1
|
Lv H, Zhou X, Liu Y, Liu Y, Chen Z. Feasibility analysis of arterial CT radiomics model to predict the risk of local and metastatic recurrence after radical cystectomy for bladder cancer. Discov Oncol 2024; 15:40. [PMID: 38369583 PMCID: PMC10874920 DOI: 10.1007/s12672-024-00880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
PURPOSE To construct a radiomics-clinical nomogram model for predicting the risk of local and metastatic recurrence within 3 years after radical cystectomy (RC) of bladder cancer (BCa) based on the radiomics features and important clinical risk factors for arterial computed tomography (CT) images and to evaluate its efficacy. METHODS Preoperative CT datasets of 134 BCa patients (24 recurrent) who underwent RC were collected and divided into training (n = 93) and validation sets (n = 41). Radiomics features were extracted from a 1.5 mm CT layer thickness image in the arterial phase. A radiomics score (Rad-Score) model was constructed using the feature dimension reduction method and a logistic regression model. Combined with important clinical factors, including gender, age, tumor size, tumor number and grade, pathologic T stage, lymph node stage and histology type of the archived lesion, and CT image signs, a radiomics-clinical nomogram was developed, and its performance was evaluated in the training and validation sets. Decision curve analyses (DCA) the potential clinical usefulness. RESULTS The radiomics model is finally linear combined by 8 features screened by LASSO regression, and after coefficient weighting, achieved good predictive results. The radiomics nomogram developed by combining two independent predictors, Rad-Score and pathologic T stage, was developed in the training set [AUC, 0.840; 95% confidence interval (CI) 0.743-0.937] and validation set (AUC, 0.883; 95% CI 0.777-0.989). The calibration curve showed good agreement between the predicted probability of the radiomics-clinical model and the actual recurrence rate within 3 years after RC for BCa. DCA show the clinical application value of the radiomics-clinical model. CONCLUSION The radiomics-clinical nomogram model constructed based on the radiomics features of arterial CT images and important clinical risk factors is potentially feasible for predicting the risk of recurrence within 3 years after RC for BCa.
Collapse
Affiliation(s)
- Huawang Lv
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaozhou Zhou
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuan Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuting Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Hong Y, Li Z, Su Y, Pu H, Zhang X. The ceRNA Mechanism of lncRNA MEG3/miR-21-5p/SPRY2 in Cell Proliferation and Apoptosis in Bladder Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:55-68. [PMID: 37824392 DOI: 10.1615/critreveukaryotgeneexpr.2023048011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bladder cancer (BC) is the second most common genitourinary malignancy. Long noncoding RNA (lncRNA) is implicated in BC progression. This study delved into the underlying mechanism of lncRNA MEG3 in BC. Bioinformatics analysis predicted the expression of lncRNA MEG3, its association with the survival of BC patients, its subcellular localization, and its binding sites with miR-21-5p. Differentially expressed genes (DEGs) in the GSE13507 chip were analyzed using GEOexplorer, downstream targets of miR-21-5p were predicted from databases, and the overlapping genes were analyzed by the website Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html); their impacts on patient survival were analyzed by the Starbase database. The expression of SPRY2 and TGFBI associated with patient survival was analyzed in TCGA. RT-qPCR and western blot were performed to detect levels of MEG3, miR-21-5p, and SPRY2 in BC/SV-HUC-1 cells. Malignant biological behaviors of BC cells were detected using CCK8, flow cytometry, and Transwell assays. RNA pull-down and dual-luciferase assays were employed to verify the binding relationship of miR-21-5p with MEG3 and SPRY2. MEG3 was found to be lowly expressed in BC cells and mainly distributed in the cytoplasm. Over-expression of MEG3 was found to inhibit BC cell activity, promote apoptosis, and reduce invasion and migration. miR-21-5p was found to be highly expressed in BC cells, and its down-regulation was found to inhibit the malignant behavior of BC cells. Over-expression of miR-21-5p was found to reverse the effect of pcDNA3.1-MEG3 on BC cells. MEG3 was found to competitively bind to miR-21-5p as a ceRNA to promote SPRY2 levels. LncRNA MEG3 promotes SPRY2 expression by competitively binding to miR-21-5p, thereby inhibiting proliferation and promoting apoptosis of BC cells.
Collapse
Affiliation(s)
- Yangchun Hong
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Zhen Li
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Yixin Su
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Hexian Pu
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| | - Xiuxiu Zhang
- Department of Urology, Shunde Hospital Affiliated to Jinan University, Foshan, 528305, Guangdong, China
| |
Collapse
|
3
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
4
|
Ali MA, Shaker OG, Ezzat EM, Eid HM, Ali DY, Hassan EA, Elsayed DH, Abozaid ER, Abdelaleem OO. Serum lncRNAs, NBAT-1, and FOXCUT signature in hepatocellular carcinoma developed on top of chronic hepatitis C. Mol Carcinog 2023; 62:319-331. [PMID: 36440815 DOI: 10.1002/mc.23488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a universal health problem responsible for 8.2% of all cancer deaths. Numerous risk factors were documented to be contributed to HCC development with viral hepatitis C ranking as the major predisposing factor in Egypt. The presence of a detectable amount of long noncoding RNAs (lncRNAs) in the circulation is linked to the development and spread of tumors. LncRNAs NBAT-1 and FOXCUT expression levels were used as genetic markers for the detection of gastrointestinal tract cancers. We hypothesized that serum expression levels of NBAT-1 and FOXCUT are new biomarkers for HCC that are related to laboratory and pathological markers. PATIENTS AND METHODS This study included 165 hepatitis C virus (HCV)-related HCC Egyptian patients, 180 HCV-infected noncancer patients, and 180 healthy controls, the serum expression levels of NBAT-1 and FOXCUT were measured by using quantitative real-time polymerase chain reaction. RESULTS This study's results include that medians (inter-quartile range [IQRs]) of NBAT-1 in HCC and HCV patients were (1.9 [0.87-4.94], 10.01 [7.34-13.29] respectively) which exhibited significantly higher expression than controls, while the medians (IQRs) of FOXCUT in HCC and HCV patients were (0.15 [0.04-0.52], 6.42 [2.49-10.10], respectively) that exhibited significantly lower expression than controls regarding HCC patients but significantly higher expression than controls regarding HCV patients. In comparing serum fold changes of NBAT-1 and FOXCUT between HCC patients and HCV patients; we obtained significantly higher levels of target genes in HCV patients (p < 0.001) than in HCC patients. Also, a positive correlation was detected between NBAT-1 and FOXCUT in HCC group (r = 0.262, p = 0.001) and in HCV group (r = 0.937, p < 0.001). Higher serum NBAT-1 and FOXCUT were significantly associated with better clinical and laboratory data of the disease. Multivariate regression analysis showed that FOXCUT was an independent predictor for HCC among HCV patients (p < 0.001). CONCLUSION Our study cited that NBAT-1 and FOXCUT could be considered new diagnostic serum biomarkers for HCC on top of HCV.
