1
|
Zhong C, Chen D, Gong D, Sheng X, Lin Y, Li R, Li Y. Transcriptomic response of overexpression ZNF32 in breast cancer cells. Sci Rep 2024; 14:28407. [PMID: 39557972 PMCID: PMC11574142 DOI: 10.1038/s41598-024-80125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer is one of the deadliest malignancies in women worldwide. Zinc finger protein 32 (ZNF32) has been reported to be involved in autophagy and stem cell like properties of breast cancer cells. However, the effects, mechanisms, target genes and pathways of ZNF32 in breast cancer development have not been fully explored. In this study, stable ZNF32 overexpression breast cancer cell line was generated, and we used RNA-seq and RT-qPCR to quantify and verify the changes in transcription levels in breast cancer cells under ZNF32 overexpression. Transcriptome analysis showed that high expression of ZNF32 is accompanied by changes in downstream focal adhesion, ECM-receptor interaction, PI3K-AKT, HIPPO and TNF signaling pathways, which are critical for the occurrence and development of cancer. Multiple differentially expressed genes (DEGs) were significantly involved in cell proliferation, adhesion and migration, including 11 DEGs such as CA9, CRLF1 and ENPP2P with fundamental change of regulation modes. All the 11 DEGs were validated by RT-qPCR, and 9 of them contained potential transcriptional binding sequences of ZNF32 in their promoter region. This study provides a holistic perspective on the role and molecular mechanism of ZNF32 in breast cancer progression.
Collapse
Affiliation(s)
- Chaosong Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Di Gong
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Xueqing Sheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Sun J, Liu J, Hou Y, Bao J, Wang T, Liu L, Zhang Y, Zhong R, Sun Z, Ye Y, Liu J. ZFP64 drives glycolysis-mediated stem cell-like properties and tumorigenesis in breast cancer. Biol Direct 2024; 19:83. [PMID: 39294751 PMCID: PMC11409756 DOI: 10.1186/s13062-024-00533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a great clinical challenge because of its aggressiveness and poor prognosis. Zinc Finger Protein 64 (ZFP64), as a transcriptional factor, is responsible for the development and progression of cancers. This study aims to investigate whether ZFP64 regulates stem cell-like properties and tumorigenesis in BC by the glycolytic pathway. RESULTS It was demonstrated that ZFP64 was overexpressed in BC specimens compared to adjacent normal tissues, and patients with high ZFP64 expression had shorter overall survival and disease-free survival. The analysis of the association of ZFP64 expression with clinicopathological characteristics showed that high ZFP64 expression is closely associated with N stage, TNM stage, and progesterone receptor status. Knockdown of ZFP64 suppressed the viability and colony formation capacity of BC cells by CCK8 and colony formation assays. The subcutaneous xenograft models revealed that ZFP64 knockdown reduced the volume of formatted tumors, and decreased Ki67 expression in tumors. The opposite effects on cell proliferation and tumorigenesis were demonstrated by ZFP64 overexpression. Furthermore, we suggested that the stem cell-like properties of BC cells were inhibited by ZFP64 depletion, as evidenced by the decreased size and number of formatted mammospheres, the downregulated expressions of OCT4, Nanog, and SOX2 proteins, as well as the reduced proportion of CD44+/CD24- subpopulations. Mechanistically, glycolysis was revealed to mediate the effect of ZFP64 using mRNA-seq analysis. Results showed that ZFP64 knockdown blocked the glycolytic process, as indicated by decreasing glycolytic metabolites, inhibiting glucose consumption, and reducing lactate and ATP production. As a transcription factor, we identified that ZFP64 was directly bound to the promoters of glycolysis-related genes (ALDOC, ENO2, HK2, and SPAG4), and induced the transcription of these genes by ChIP and dual-luciferase reporter assays. Blocking the glycolytic pathway by the inhibition of glycolytic enzymes ENO2/HK2 suppressed the high proliferation and stem cell-like properties of BC cells induced by ZFP64 overexpression. CONCLUSIONS These data support that ZFP64 promotes stem cell-like properties and tumorigenesis of BC by activating glycolysis in a transcriptional mechanism.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Thyroid Breast Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China
| | - Jinquan Liu
- Shanxi Datong University, Datong, Shanxi, People's Republic of China
| | - Yudong Hou
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jianheng Bao
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Teng Wang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Longbi Liu
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yidan Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Rui Zhong
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Zhenxuan Sun
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yan Ye
- Hainan Women and Children's Medical Center, Haikou, Hainan, People's Republic of China
| | - Jintao Liu
- Hainan Women and Children's Medical Center, Haikou, Hainan, People's Republic of China.
