for clinical use as a therapeutic target in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengkang Fan
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 2020; 85:563-571. [DOI: 10.1007/s00280-019-04019-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
28
|
Chen C, Jiang L, Zhang M, Pan X, Peng C, Huang W, Jiang Q. Isodunnianol alleviates doxorubicin-induced myocardial injury by activating protective autophagy. Food Funct 2020; 10:2651-2657. [PMID: 31025676 DOI: 10.1039/c9fo00063a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recurrent cardiotoxicity limits the clinical application of doxorubicin (DOX); however the detailed molecular mechanism of DOX cardiotoxicity remains unclear. In the current study, we found that a natural product extracted from Illicium verum, isodunnianol (IDN), mitigates DOX-induced cardiotoxicity by regulating autophagy and apoptosis both in vitro and in vivo. DOX suppressed protective autophagy and induced apoptosis in H9C2 cardiac myoblasts. Additionally, IDN demonstrated up-regulated autophagy and reduced apoptosis through the activation of the AMPK-ULK1 pathway. In addition, the beneficial effects of IDN on DOX which induced myocardial injury were dependent on AMPK and ULK1 phosphorylation. Similar results were also observed in a DOX-induced cardiotoxicity rat model. The combination of IDN and DOX resulted in decreased apoptosis and inflammatory myocardial fibrosis compared to the DOX mono-treatment group. In summary, our findings provide novel insights into the prevention of DOX-related toxicity by isodunnianol, a food source natural product, warranting further investigation.
Collapse
Affiliation(s)
- Can Chen
- The First Affiliated Hospital, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
30
|
Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 2019; 122:109547. [PMID: 31918264 DOI: 10.1016/j.biopha.2019.109547] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
The clinical application of doxorubicin (DOX) for cancer treatment is limited due to its cardiotoxicity. However, the basic pathophysiological molecular mechanisms underlying DOX-induced cardiomyopathy have not yet been completely clarified, and the disease-specific therapeutic strategies are lacking. The aim of the present study was to investigate the potential cardioprotective effect of cardamonin (CAR), a flavone found in Alpinia plant, on DOX-induced cardiotoxicity in a mouse model. At first, in DOX-treated mouse cardiomyocytes, CAR showed significantly cytoprotective effects through elevating nuclear factor erythroid-2 related factor 2 (Nrf2) signaling, and reducing the degradation of Nrf2. This process then improved the anti-oxidant system, as evidenced by the up-regulated expression levels of haem oxygenase-1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (GCLM), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). In contrast, DOX-induced increases in malondialdehyde (MDA) and reactive oxygen species (ROS) were highly inhibited by CAR treatments. Additionally, DOX-induced apoptosis and inflammatory response in cardiomyocytes were diminished by CAR through reducing the Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways, respectively. Then, in the DOX-induced animal model with cardiotoxicity, we confirmed that through improving Nrf2 signaling, CAR markedly suppressed oxidative stress, apoptosis and inflammatory response in hearts of mice, improving cardiac function eventually. Together, our findings demonstrated that CAR activated Nrf2-related cytoprotective system, and protected the heart from oxidative damage, apoptosis and inflammatory injury, suggesting that CAR might be a potential therapeutic strategy in the prevention of DOX-associated myocardiopathy.
Collapse
Affiliation(s)
- Wang Qi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Boliang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China
| | - Tian Xiaoxi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Fu Guoqiang
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Xiao Jianbo
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Gang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
31
|
Zheng X, Zhong T, Ma Y, Wan X, Qin A, Yao B, Zou H, Song Y, Yin D. Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME. Life Sci 2019; 242:117186. [PMID: 31862454 DOI: 10.1016/j.lfs.2019.117186] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
AIMS This study was aimed to investigate the role of GSDME-mediated pyroptosis in cardiac injury induced by Doxorubicin (DOX), and to evaluate the role of BH3-only protein Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) in regulation of DOX-induced pyroptosis. MAIN METHODS HL-1 cardiomyocytes and C57BL/6J mice were treated by DOX to establish DOX-induced cardiotoxicity in vitro and in vivo models, respectively. Cell transfection was applied to regulate the expression of caspase-3, GSDME and Bnip3. Western blot was used for measuring expression of protein level. LDH-cytotoxicity assay was used to detect the LDH release. The Flow cytometry analysis was used to detect the cell death. Echocardiography was used to determine the cardiac function. HE staining was used for observing pathological feature of heart tissues. KEY FINDINGS Our results showed that GSDME-mediated pyroptosis was involved in DOX-induced cardiotoxicity in vivo. We showed that HL-1 cardiomyocytes exposed to DOX exhibited morphological features of pyroptosis in vitro. We also showed that DOX induced activation of caspase-3 and eventually triggered GSDME-dependent pyroptosis, which was reduced by the silence or inhibitor of caspase-3. We further showed that knockdown of GSDME inhibited DOX-induced cardiomyocyte pyroptosis in vitro. Finally, DOX increased the expression of Bnip3, whereas silencing of Bnip3 blunted cardiomyocyte pyroptosis induced by DOX, which was regulated through caspase-3 activation and GSDME cleavage. SIGNIFICANCE Our findings revealed a novel pathway that cardiomyocyte pyroptosis is regulated through Bnip3-caspase-3-GSDME pathway following DOX treatment, suggesting that Bnip3-dependent pyroptosis may offer a novel therapeutic strategy to reduce cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Xinbin Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Ting Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Yeshuo Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Xiaoya Wan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Anna Qin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Bifeng Yao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Huajiao Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China