Collapse
Affiliation(s)
- Marwa A Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman M Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanaa M Eid
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Doaa Y Ali
- Department Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Essam A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Dalia H Elsayed
- Department of Medical Oncology, Zagazig University, Zagazig, Egypt
| | - Eman R Abozaid
- Department of Physiology, Zagazig University, Zagazig, Egypt
| | - Omayma O Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
5
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
6
|
Tian C, Su J, Ma Z, Wu Y, Ma H. lncRNA NBAT1 Inhibits Cell Metastasis and Promotes Apoptosis in Endometrial Cancer by Sponging miR-21-5p to Regulate PTEN. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9304392. [PMID: 35912140 PMCID: PMC9328976 DOI: 10.1155/2022/9304392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
Objective Long noncoding RNA neuroblastoma-associated transcript 1 (NBAT1) is implicated in the progression of various cancers. Nevertheless, its biological function in endometrial cancer (EC) remains unknown. Methods The levels of NBAT1, miR-21-5p, and PTEN in EC cells and EC tissues were examined by RT-qPCR. Western blot was carried out to assess the protein expression of PTEN. The dual-luciferase reporter assay was conducted to explore the interactions among NBAT1, miR-21-5p, and PTEN. The effect of NBAT1 on EC proliferation, metastasis, and apoptosis was evaluated by CCK-8, transwell assays, wound healing, and flow cytometry. miR-21-5p mimics or NBAT1+miR-21-5p were transfected into HEC-1A and Ishikawa cells to investigate whether NBAT1 regulated EC tumorigenesis via sponging miR-21-5p. Results NBAT1 is downregulated, and miR-21-5p is upregulated in EC cells and tumor tissues. Overexpression of NBAT1 inhibits the proliferation, migration, and invasion abilities of EC cells and facilitated apoptosis. NBAT1 directly binds and negatively regulates miR-21-5p in EC. miR-21-5p mimics reverses the effect of lncRNA NBAT1 overexpression on the proliferation and migration of EC cells. PTEN is a downstream gene of miR-21-5p. lncRNA NBTA1 elevates PTEN expression via sponging miR-21-5p. Conclusions lncRNA NBAT1 acts as a tumor suppressor in EC via regulating PTEN through sponging miR-21-5p.
Collapse
Affiliation(s)
- Chunhua Tian
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Jing Su
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Zhao Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Yang Wu
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| |
Collapse
|
7
|
Xiao S, Zuo Y, Li Y, Huang Y, Fu S, Yuan D, Qiao X, Wang H, Wang J. Long Noncoding RNA HAGLROS Promotes the Malignant Progression of Bladder Cancer by Regulating the miR-330-5p/SPRR1B Axis. Front Oncol 2022; 12:876090. [PMID: 35664787 PMCID: PMC9159766 DOI: 10.3389/fonc.2022.876090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is the most common genitourinary malignancy worldwide, and its aetiology and pathogenesis remain unclear. Accumulating evidence has shown that HAGLROS is closely related to the occurrence and progression of various cancers. However, the biological functions and underlying mechanisms of HAGLROS in BC remain unknown. In the present study, the expression of HAGLROS in BC was determined by public dataset analysis, transcriptome sequencing analysis, qRT–PCR and ISH assays. Gain- or loss-of-function assays were performed to study the biological roles of HAGLROS in BC cells and nude mouse xenograft model. Bioinformatic analysis, qRT–PCR, western blot, immunohistochemistry, FISH assays, subcellular fractionation assays and luciferase reporter assays were performed to explore the underlying molecular mechanisms of HAGLROS in BC. Here, we found that HAGLROS expression is significantly upregulated in BC tissues and cells, and elevated HAGLROS expression was related to higher pathologic grade and advanced clinical stage, which is significant for BC diagnosis. HAGLROS can enhance the growth and metastasis of BC in vitro and in vivo. Furthermore, miR-330-5p downregulation reversed the BC cells proliferation, migration and invasion inhibited by silencing HAGLROS. SPRR1B silencing restored the malignant phenotypes of BC cells promoted by miR-330--5p inhibitor. Mechanistically, we found that HAGLROS functions as a microRNA sponge to positively regulate SPRR1B expression by sponging miR-330-5p. Together, these results demonstrate that HAGLROS plays an oncogenic role and may serve as a potential biomarker for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Shiwei Xiao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yanan Li
- Department of Basic Chemistry, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xuhua Qiao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| |
Collapse
|
8
|
Shen Y, Xu J, Zhi S, Wu W, Chen Y, Zhang Q, Zhou Y, Deng Z, Li W. MIP From Legionella pneumophila Influences the Phagocytosis and Chemotaxis of RAW264.7 Macrophages by Regulating the lncRNA GAS5/miR-21/SOCS6 Axis. Front Cell Infect Microbiol 2022; 12:810865. [PMID: 35573783 PMCID: PMC9105720 DOI: 10.3389/fcimb.2022.810865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Background The intracellular pathogen Legionella pneumophila (L. pneumophila) is a causative agent of pneumonia and does great harm to human health. These bacteria are phagocytosed by alveolar macrophages and survive to replicate within the macrophages. Despite macrophage infectivity potentiator (MIP) protein serving as an essential virulence factor during the invasion process of L. pneumophila, the regulatory mechanism of MIP protein in the process of bacterial infection to host cells is not yet completely understood. This research thus aims to explore the interaction between MIP and macrophage phagocytosis. Methods Through the experiment of the co-culture of RAW264.7 macrophages with different concentrations of MIP, the chemotactic activity of macrophages was detected and the phagocytosis was determined by a neutral red uptake assay. The expression of long noncoding RNA (lncRNA) GAS5, microRNA-21 (miR-21), and suppressor of cytokine signaling (SOCS)6 was determined by qRT-PCR. Target genes were detected by dual luciferase assay. Results MIP could reduce the phagocytosis and improve the chemotaxis of RAW264.7 macrophages. The expression of both lncRNA GAS5 and SOCS6 was increased whereas the expression of miR-21 was decreased when macrophages were treated with MIP. Dual luciferase assay revealed that lncRNA GAS5 could interact with miR-21, and SOCS6 served as the target of miR-21. After GAS5 overexpression, the phagocytosis of RAW264.7 treated with MIP was increased whereas the chemotaxis was decreased. In contrast, the opposite results were found in RAW264.7 following GAS5 interference. Conclusions The present results revealed that MIP could influence RAW264.7 macrophages on phagocytic and chemotactic activities through the axis of lncRNA GAS5/miR-21/SOCS6.
Collapse
Affiliation(s)
- Youfeng Shen
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Jian Xu
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Shenshen Zhi
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ze Deng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Li
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Wei Li,
| |
Collapse
|
9
|
Luo R, Li L, Xiao F, Fu J. LncRNA FLG-AS1 Mitigates Diabetic Retinopathy by Regulating Retinal Epithelial Cell Inflammation, Oxidative Stress, and Apoptosis via miR-380-3p/SOCS6 Axis. Inflammation 2022; 45:1936-1949. [DOI: 10.1007/s10753-022-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
|
10
|
Zhi Y, Huang S, Lina Z. Suppressor of Cytokine Signaling 6 in cancer development and therapy: deciphering its emerging and suppressive roles. Cytokine Growth Factor Rev 2022; 64:21-32. [DOI: 10.1016/j.cytogfr.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
|
11
|
Ouyang J, An T, Wang Y, Lu X, Zhang Y, Wang X, Zhang X, Zhang C. Down-regulation of SOCS6: an unfavorable prognostic factor for gastrointestinal stromal tumor proven by survival analysis. Diagn Pathol 2021; 16:113. [PMID: 34895274 PMCID: PMC8667422 DOI: 10.1186/s13000-021-01172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background Many studies reporting that down-regulation of SOCS6 plays vital roles in promoting progression of malignant tumors have been published. The present study was performed to evaluate whether SOCS6 was significantly associated with prognosis of GIST patients. Methods Immunohistochemical staining was accomplished to evaluate the expression levels of SOCS6 among GIST patients. The impacts of SOCS6 expression on overall survival (OS) and recurrence-free survival (RFS) of GIST patients were assessed by Cox proportional hazard regression model analysis and Kaplan-Meier curve analysis. Results It was demonstrated that the expression level of SOCS6 was significantly associated with tumor size (P=0.001). Then according to Kaplan-Meier curve analysis, low expression of SOCS6 was significantly correlated with worse OS and RFS of GIST patients. Ultimately, it was revealed by Cox proportional regression model analysis that low expression of SOCS6 was an independent predictive factor for OS and RFS. Conclusions Low expression of SOCS6 was an independent prognostic factor for GIST, suggesting its potential as a novel biomarker predicting survival of GIST patients.