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Hu X, Chen Y, Zhuang L, Zhang S. ZNF677 inhibits oral squamous cell carcinoma growth and tumor stemness by regulating FOXO3a. Hum Cell 2023:10.1007/s13577-023-00910-w. [PMID: 37129799 DOI: 10.1007/s13577-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer with an increasing incidence worldwide. Zinc-finger proteins 677 (ZNF677) is involved in the progression and methylation of various cancers, but its role and mechanism in OSCC remain indeterminate. The expression of ZNF677 was analyzed by online database and immunohistochemistry, while the methylation level of ZNF677 was determined by the methylation-specific PCR. The role and mechanism of ZNF677 in the tumor cell growth, migration, invasion and stemness were addressed by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, Transwell, wound-healing, sphere‑formation, and western blot assays. In addition, its function was also investigated in a xenografted mice model. The results showed that ZNF677 was lowly expressed in OSCC with a hypermethylation level, which predicted poor overall survival in patients with HNSC. Upregulation of ZNF677 reduced the cell viability, Edu positive cells, numbers of invasion cells, the migration ability, numbers of spheres formation and the expression of proliferation, migration and stemness related proteins in CAL-27 and SCC25 cells. Mechanically, the relative levels of p-AKT/AKT were decreased and the levels of p-FOXO3a/FOXO3a were increased in both cells overexpressed with ZNF677, which were reversed by the SC79 treatment. Moreover, interference of FOXO3a recovered the suppressive effects of ZNF677 overexpression on cell proliferation, migration, invasion and stemness of OSCC cells. Furthermore, overexpression of ZNF677 reduced the tumor volume and weight, and the relative protein level of p-AKT/AKT with an increased level of p-FOXO3a/FOXO3a, and improved pathological symptoms in vivo. Collectively, ZNF677 suppressed OSCC cells growth, migration, invasion and stemness through inhibiting AKT/FOXO3a pathway.
Collapse
Affiliation(s)
- Zebiao Zhang
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China
| | - Ying Zhang
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China.
| | - Xiaoyan Hu
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, Fujian, China
| | - Yanru Chen
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China
| | - Liangliang Zhuang
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China
| | - Shuqin Zhang
- Department of Stomatology, Jinjiang Stomatological Hospital, Quanzhou, 362200, Fujian, China
| |
Collapse
|
4
|
Qu Z, Liu Q, Kong X, Wang X, Wang Z, Wang J, Fang Y. A Systematic Study on Zinc-Related Metabolism in Breast Cancer. Nutrients 2023; 15:nu15071703. [PMID: 37049543 PMCID: PMC10096741 DOI: 10.3390/nu15071703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer has become the most common cancer worldwide. Despite the major advances made in the past few decades in the treatment of breast cancer using a combination of chemotherapy, endocrine therapy, and immunotherapy, the genesis, treatment, recurrence, and metastasis of this disease continue to pose significant difficulties. New treatment approaches are therefore urgently required. Zinc is an important trace element that is involved in regulating various enzymatic, metabolic, and cellular processes in the human body. Several studies have shown that abnormal zinc homeostasis can lead to the onset and progression of various diseases, including breast cancer. This review highlights the role played by zinc transporters in pathogenesis, apoptosis, signal transduction, and potential clinical applications in breast cancer. Additionally, the translation of the clinical applications of zinc and associated molecules in breast cancer, as well as the recent developments in the zinc-related drug targets for breast cancer treatment, is discussed. These developments offer novel insights into understanding the concepts and approaches that could be used for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Fang
- Correspondence: (J.W.); (Y.F.)