| | - Yan Song
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Deling Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 41008, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
32
|
Liu D, Ma Z, Xu L, Zhang X, Qiao S, Yuan J. PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades. Aging (Albany NY) 2019; 11:10061-10073. [PMID: 31733141 PMCID: PMC6914429 DOI: 10.18632/aging.102418] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a widely used and potent anticancer agent, but DOX dose-dependently induced cardiotoxicity greatly limits its use in clinic. Pterostilbene, a natural analog of resveratrol, is a known antioxidant and exerts myocardial protection. The present study explored the action and detailed mechanism of pterostilbene on DOX-treated cardiomyocytes. We investigated the effects of pterostilbene on established acute DOX-induced cardiotoxicity models in both H9c2 cells treated with 1 μM DOX and C57BL/6 mice with DOX (20 mg/kg cumulative dose) exposure. Pterostilbene markedly alleviated the DOX exposure-induced acute myocardial injury. Both in vitro and in vivo studies revealed that pterostilbene inhibited the acute DOX exposure-caused oxidative stress and mitochondrial morphological disorder via the PGC1α upregulation through activating AMPK and via PGC1α deacetylation through enhancing SIRT1. However, these effects were partially reversed by knockdown of AMPK or SIRT1 in vitro and treatment of Compound C (AMPK inhibitor) or EX527 (SIRT1 inhibitor) in vivo. Our results indicate that pterostilbene protects cardiomyocytes from acute DOX exposure-induced oxidative stress and mitochondrial damage via PGC1α upregulation and deacetylation through activating AMPK and SIRT1 cascades.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Liqun Xu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Xiaoyan Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Shubin Qiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiansong Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
33
|
Wen J, Zhang L, Liu H, Wang J, Li J, Yang Y, Wang Y, Cai H, Li R, Zhao Y. Salsolinol Attenuates Doxorubicin-Induced Chronic Heart Failure in Rats and Improves Mitochondrial Function in H9c2 Cardiomyocytes. Front Pharmacol 2019; 10:1135. [PMID: 31680945 PMCID: PMC6797600 DOI: 10.3389/fphar.2019.01135] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Backgrounds: Salsolinol (SAL), a plant-based isoquinoline alkaloid, was initially isolated from Aconiti Lateralis Radix Praeparata (ALRP) and identified as the active cardiotonic component of ALRP. This study was aimed to explore the therapeutic effect and mechanism by which SAL attenuates doxorubicin (DOX)-induced chronic heart failure (CHF) in rats and improves mitochondrial function in H9c2 cardiomyocytes. Methods: Rats were intraperitoneally injected with DOX to establish CHF model. Therapeutic effects of SAL on hemodynamic parameters, serum indices, and the histopathology of the heart were analyzed in vivo. Moreover, H9c2 cardiomyocytes were pretreated with SAL for 2 h before DOX treatment in all procedures in vitro. Cell viability, cardiomyocyte morphology, proliferation, and mitochondrial function were detected by a high-content screening (HCS) assay. In addition, a Seahorse Extracellular Flux (XFp) analyzer was used to evaluate the cell energy respiratory and energy metabolism function. To further investigate the potential mechanism of SAL, relative mRNA and protein expression of key enzymes in the tricarboxylic acid cycle in vivo and mitochondrial calcium uniporter (MCU) signaling pathway-related molecules in vitro were detected. Results: The present data demonstrated the pharmacological effect of SAL on DOX-induced CHF, which was through ameliorating heart function, downregulating serum levels of myocardial injury markers, alleviating histological injury to the heart, increasing the relative mRNA expression levels of key enzymes downstream of the tricarboxylic acid cycle in vivo, and thus enhancing myocardial energy metabolism. In addition, SAL had effects on increasing cell viability, ameliorating DOX-induced mitochondrial dysfunction, and increasing mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in H9c2 cardiomyocyte. Moreover, we found that SAL might have an effect on improving mitochondrial respiratory function and energy metabolism via inhibiting excessive activation of MCU pathway in H9c2 cells. However, the protective effect could be ameliorated by ruthenium red (an MCU inhibitor) and abrogated by spermine (an MCU activator) in vitro. Conclusion: The therapeutic effects of SAL on CHF are possibly related to ameliorating cardiomyocyte function resulting in promotion of mitochondrial respiratory and energy metabolism. Furthermore, the potential mechanism might be related to downregulating MCU pathway. These findings may provide a potential therapy for CHF.
Collapse
Affiliation(s)
- Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Lu Zhang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Honghong Liu
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jiabo Wang
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jianyu Li
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yuxue Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yingying Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Huadan Cai
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|