Collapse
Affiliation(s)
- Jun Ouyang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Tailai An
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Guangdong, Shenzhen, China
| | - Yan Wang
- Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawei Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Xiaokun Wang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China.
| | - Changhua Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Li HJ, Gong X, Li ZK, Qin W, He CX, Xing L, Zhou X, Zhao D, Cao HL. Role of Long Non-coding RNAs on Bladder Cancer. Front Cell Dev Biol 2021; 9:672679. [PMID: 34422802 PMCID: PMC8371405 DOI: 10.3389/fcell.2021.672679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumor in the urinary system, and its early diagnosis is conducive to improving clinical prognosis and prolonging overall survival time. However, few biomarkers with high sensitivity and specificity are used as diagnostic markers for BC. Multiple long non-coding RNAs (lncRNAs) are abnormally expressed in BC, and play key roles in tumorigenesis, progression and prognosis of BC. In this review, we summarize the expression, function, molecular mechanisms and the clinical significance of lncRNAs on bladder cancer. There are more than 100 dysregulated lncRNAs in BC, which are involved in the regulation of proliferation, cell cycle, apoptosis, migration, invasion, metabolism and drug resistance of BC. Meanwhile, the molecular mechanisms of lncRNAs in BC was explored, including lncRNAs interacting with DNA, RNA and proteins. Additionally, the abnormal expression of thirty-six lncRNAs is closely associated with multiple clinical characteristics of BC, including tumor size, metastasis, invasion, and drug sensitivity or resistance of BC. Furthermore, we summarize some potential diagnostic and prognostic biomarkers of lncRNA for BC. This review provides promising novel biomarkers in early diagnosis, prognosis and monitoring of BC based on lncRNAs.
Collapse
Affiliation(s)
- Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xue Gong
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zheng-Kun Li
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
13
|
Du W, Wang L, Liao Z, Wang J. Circ_0085289 Alleviates the Progression of Periodontitis by Regulating let-7f-5p/SOCS6 Pathway. Inflammation 2021; 44:1607-1619. [PMID: 33710445 DOI: 10.1007/s10753-021-01445-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Periodontitis is a common chronic inflammation that often occurs in adults. Circular RNAs (circRNAs) play a vital role in inflammation-related diseases. However, the role and potential basis of hsa_circ_0085289 in periodontitis remain unknown. Periodontal ligament cells (PDLCs) were exposed to lipopolysaccharide (LPS) to mimic periodontitis. The levels of circ_0085289, let-7f-5p, and suppressor of cytokine signaling 6 (SOCS6) were determined using qRT-PCR and western blot. The release of inflammatory cytokines was measured via enzyme-linked immunosorbent assay (ELISA). Cell viability and apoptosis were determined using Cell Counting Kit-8, flow cytometry, Caspase-3 Assay Kit, and western blot assays. The association between let-7f-5p and circ_0085289/SOCS6 was validated via dual-luciferase reporter, RNA pull-down, and RIP assays. Circ_0085289 and SOCS6 levels were reduced, and let-7f-5p level was increased in periodontitis patients and LPS-treated PDLCs. LPS stimulation caused PDLC injury and circ_0085289 downregulation. Moreover, circ_0085289 upregulation or let-7f-5p downregulation diminished LPS-triggered PDLC injury. Besides, circ_0085289 promoted SOCS6 expression by absorbing let-7f-5p. Circ_0085289 alleviated LPS-stimulated PDLC injury via targeting let-7f-5p. Moreover, let-7f-5p targeted SOCS6 to affect LPS-resulted PDLC injury. Circ_0085289 alleviated PDLC injury induced by LPS stimulation via modulating let-7f-5p/SOCS6 axis, suggesting a promising biomarker for periodontitis treatment.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China.
| | - Li Wang
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Zhen Liao
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Juan Wang
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| |
Collapse
|
14
|
Luna-Velez MV, Dijkstra JJ, Heuschkel MA, Smit FP, van de Zande G, Smeets D, Sedelaar JPM, Vermeulen M, Verhaegh GW, Schalken JA. Androgen receptor signalling confers clonogenic and migratory advantages in urothelial cell carcinoma of the bladder. Mol Oncol 2021; 15:1882-1900. [PMID: 33797847 PMCID: PMC8253097 DOI: 10.1002/1878-0261.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder urothelial cell carcinoma (UCC) incidence is about three times higher in men compared with women. There are several indications for the involvement of hormonal factors in the aetiology of UCC. Here, we provide evidence of androgen signalling in UCC progression. Microarray and qPCR analysis revealed that the androgen receptor (AR) mRNA level is upregulated in a subset of UCC cases. In an AR‐positive UCC‐derived cell line model, UM‐UC‐3‐AR, androgen treatment increased clonogenic capacity inducing the formation of big stem cell‐like holoclones, while AR knockdown or treatment with the AR antagonist enzalutamide abrogated this clonogenic advantage. Additionally, blockage of AR signalling reduced the cell migration potential of androgen‐stimulated UM‐UC‐3‐AR cells. These phenotypic changes were accompanied by a rewiring of the transcriptome with almost 300 genes being differentially regulated by androgens, some of which correlated with AR expression in UCC patients in two independent data sets. Our results demonstrate that AR signals in UCC favouring the development of an aggressive phenotype and highlights its potential as a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Maria V Luna-Velez
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Jelmer J Dijkstra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Marina A Heuschkel
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Guillaume van de Zande
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Smeets
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J P Michiel Sedelaar
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Mitra S, Muralidharan SV, Di Marco M, Juvvuna PK, Kosalai ST, Reischl S, Jachimowicz D, Subhash S, Raimondi I, Kurian L, Huarte M, Kogner P, Fischer M, Johnsen JI, Mondal T, Kanduri C. Subcellular Distribution of p53 by the p53-Responsive lncRNA NBAT1 Determines Chemotherapeutic Response in Neuroblastoma. Cancer Res 2021; 81:1457-1471. [PMID: 33372039 DOI: 10.1158/0008-5472.can-19-3499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Neuroblastoma has a low mutation rate for the p53 gene. Alternative ways of p53 inactivation have been proposed in neuroblastoma, such as abnormal cytoplasmic accumulation of wild-type p53. However, mechanisms leading to p53 inactivation via cytoplasmic accumulation are not well investigated. Here we show that the neuroblastoma risk-associated locus 6p22.3-derived tumor suppressor NBAT1 is a p53-responsive lncRNA that regulates p53 subcellular levels. Low expression of NBAT1 provided resistance to genotoxic drugs by promoting p53 accumulation in cytoplasm and loss from mitochondrial and nuclear compartments. Depletion of NBAT1 altered CRM1 function and contributed to the loss of p53-dependent nuclear gene expression during genotoxic drug treatment. CRM1 inhibition rescued p53-dependent nuclear functions and sensitized NBAT1-depleted cells to genotoxic drugs. Combined inhibition of CRM1 and MDM2 was even more effective in sensitizing aggressive neuroblastoma cells with p53 cytoplasmic accumulation. Thus, our mechanistic studies uncover an NBAT1-dependent CRM1/MDM2-based potential combination therapy for patients with high-risk neuroblastoma. SIGNIFICANCE: This study shows how a p53-responsive lncRNA mediates chemotherapeutic response by modulating nuclear p53 pathways and identifies a potential treatment strategy for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Sanhita Mitra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | | | - Mirco Di Marco
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Prasanna Kumar Juvvuna
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | | | - Silke Reischl
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Daniel Jachimowicz
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Santhilal Subhash
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Ivan Raimondi
- Cima, University of Navarra, Pio XII, Pamplona, Spain
| | - Leo Kurian
- Center for Molecular Medicine Cologne, Institute for Neurophysiology, The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany
| | - Maite Huarte
- Cima, University of Navarra, Pio XII, Pamplona, Spain
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tanmoy Mondal
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden.