| |
Collapse
|
5
|
Chu J, Li Y, He M, Zhang H, Yang L, Yang M, Liu J, Cui C, Hong L, Hu X, Zhou L, Li T, Li C, Fan H, Jiang G, Lang T. Zinc finger and SCAN domain containing 1, ZSCAN1, is a novel stemness-related tumor suppressor and transcriptional repressor in breast cancer targeting TAZ. Front Oncol 2023; 13:1041688. [PMID: 36923432 PMCID: PMC10009259 DOI: 10.3389/fonc.2023.1041688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction Cancer stem cells (CSCs) targeted therapy holds the potential for improving cancer management; identification of stemness-related genes in CSCs is necessary for its development. Methods The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets were used for survival analysis. ZSCAN1 correlated genes was identified by Spearman correlation analysis. Breast cancer stem-like cells (BCSLCs) were isolated by sorting CD44+CD24- cells from suspension cultured breast cancer (BC) spheroids. The sphere-forming capacity and sphere- and tumor-initiating capacities were determined by sphere formation and limiting dilution assays. The relative gene expression was determined by qRT-PCR, western blot. Lentivirus system was used for gene manipulation. Nuclear run-on assay was employed to examine the levels of nascent mRNAs. DNA pull-down and Chromatin immunoprecipitation (ChIP) assays were used for determining the interaction between protein and target DNA fragments. Luciferase reporter assay was used for evaluating the activity of the promoter. Results and discussion ZSCAN1 is aberrantly suppressed in BC, and this suppression indicates a bad prognosis. Ectopic expression of ZSCAN1 inhibited the proliferation, clonogenicity, and tumorigenicity of BC cells. ZSCAN1-overexpressing BCSLCs exhibited weakened stemness properties. Normal human mammary epithelial (HMLE) cells with ZSCAN1 depletion exhibited enhanced stemness properties. Mechanistic studies showed that ZSCAN1 directly binds to -951 ~ -925bp region of WWTR1 (encodes TAZ) promoter, inhibits WWTR1 transcription, thereby inhibiting the stemness of BCSCs. Our work thus revealed ZSCAN1 as a novel stemness-related tumor suppressor and transcriptional repressor in BC.
Collapse
Affiliation(s)
- Jian Chu
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yunzhe Li
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Misi He
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Hui Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lingling Yang
- School of Medicine, Chongqing University, Chongqing, China
| | - Muyao Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Jingshu Liu
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenxi Cui
- School of Medicine, Chongqing University, Chongqing, China
| | - Liquan Hong
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingchi Hu
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.,Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tangya Li
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu, China
| | - Changchun Li
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu, China
| | - Huiwen Fan
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu, China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Therachiyil L, Hussein OJ, Uddin S, Korashy HM. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways. Semin Cancer Biol 2022; 86:1186-1202. [PMID: 36252938 DOI: 10.1016/j.semcancer.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemotherapy for gynecological cancers.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
8
|
Morelli E, Hunter ZR, Fulciniti M, Gullà A, Perrotta ID, Zuccalà V, Federico C, Juli G, Manzoni M, Ronchetti D, Romeo E, Gallo Cantafio ME, Soncini D, Maltese L, Rossi M, Roccaro AM, Cea M, Tassone P, Neri A, Treon SC, Munshi NC, Viglietto G, Amodio N. Therapeutic activation of G protein-coupled estrogen receptor 1 in Waldenström Macroglobulinemia. Exp Hematol Oncol 2022; 11:54. [PMID: 36096954 PMCID: PMC9469525 DOI: 10.1186/s40164-022-00305-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Activating G protein-coupled estrogen receptor 1 (GPER1) is an attractive therapeutic strategy for treating a variety of human diseases including cancer. Here, we show that GPER1 is significantly upregulated in tumor cells from different cohorts of Waldenström Macroglobulinemia (WM) patients compared to normal B cells. Using the clinically applicable GPER1-selective small-molecule agonist G-1 (also named Tespria), we found that pharmacological activation of GPER1 leads to G2/M cell cycle arrest and apoptosis both in vitro and in vivo in animal models, even in the context of the protective bone marrow milieu. Activation of GPER1 triggered the TP53 pathway, which remains actionable during WM progression. Thus, this study identifies a novel therapeutic target in WM and paves the way for the clinical development of the GPER1 agonist G-1.