| |
Collapse
|
16
|
Chen X, Chen S. LINC00649 promotes bladder cancer malignant progression by regulating the miR‑15a‑5p/HMGA1 axis. Oncol Rep 2021; 45:8. [PMID: 33649788 PMCID: PMC7876990 DOI: 10.3892/or.2021.7959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to explore the effects of LINC00649 on the proliferation, migration and invasion of bladder cancer (BC) and identify possible mechanisms. Through TCGA database analysis of LINC00649 expression in bladder cancer and the association of LINC00649 with the BC patient prognosis, RT‑qPCR was employed for detecting LINC00649 expression in 60 clinical tissue specimens and cell lines of bladder cancer. The lentivirus stable transfection or small interfering RNA was used to increase or decrease the LINC00649 expression level in T24 and UM‑UC‑3 cells. CCK8 and clone formation assay were utilized to observe the effects of LINC00649 on the proliferation and colony formation of BC cells. Transwell experiment was performed to detect the effects of LINC00649 on the migration and invasion of bladder cancer. Bioinformatics database was used to identify the possible downstream targets of LINC00649 while RT‑qPCR, western blot analysis and dual luciferase reporter gene experiments were carried out to verify the possible molecular mechanism. The TCGA database analysis revealed a significantly high expression of LINC00649 in bladder cancer and an association of LINC00649 expression with overall survival rate of BC patients. As shown by RT‑qPCR detection, LINC00649 expression was notably upregulated in BC tissues and BC cell lines. In addition, statistical analyses unveiled that highly expressed LINC00649 was clearly associated with poor overall survival of bladder cancer. Based on the in vitro cell experiment, upregulated LINC00649 considerately enhanced the proliferation, migration and invasion of BC cells, as opposed to those in T24 and UM‑UC‑3 cells by suppressing LINC00649. Mechanically, LINC00649 may promote the malignant progression of bladder cancer by regulating miR‑15a‑5p to promote the HMGA1 expression axis. Overall, LINC00649 upregulates HMGA1 expression by binding to miR‑15a‑5p to enhance the proliferation, migration and invasion of BC cells. Thus, LINC00649 is a potential biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Urology, The First People's Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Song Chen
- Department of Urology, The First People's Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
17
|
Wei L, Ling M, Yang S, Xie Y, Liu C, Yi W. Long noncoding RNA NBAT1 suppresses hepatocellular carcinoma progression via competitively associating with IGF2BP1 and decreasing c-Myc expression. Hum Cell 2021; 34:539-549. [PMID: 33387362 DOI: 10.1007/s13577-020-00464-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Hepatocellular Carcinoma (HCC) is the second leading cause of cancer-related deaths. Neuroblastoma associated transcript 1 (NBAT1) is a newly identified long noncoding RNA (lncRNA), which has been reported to play an important role in human cancers. However, the functional role and underlying mechanism of NBAT1 in HCC remains unclear. Here, we found that the expression of NBAT1 was decreased in HCC tissues and cells; as well, the decreased expression of NBAT1 was also associated with tumor size and clinical TNM stages. NBAT1 overexpression, both in vitro and in vivo studies, inhibited tumorigenesis through apoptosis augmentation and cell cycle blockade. Mechanistically, NBAT1 bound to IGF2BP1 and inhibited the interaction between IGF2BP1 and c-Myc mRNA, thus suppressing the stability of c-Myc mRNA. Collectively, NBAT1 is associated with HCC tumorigenesis and could be a therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Ling Wei
- Department of Gastroenterology, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| | - Mengzhi Ling
- Department of Gastroenterology, Cadre sanatorium of Hainan & Geriatric hospital of Hainan (CSH), Haikou, 571100, Hainan, China
| | - Song Yang
- Emergency Department, Hainan Cancer Hospital, Haikou, 570312, China
| | - Yunqian Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| | - Changjiang Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| | - Wenyi Yi
- General Department, The Second Affiliated Hospital, Hainan Medical University, No.48, Baishuitang Road, Haikou, 570311, Hainan, China.
| |
Collapse
|
18
|
Wan J, Chen P, Zhang Y, Ding J, Yang Y, Li X. Identification of the 11-lncRNA signatures associated with the prognosis of endometrial carcinoma. Sci Prog 2021; 104:368504211006593. [PMID: 33781143 PMCID: PMC10358503 DOI: 10.1177/00368504211006593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endometrial carcinoma (EC) is the fourth most common cancer in women. Some long non-coding RNAs (lncRNAs) are regarded as potential prognostic biomarkers or targets for treatment of many types of cancers. We aim to screen prognostic-related lncRNAs and build a possible lncRNA signature which can effectively predict the survival of patients with EC. We obtained lncRNA expression profiling from the TCGA database. The patients were classified into training set and verification set. By performing Univariate Cox regression model, Robust likelihood-based survival analysis, and Cox proportional hazards model, we developed a risk score with the Cox co-efficient of individual lncRNAs in the training set. The optimum cut-off point was selected by ROC analysis. Patients were effectively divided into high-risk group and low-risk group according to the risk score. The OS of the low-risk patients was significantly prolonged compared with that of the high-risk group. At last, we validated this 11-lncRNA signature in the verification set and the complete set. We identified an 11-lncRNA expression signature with high stability and feasibility, which can predict the survival of patients with EC. These findings provide new potential biomarkers to improve the accuracy of prognosis prediction of EC.
Collapse
Affiliation(s)
- Jing Wan
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - Yu Zhang
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Ding
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuebo Yang
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaomao Li
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis. Cell Death Dis 2020; 11:1038. [PMID: 33288752 PMCID: PMC7721747 DOI: 10.1038/s41419-020-03240-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Apart from being potential prognostic biomarkers and therapeutic targets, long non-coding RNAs (lncRNAs) modulate the development and progression of multiple cancers. PlncRNA-1 is a newly discovered lncRNA that exhibits the above properties through multiple regulatory pathways. However, the clinical significance and molecular mechanisms of PlncRNA-1 in bladder cancer have not been established. PlncRNA-1 was found to be overexpressed in 71.43% of bladder cancer tissues. Moreover, the expression level correlated with tumor invasion, T stage, age, and number of tumors, but not with gender, recurrent status, preoperative treatment, pathological grade, and tumor size. The expression level of PlncRNA-1 can, to a certain extent, be used as a predictor of the degree of tumor invasion and T stage among BC patients. Inhibiting PlncRNA-1 expression impaired the proliferation, migration, and invasion of T24 and 5637 bladder cancer cells in vitro and in vivo. Specifically, PlncRNA-1 promoter in BC tissues was found to be hypomethylated at position 131 (36157603 on chromosome 21). PlncRNA-1 promoter hypomethylation induces the overexpression of PlncRNA-1. In addition, PlncRNA-1 modulated the expression of smad3 and has-miR-136-5p (miR-136). Conversely, miR-136 regulated the expression of PlncRNA-1 and smad3. PlncRNA-1 mimics competitive endogenous RNA (ceRNA) in its regulation of smad3 expression by binding miR-136. Rescue analysis further revealed that modulation of miR-136 could reverse the expression of smad3 and epithelial–mesenchymal transition (EMT) marker proteins impaired by PlncRNA-1. In summary, PlncRNA-1 has important clinical predictive values and is involved in the post-transcriptional regulation of smad3. The PlncRNA-1/miR-136/smad3 axis provides insights into the regulatory mechanism of BC, thus may serve as a potential therapeutic target and prognostic biomarker for cancer.
Collapse
|
20
|
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|
21
|
Long noncoding RNA AC092171.4 promotes hepatocellular carcinoma progression by sponging microRNA-1271 and upregulating GRB2. Aging (Albany NY) 2020; 12:14141-14156. [PMID: 32692718 PMCID: PMC7425487 DOI: 10.18632/aging.103419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
Abstract
In this study, we investigated the mechanistic role of the long non-coding RNA (lncRNA) AC092171.4 in hepatocellular carcinoma (HCC). AC092171.4 was significantly upregulated in HCC tumor tissues compared to normal liver tissues. HCC patients with high AC092171.4 expression showed poorer overall survival (OS) and disease-free survival (DFS) than those with low AC092171.4 expression. In vitro cell proliferation, migration and invasiveness were all higher in AC092171.4-overexpressing HCC cells, but lower in AC092171.4-silenced HCC cells, than in controls. Balb/c nude mice injected with AC092171.4-silenced HCC cells had smaller xenograft tumors, which showed less growth and pulmonary metastasis than control tumors. Bioinformatics analyses and dual luciferase reporter assays confirmed that AC092171.4 binds directly to miR-1271, which targets the 3’UTR of GRB2 mRNA. AC092171.4 expression correlates negatively with miR1271 expression and correlates positively with GRB2 mRNA expression in HCC tissues from patients. HCC cells co-transfected with miR-1271 mimics and sh-AC092171.4 show less proliferation, migration, invasiveness, GRB2 protein, and epithelial to mesencyhmal transition (EMT) than sh-AC092171.4-transfected HCC cells. These findings demonstrate that AC092171.4 promotes growth and progression of HCC by sponging miR-1271 and upregulating GRB2. This makes AC092171.4 a potential prognostic indicator and therapeutic target for HCC patients.
Collapse
|
22
|
Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol 2020; 881:173226. [PMID: 32485246 DOI: 10.1016/j.ejphar.2020.173226] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Bladder cancer accounts for high morbidity and mortality around the world and its incidence rate is suggested to be higher in following years. A number of factors involve in bladder cancer development such as lifestyle and drugs. However, it appears that genetic factors play a significant role in bladder cancer development and progression. Phosphatase and tensin homolog (PTEN) is a cancer-related transcription factor that is corelated with reduced proliferation and invasion of cancer cells by negatively targeting PI3K/Akt/mTOR signaling pathway. In the present review, we aimed to explore the role of PTEN in bladder cancer cells and how upstream modulators affect PTEN in this life-threatening disorder. Down-regulation of PTEN is associated with poor prognosis, chemoresistance and progression of cancer cells. Besides, microRNAs, long non-coding RNAs, circular RNAs and other molecular pathways such as NF-kB are able to target PTEN in bladder cancer cells. Notably, anti-tumor drugs such as kaempferol, β-elemene and sorafenib upregulate the expression of PTEN to exert their inhibitory effects on bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Tsagakis I, Douka K, Birds I, Aspden JL. Long non-coding RNAs in development and disease: conservation to mechanisms. J Pathol 2020; 250:480-495. [PMID: 32100288 PMCID: PMC8638664 DOI: 10.1002/path.5405] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
Our genomes contain the blueprint of what makes us human and many indications as to why we develop disease. Until the last 10 years, most studies had focussed on protein-coding genes, more specifically DNA sequences coding for proteins. However, this represents less than 5% of our genomes. The other 95% is referred to as the 'dark matter' of our genomes, our understanding of which is extremely limited. Part of this 'dark matter' includes regions that give rise to RNAs that do not code for proteins. A subset of these non-coding RNAs are long non-coding RNAs (lncRNAs), which in particular are beginning to be dissected and their importance to human health revealed. To improve our understanding and treatment of disease it is vital that we understand the molecular and cellular function of lncRNAs, and how their misregulation can contribute to disease. It is not yet clear what proportion of lncRNAs is actually functional; conservation during evolution is being used to understand the biological importance of lncRNA. Here, we present key themes within the field of lncRNAs, emphasising the importance of their roles in both the nucleus and the cytoplasm of cells, as well as patterns in their modes of action. We discuss their potential functions in development and disease using examples where we have the greatest understanding. Finally, we emphasise why lncRNAs can serve as biomarkers and discuss their emerging potential for therapy. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ioannis Tsagakis
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| | - Katerina Douka
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| | - Isabel Birds
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| |
Collapse
|
24
|
Zhang HH, Huang ZX, Zhong SQ, Fei KL, Cao YH. miR‑21 inhibits autophagy and promotes malignant development in the bladder cancer T24 cell line. Int J Oncol 2020; 56:986-998. [PMID: 32319564 DOI: 10.3892/ijo.2020.4984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/08/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑21 (miR‑21) is reported to exhibit cancer‑promoting activity in various types of cancer. It has been previously demonstrated that miR‑21 is overexpressed in bladder tumor tissue compared with normal mucosa. However, the functional mechanism of miR‑21 in bladder cancer remains largely unknown. Thus, the current study aimed to determine the roles of miR‑21 in autophagy and the malignant development of bladder cancer in T24 cells. Upregulation or downregulation of miR‑21 was achieved following the transfection of miR‑21 mimic or miR‑21 inhibitor. An MTT assay was additionally performed to measure cell growth. Wound healing and transwell invasion assays were used to detect cell migration and invasion. The apoptotic potential and cell cycle were examined via flow cytometry and reverse transcription‑quantitative PCR was performed to evaluate the expression of phosphatase and tensin homolog (PTEN), beclin 1, microtubule‑associated protein l light chain 3B (LC3‑II), cyclin D1, caspase‑3, E‑cadherin, matrix metallopeptidase‑9 (MMP‑9) and vimentin. The results revealed that the proliferation, migration and invasion of T24 cells was greatly increased in the miR‑21 mimic group, while apoptosis was greatly inhibited. Additionally, T24 cells treated with miR‑21 mimic exhibited G1‑phase arrest. In the miR‑21 mimic group, the expression of PTEN, beclin 1, LC3‑II, caspase‑3 and E‑cadherin were decreased, while the expression of cyclin D1, MMP‑9 and vimentin were increased. Opposite effects were observed in the miR‑21 inhibitor group. The data of the current study may indicate that miR‑21 overexpression inhibited autophagy and promoted the proliferation, migration, invasion and epithelial to mesenchymal transition of bladder cancer T24 cells. The results may further elucidate the molecular mechanism of miR‑21 in the development of bladder cancer.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhong-Xin Huang
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Su-Quan Zhong
- Department of Urology, Yue Bei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Kui-Lin Fei
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - You-Han Cao
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
25
|
Silence of FAM83H-AS1 promotes chemosensitivity of gastric cancer through Wnt/β-catenin signaling pathway. Biomed Pharmacother 2020; 125:109961. [PMID: 32028241 DOI: 10.1016/j.biopha.2020.109961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor originated from the epithelium of gastric mucosa, its incidence is second only to lung cancer in China. Chemotherapy is one of the most effective methods to treat GC, but some patients are insensitive to chemotherapeutic drugs, leading to chemotherapy failure. In this study, the expression of FAM83H-AS1 was up-regulated in GC tissues and cell lines, and was related to differentiation, invasion depth and chemotherapy insensitivity of GC patients. FAM83H-AS1 was high-expressed in chemoresistant GC tissues and cell line (SGC7901/R), and silence of FAM83H-AS1 sensitized SGC7901/R cells to cisplatin (CDDP) and 5-fluorouracil (5-FU). In addition, silence of FAM83H-AS1 could inactivate Wnt/β-catenin signaling pathway in SGC7901/R cells. The activating of Wnt/β-catenin signaling pathway reversed the promoting effect of FAM83H-AS1 silence on chemotherapy sensitivity, which meant Wnt/β-catenin signaling pathway mediated the regulation of FAM83H-AS1 on chemotherapy sensitivity in SGC7901/R cells. In conclusion, FAM83H-AS1 is related with the CDDP and 5-FU insensitivity of GC patients, silence of FAM83H-AS1 promotes chemosensitivity of GC through Wnt/β-catenin signaling pathway.