Collapse
Affiliation(s)
- Eugenio Morelli
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Zachary R Hunter
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Annamaria Gullà
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Ida Daniela Perrotta
- Laboratory of Transmission Electron Microscopy, Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, 88100, Catanzaro, Italy
| | - Cinzia Federico
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.,Clinical Research Development and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Martina Manzoni
- Department of Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
| | - Domenica Ronchetti
- Department of Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
| | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | | | - Debora Soncini
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenza Maltese
- Pathology Unit, "Pugliese-Ciaccio" Hospital, 88100, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Steven C Treon
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Nikhil C Munshi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA.,VA Boston Healthcare System, Boston, MA, 02132, USA
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Investigation of the Antitumor Effects of Tamoxifen and Its Ferrocene-Linked Derivatives on Pancreatic and Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15030314. [PMID: 35337112 PMCID: PMC8950591 DOI: 10.3390/ph15030314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Tamoxifen is a long-known anti-tumor drug, which is the gold standard therapy in estrogen receptor (ER) positive breast cancer patients. According to previous studies, the conjugation of the original tamoxifen molecule with different functional groups can significantly improve its antitumor effect. The purpose of this research was to uncover the molecular mechanisms behind the cytotoxicity of different ferrocene-linked tamoxifen derivates. Tamoxifen and its ferrocene-linked derivatives, T5 and T15 were tested in PANC1, MCF7, and MDA-MB-231 cells, where the incorporation of the ferrocene group improved the cytotoxicity on all cell lines. PANC1, MCF7, and MDA-MB-231 express ERα and GPER1 (G-protein coupled ER 1). However, ERβ is only expressed by MCF7 and MDA-MB-231 cells. Tamoxifen is a known agonist of GPER1, a receptor that can promote tumor progression. Analysis of the protein expression profile showed that while being cytotoxic, tamoxifen elevated the levels of different tumor growth-promoting factors (e.g., Bcl-XL, Survivin, EGFR, Cathepsins, chemokines). On the other hand, the ferrocene-linked derivates were able to lower these proteins. Further analysis showed that the ferrocene-linked derivatives significantly elevated the cellular oxidative stress compared to tamoxifen treatment. In conclusion, we were able to find two molecules possessing better cytotoxicity compared to their unmodified parent molecule while also being able to counter the negative effects of the presence of the GPER1 through the ER-independent mechanism of oxidative stress induction.
Collapse
|
10
|
Cui XX, Zhou C, Lu H, Han YL, Wang FM, Fan WR, Ren Y, Zhang R. High expression of ZNF93 promotes proliferation and migration of ovarian cancer cells and relates to poor prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:944-953. [PMID: 32509065 PMCID: PMC7270678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Ovarian cancer (OC) is most common type of gynecologic cancer and is frequently lethal. It is important to determine the pathologic mechanisms underlying OC. ZNF93 is a member of the zinc finger protein family. Abnormal expression of ZNF93 has been observed in various tumor cells. However, its clinical significance and biologic function in ovarian cancer remain unclear. In the present study, we established that ZNF93 expression was highly up-regulated in OC samples and was closely correlated with clinical stage, indicating poor prognosis. We then established that ZNF93 promoted OC cell proliferation and migration. The results of our study may provide insight into the use of ZNF93 as a marker of clinical outcome and as a potential therapeutic target in OC.
Collapse
Affiliation(s)
- Xiao-Xiao Cui
- Anhui University of Science and TechnologyHuainan, P. R. China
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Chen Zhou
- Department of Gynecology, Changzhou No. 2 People’s HospitalJiangsu, P. R. China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Yan-Li Han
- Anhui University of Science and TechnologyHuainan, P. R. China
| | - Feng-Mian Wang
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Wei-Rong Fan
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Yuan Ren
- Anhui University of Science and TechnologyHuainan, P. R. China
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| | - Rong Zhang
- Anhui University of Science and TechnologyHuainan, P. R. China
- Department of Obstetrics and Gynecology, Health Sciences Affiliated Sixth People’s Hospital South CampusShanghai, P. R. China
| |
Collapse
|
11
|
Cordeiro ER, Filetti FM, Simões MR, Vassallo DV. Mercury induces nuclear estrogen receptors to act as vasoconstrictors promoting endothelial denudation via the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2019; 381:114710. [PMID: 31415774 DOI: 10.1016/j.taap.2019.114710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Cardiovascular diseases (CVD) are more frequent among postmenopausal women due to the decline of estrogen concentration in plasma. However, the role of the vascular modulator effect of estrogen is controversial, since it occurs both in physiological and pathological conditions, increasing or reducing vascular reactivity. As mercury is widely associated with the development of CVD, we investigated putative hazardous effects on the mechanisms that modulate vascular reactivity in aortic rings of female Wistar rats promoted by acute mercury exposure. Mercury increased vascular reactivity and oxidative stress possibly due to NADPH oxidase participation, increased production of cyclooxygenase-2 (COX-2) and thromboxane A2 (TXA2) formation. The metal also induced endothelial denudation in the aorta by reducing the bioavailability of nitric oxide (NO) and enhancing the activity of the PI3K/Akt signaling pathway. Mercury exposure also induced nuclear estrogen receptors (ERα, ERβ) to act as vasoconstrictors. Our findings suggest that mercury might increase the chances of developing cardiovascular diseases in females and should be considered an important environmental risk factor.
Collapse
Affiliation(s)
- Evellyn Rodrigues Cordeiro
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Filipe Martinuzo Filetti
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Maylla Ronacher Simões
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Dalton Valentim Vassallo
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil; Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402, Brazil.
| |
Collapse
|
12
|
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234:116781. [PMID: 31430455 DOI: 10.1016/j.lfs.2019.116781] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are a population of self-renewal cells with high tumorigenic potency. CSCs can adopt easily with changes in the nearby milieu, and are more resistant to conventional therapies than other cells within a tumor. CSC resistance can be induced secondary to radio- and chemotherapy, or even after chemotherapy secession. A combination of both intrinsic and extrinsic factors is contributed to CSC-mediated therapy resistance. CSCs represent protective autophagy and efficient cell cycling, along with highly qualified epithelial-mesenchymal transition (EMT) regulators, reactive oxygen species (ROS) scavengers, drug transporters, and anti-apoptotic and DNA repairing systems. In addition, CSCs develop cross-talking and share some characteristics with other cells within the tumor microenvironment (TME) being more intense in higher stage tumors, and thereby sophisticating tumor-targeted therapies. TME, in fact, is a nest for aggravating resistance mechanisms in CSCs. TME is exposed constantly to the nutritional, metabolic and oxygen deprivation; these conditions promote CSC adaptation. This review is aimed to discuss main (intrinsic and extrinsic) mechanisms of CSC resistance and suggest some strategies to revoke this important promoter of therapy failure.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Shang Y, Li Y, Zhang Y, Wang J. ZNF436 promotes tumor cell proliferation through transcriptional activation of BCL10 in glioma. Biochem Biophys Res Commun 2019; 515:572-578. [PMID: 31178130 DOI: 10.1016/j.bbrc.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/20/2023]
Abstract
Transcriptional factors (TFs) are key regulators in orchestrating gene transcription during cancer development. However, their roles in glioma remain elusive. Here, we analyzed the differential expression of TFs and identified ZNF436 is upregulated in glioblastoma and Lower Grade Glioma patients. High expression of ZNF436 is positively associated with poor overall survival and regulated by CREB1 in glioma cells. Knockdown of ZNF436 significantly abolished glioma cells proliferation in vitro. RNA sequencing revealed that ZNF436 regulates cell cycle and controlling BCL10 expression. Overexpression of BCL10 promoted glioma cells growth and rescued the malignant behavior in ZNF436-knockdown cells. High levels of BCL10 also result in a worse prognosis in glioma patients. Taken together, our findings identify the CREB1/ZNF436/BCL10 axis represents a novel, potential therapeutic target for glioma interventions.
Collapse
Affiliation(s)
- Yinwu Shang
- Department of Neurosurgery, Gansu Provincial People's Hospital, Lanzhou City, 730000, Gansu Province, China
| | - Yuchen Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jianjun Wang
- Department of Pediatric Medicine, Gansu Provincial People's Hospital, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|