Collapse
|
26
|
Zheng F, Xu R. CircPVT1 contributes to chemotherapy resistance of lung adenocarcinoma through miR-145-5p/ABCC1 axis. Biomed Pharmacother 2020; 124:109828. [PMID: 31986409 DOI: 10.1016/j.biopha.2020.109828] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/01/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, increasing studies have confirmed some circRNAs were involved in the genesis of chemotherapy resistance in almost all kinds of malignant tumors, including lung adenocarcinoma (LAD). Nevertheless, the function and mechanism of circPVT1 in regulating chemotherapy resistance of LAD has not been elucidated so far. The current study found circPVT1 was highly expressed in LAD, which expression was positively related to N stage and chemotherapy insensitivity (cisplatin and pemetrexed) of LAD patients, and it was an independent prognostic biomarker for LAD patients. The circPVT1 expression was up-regulated in LAD tissues and cell line (A549/DR) resistant to cisplatin and pemetrexed. CircPVT1 knockdown sensitized A549/DR cells to cisplatin and pemetrexed. RNA pull-down assay et al. confirmed circPVT1 acted as a ceRNA for miR-145-5p in A549/DR cells. In addition, miR-145-5p was lowly expressed in cisplatin and pemetrexed resistant LAD tissues and cell line, and its over-expression also sensitized A549/DR cells to cisplatin and pemetrexed. The luciferase reporter assay et al. proved ABCC1 was a target gene of miR-145-5p in A549/DR cells. Moreover, miR-145-5p enhancement partly restored the effecting of circPVT1 knockdown on chemotherapy resistance in A549/DR cells, miR-145-5p/ABCC1 pathway mediated chemotherapy resistance induced by circPVT1 knockdown in LAD cells. In conclusion, the high-expression of circPVT1 is related with the cisplatin and pemetrexed insensitivity of LAD patients, circPVT1 contributes to cisplatin and pemetrexed chemotherapy resistance through miR-145-5p/ABCC1 axis.
Collapse
Affiliation(s)
- Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
27
|
Cao Y, Tian T, Li W, Xu H, Zhan C, Wu X, Wang C, Wu X, Wu W, Zheng S, Xie K. Long non-coding RNA in bladder cancer. Clin Chim Acta 2020; 503:113-121. [PMID: 31940466 DOI: 10.1016/j.cca.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Bladder cancer (BC) is the ninth most common malignant disease and ranks fourteenth in cancer mortality worldwide. Moreover, among cancers, the incidence and mortality of BC in males increased to the 6th and 9th place, respectively. The overall survival (OS) declines dramatically as the cancer progresses, especially when urothelial cells transition from noninvasive to invasive. It is well known that epithelial cells can acquire invasive properties and a propensity to metastasize through the epithelial-to-mesenchymal transition (EMT) process in tumourigenesis and progression. However, the potential molecular mechanisms and key pathways are still unclear. As the sequencing technology advances, long non-coding RNAs (lncRNAs) have been proven to play an important role in regulating biological processes and cellular pathways. Here, we reviewed important lncRNAs, such as H19, UCA1 and MALAT1, that participate in the malignant phenotype of BC and regulate EMT signalling networks in the invasion-metastasis cascade during BC development. We further discuss MALAT1, PCAT-1 and SPRY4-IT1, and also urine and blood exosomal H19 and PTENP as potential noninvasive biomarkers. Moreover, antisense oligonucleotides (ASOs) and a double-stranded DNA plasmid (BC-819) have been designed for use in preclinical cancer models and clinical trials in patients. Therefore, the results of investigations have gradually prompted the utility of lncRNAs.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China; Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weijian Li
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chuanfei Zhan
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xuhong Wu
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chao Wang
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiaoli Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Wanke Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyun Zheng
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Zhou Z, Han B, Jin H, Chen A, Zhu L. Changes in long non-coding RNA transcriptomic profiles after ischemia-reperfusion injury in rat spinal cord. PeerJ 2020; 8:e8293. [PMID: 31934506 PMCID: PMC6951290 DOI: 10.7717/peerj.8293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
With the aim of exploring expression profiles and biological functions of long non-coding RNA (lncRNA) and mRNAs after spinal cord ischemia-reperfusion injury (SCII), differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in rat spinal cords were identified following SCII through high-throughput RNA sequencing. In total, 1,455 lncRNAs and 6,707 mRNAs were observed to be differentially expressed (—Fold Change— ≥ 2 and P < 0.05) after SCII, including 761 up-regulated and 694 down-regulated lncRNAs, 3,772 up-regulated and 2,935 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Further, lncRNA-mRNA co-expression networks were built to explore the potential roles of these DElncRNAs. Our results demonstrate genome-wide lncRNA and mRNA expression patterns in spinal cords after SCII, which may play vital roles in post-SCII pathophysiological processes. These findings are important for future functional research on the lncRNAs involved in SCII and might be critical for providing new insight into identification of potential targets for SCII therapy.
Collapse
Affiliation(s)
- Zhibin Zhou
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Bin Han
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Hai Jin
- Department of Neurosurgery, 202 Hospital of China Medical University, Shengyang, Liaoning, China
| | - Aimin Chen
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| |
Collapse
|
29
|
Xiong F, Yin H, Zhang H, Zhu C, Zhang B, Chen S, Ling C, Chen X. Clinicopathologic Features and the Prognostic Implications of Long Noncoding RNA HOTAIRM1 in Non-Small Cell Lung Cancer. Genet Test Mol Biomarkers 2020; 24:47-53. [PMID: 31880484 DOI: 10.1089/gtmb.2019.0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Feng Xiong
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Yin
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Zhang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunrong Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Biao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhua Ling
- Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Chen
- Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory Diseases, Suzhou Ninth People's Hospital, Suzhou, China
| |
Collapse
|
30
|
The lncRNA DLX6-AS1 promoted cell proliferation, invasion, migration and epithelial-to-mesenchymal transition in bladder cancer via modulating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:312. [PMID: 31787849 PMCID: PMC6880345 DOI: 10.1186/s12935-019-1010-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Bladder cancer is the most common human urological malignancies with poor prognosis, and the pathophysiology of bladder cancer involves multi-linkages of regulatory networks in the bladder cancer cells. Recently, the long noncoding RNAs (lncRNAs) have been extensively studied for their role on bladder cancer progression. In this study, we evaluated the expression of DLX6 Antisense RNA 1 (DLX6-AS1) in the cancerous bladder tissues and studied the possible mechanisms of DLX6-AS1 in regulating bladder cancer progression. Methods Gene expression was determined by qRT-PCR; protein expression levels were evaluated by western blot assay; in vitro functional assays were used to determine cell proliferation, invasion and migration; nude mice were used to establish the tumor xenograft model. Results Our results showed the up-regulation of DLX6-AS1 in cancerous bladder cancer tissues and bladder cell lines, and high expression of DLX6-AS1 was correlated with advance TNM stage, lymphatic node metastasis and distant metastasis. The in vitro experimental data showed that DLX6-AS1 overexpression promoted bladder cancer cell growth, proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT); while DLX6-AS1 inhibition exerted tumor suppressive actions on bladder cancer cells. Further results showed that DLX6-AS1 overexpression increased the activity of Wnt/β-catenin signaling, and the oncogenic role of DLX6-AS1 in bladder cancer cells was abolished by the presence of XAV939. On the other hand, DLX6-AS1 knockdown suppressed the activity of Wnt/β-catenin signaling, and the tumor-suppressive effects of DLX6-AS1 knockdown partially attenuated by lithium chloride and SB-216763 pretreatment. The in vivo tumor growth study showed that DLX6-AS1 knockdown suppressed tumor growth of T24 cells and suppressed EMT and Wnt/β-catenin signaling in the tumor tissues. Conclusion Collectively, the present study for the first time identified the up-regulation of DLX6-AS1 in clinical bladder cancer tissues and in bladder cancer cell lines. The results from in vitro and in vivo assays implied that DLX6-AS1 exerted enhanced effects on bladder cancer cell proliferation, invasion and migration partly via modulating EMT and the activity of Wnt/β-catenin signaling pathway.
Collapse
|
31
|
Xu R, Han Y. Long non-coding RNA FOXF1 adjacent non-coding developmental regulatory RNA inhibits growth and chemotherapy resistance in non-small cell lung cancer. Arch Med Sci 2019; 15:1539-1546. [PMID: 31749883 PMCID: PMC6855145 DOI: 10.5114/aoms.2019.86707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Lung cancer is one of the most common malignant neoplasms around the globe. Its most common type is non-small cell lung cancer (NSCLC). The FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) gene is an lncRNA which has been reported to show low expression and a tumor suppressor role in NSCLC. MATERIAL AND METHODS The expression of FENDRR in NSCLC patients' tissues and cell line was detected by quantitative real-time PCR. MTT assay was used to detect cell proliferation and chemotherapy resistance. Cell apoptosis was measured by flow cytometry. RESULTS The expression of FENDRR was low in NSCLC tissues and cells in contrast to control tissues and cells, and low FENDRR expression correlated with high TNM stages and poor differentiation of NSCLC, and could be a promising prognostic factor for NSCLC. FENDRR enhancement could inhibit the proliferation ability and advance cell apoptosis of A549 cells. The expression of FENDRR in NSCLC tissues and cells insensitive to cisplatin was much lower than that in NSCLC tissues and cells sensitive to cisplatin. The chemotherapy resistance to cisplatin of A549/DDP cells was depressed by FENDRR enhancement, and IC50 for cisplatin presented a conspicuous depression. FENDRR up-regulation inhibited cell viability of A549/DDP cells under treatment with 5 µg/ml DDP. TCGA Pan-Cancer (PANCAN) showed that the expression of FENDRR was negatively correlated with the expression of ABCC10 in lung cancer, and our western blot found that FENDRR up-regulation inhibited the expression of ABCC10 in A549/DDP cells. CONCLUSIONS LncRNA FENDRR has low expression in NSCLC and functions as a potential tumor-suppressing gene to inhibit growth and chemotherapy resistance of NSCLC cells.
Collapse
Affiliation(s)
- Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Qin W, Wang X, Wang Y, Li Y, Chen Q, Hu X, Wu Z, Zhao P, Li S, Zhao H, Yao W, Ding J, Wei M, Wu H. Functional polymorphisms of the lncRNA H19 promoter region contribute to the cancer risk and clinical outcomes in advanced colorectal cancer. Cancer Cell Int 2019; 19:215. [PMID: 31452627 PMCID: PMC6702740 DOI: 10.1186/s12935-019-0895-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/29/2019] [Indexed: 01/15/2023] Open
Abstract
Background The long non-coding RNA H19 plays critical roles in cancer occurrence, development, and progression. The present study is for the first time to evaluate the association of genetic variations in the H19 promoter region with advanced colorectal cancer (CRC) susceptibility, environmental factors, and clinical outcomes. Methods 16 single-nucleotide polymorphisms (SNPs) were identified in the H19 gene promoter by DNA sequencing, and 3 SNPs among which including rs4930101, rs11042170, and rs2735970 further expanded samples with 572 advanced CRC patients and 555 healthy controls. Results We found that harboring SNP [rs4930101 (P = 0.009), rs2735970 (P = 0.003), and rs11042170 (P = 0.003)] or carrying more than one combined risk genotypes significantly increased the risk for CRC [P < 0.0001, adjusted OR (95% CI) 6.48 (2.97–14.15)]. In the correlation analysis with environmental factors, rs2735970 and gender, combined risk genotypes (> 1 vs. ≤ 1) and family history of cancer demonstrated significant interactions. Furthermore, a remarkably worse clinical outcome was found in combined risk genotypes (> 1 vs. ≤ 1), especially in CRC patients with body weight ≥ 61 kg, smoking, and first-degree family history of cancer (Log-rank test: P = 0.006, P = 0.018, and P = 0.013, respectively). More importantly, the multivariate Cox regression analyses further verified that combined risk genotypes > 1 showed a prognostic risk factor for CRC patients with body weight ≥ 61 kg (P = 0.002), smoking (P = 0.008), and family history of cancer (P = 0.006). In addition, MDR analysis consistently revealed that the combination of selected SNPs and nine known risk factors showed a better prediction prognosis and represented the best model to predict advanced CRC prognosis. Conclusion 3 SNPs of rs4930101, rs11042170, and rs27359703 among 16 identified SNPs of H19 gene remarkably increased CRC risk. Furthermore, the combined risk genotypes had a significant impact on environmental factors and clinical outcomes in the advanced CRC patients with body weight ≥ 61 kg, ever-smoking, and first-degree family history of cancer. These data suggest that H19 promoter SNPs, especially these combined SNPs might be more potentially functional biomarkers in the prediction of advanced CRC risk and prognosis. Electronic supplementary material The online version of this article (10.1186/s12935-019-0895-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyan Qin
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Xiaodong Wang
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Yilin Wang
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Yalun Li
- 2Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Qiuchen Chen
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Xiaoyun Hu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Zhikun Wu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Pengfei Zhao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Shanqiong Li
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Haishan Zhao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Weifan Yao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Jian Ding
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China.,3Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Minjie Wei
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Huizhe Wu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| |
Collapse
|
33
|
Chen H, Lan Z, Li Q, Li Y. Abnormal expression of long noncoding RNA FGD5-AS1 affects the development of periodontitis through regulating miR-142-3p/SOCS6/NF-κB pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2098-2106. [PMID: 31144533 DOI: 10.1080/21691401.2019.1620256] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hong Chen
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Qiaomei Li
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Yuehong Li
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
34
|
Li B, Xie D, Zhang H. Long non-coding RNA GHET1 contributes to chemotherapeutic resistance to Gemcitabine in bladder cancer. Cancer Chemother Pharmacol 2019; 84:187-194. [PMID: 31115606 DOI: 10.1007/s00280-019-03873-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Bladder cancer (BC) ranks first in the incidence of urogenital tumors in China and second only to prostate cancer in the West. This study will clarify the roles and mechanism of lncRNA GHET1 in chemotherapeutic resistance of BC to Gemcitabine. METHODS The expression of GHET1 was examined using real-time quantitative PCR. Cell Counting Kit-8 assay was applied to analyze cell proliferation and Gemcitabine sensitivity. Cell apoptosis was detected using Annexin V-FITC/PI double-stained flow cytometry. The expression of ABCC1 protein was examined using Western blotting. RESULTS Firstly, the expression of GHET1 was up-regulated in BC, its high expression was relevant to high grade and muscle invasion of BC patients. Secondly, high expression of GHET1 was related to low Gemcitabine sensitivity of BC patients, and GHET1 was highly expressed in Gemcitabine-resistant BC cell lines. Thirdly, knockdown of GHET1 decreased the IC50 of Gemcitabine in Gemcitabine-resistant BC cell lines and advanced the Gemcitabine-induced cytotoxicity; GHET1 promoted Gemcitabine resistance in BC. Finally, knockdown of GHET1 also inhibited the expression of ABCC1 protein in Gemcitabine-resistant BC cells. CONCLUSIONS High expression of GHET1 was related with the low sensitivity to Gemcitabine of BC; GHET1 contributed to chemotherapeutic resistance to Gemcitabine in BC through up-regulating ABCC1 expression. Our findings are helpful to expound the molecular mechanism of chemotherapeutic resistance in BC.
Collapse
Affiliation(s)
- Bo Li
- Department of Urinary Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping Area, Shenyang, 100004, China
| | - Dalon Xie
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hui Zhang
- Department of Urinary Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping Area, Shenyang, 100004, China.
| |
Collapse
|
35
|
Li X, Giri V, Cui Y, Yin M, Xian Z, Li J. LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochem Biophys Res Commun 2019; 512:79-86. [DOI: 10.1016/j.bbrc.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/14/2022]
|
36
|
High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer. Exp Cell Res 2019; 378:32-40. [PMID: 30851243 DOI: 10.1016/j.yexcr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Growing evidences demonstrate that long non-coding RNAs (lncRNAs) contribute to the cancer initiation and progression and are considered as promising diagnostic and therapeutic targets of multiple cancers. However, the definite role of LINC00536 in bladder cancer (BC) remains unclear. In the present study, we found LINC00536 expression was highly expressed in BC tissues compared with controls and negatively associated with survival rate in BC patients. Gain-of-function assays indicated that LINC00536 overexpression promoted the proliferation, migration and invasion, whereas LINC00536 knockdown attenuated the cell phenotypes above in BC cell lines. In vivo assay illustrated that LINC00536 knockdown inhibited BC growth in vivo. Mechanistically, Wnt3a was identified as the target of LINC00536. LINC00536 promoted malignant phenotypes via activating the Wnt3a/β-Catenin signaling. Wnt3a knockdown reversed the increase of proliferation, migration, and invasion abilities of BC cells induced by LINC00536 overexpression. In summary, our findings demonstrated that LINC00536 promoted BC progression by modulating the Wnt3a/β-Catenin signaling.
Collapse
|
37
|
Shang C, Ao CN, Cheong CC, Meng L. Long Non-coding RNA CDKN2B Antisense RNA 1 Gene Contributes to Paclitaxel Resistance in Endometrial Carcinoma. Front Oncol 2019; 9:27. [PMID: 30761271 PMCID: PMC6361746 DOI: 10.3389/fonc.2019.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the female reproductive tract. In this study, we clarified the clinical significance of CDKN2B antisense RNA 1 (CDKN2B-AS) gene, and its effects on paclitaxel sensitivity in EC. Firstly, CDKN2B-AS gene was highly expressed in EC tissues and cell lines. The high-expression of CDKN2B-AS gene was associated with high pathological grade and low paclitaxel sensitivity of EC tissues. Knockdown of CDKN2B-AS gene sensitized Ishikawa/PA and HEC1A/PA cells to paclitaxel, and promoted paclitaxel-induced cytotoxicity. Secondly, the low-expression of miR-125a-5p was closely associated with low paclitaxel sensitivity of EC cells, and up-regulation of miR-125a-5p could increase paclitaxel sensitivity of Ishikawa/PA and HEC1A/PA cells. MiR-125a-5p also mediated the suppressive effects of knockdown of CDKN2B-AS on paclitaxel resistance in EC cells. Thirdly, B-cell lymphoma-2 (Bcl2) and Multidrug Resistance-Associated Protein 4 (MRP4) genes were target genes of miR-125a-5p, which modulated paclitaxel resistance of Ishikawa/PA and HEC1A/PA cells through targeted silencing Bcl2 and MRP4. In conclusion, high-expression of CDKN2B-AS is associated with a poor response to paclitaxel of EC patients, and knockdown of CDKN2B-AS inhibits paclitaxel resistance through miR-125a-5p-Bcl2/MRP4 pathway in EC patients. Our findings help elucidate the molecular mechanisms of chemoresistance in EC patients.
Collapse
Affiliation(s)
- Chao Shang
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China
| | - Cheng N Ao
- School of Health Sciences, Macao Polytechnic Institute, Macau, China
| | - Chi C Cheong
- School of Health Sciences, Macao Polytechnic Institute, Macau, China
| | - Lirong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macau, China
| |
Collapse
|
38
|
Wang F, Zu Y, Zhu S, Yang Y, Huang W, Xie H, Li G. Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression. Biochem Biophys Res Commun 2018; 507:231-235. [PMID: 30442369 DOI: 10.1016/j.bbrc.2018.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 01/09/2023]
Abstract
Bladder cancer (BCa) belongs to a popular urological malignancy and leads to large numbers of deaths worldwide. Recently, emerging evidences indicate that long noncoding RNAs (lncRNAs) are closely related with BC occurrence and progression. However, the function of lncRNA MAGI2-AS3 remains poorly understood in BC. In this present study, we screened out a novel lncRNA MAGI2-AS3 whose expression was downregulated in BCa tissues. We showed that MAGI2-AS3 downregulation in BCa patients indicated a poor prognosis. Functionally, we showed that MAGI2-AS3 overexpression inhibits proliferation, migration and invasion of BCa cells. Moreover, ectopic expression of MAGI2-AS3 suppresses BCa growth in vivo. Bioinformatics analysis revealed that MAGI2-AS3 could serve as a competing endogenous RNA (ceRNA) for miR-15b-5p. In the meantime, miR-15b-5p directly targeted CCDC19, a tumor suppressor in BCa. Rescue assays demonstrated that knockdown of CCDC19 restored the proliferation, migration and invasion of BCa cells suppressed by MAGI2-AS3 overexpression. In conclusion, this study identified a novel mechanism that MAGI2-AS3/miR-15b-5p/CCDC19 signaling pathway regulates BCa progression.
Collapse
Affiliation(s)
- Feng Wang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China; Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanwen Zu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shibin Zhu
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yu Yang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weiping Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hui Xie
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|